ABOUT JMPR

The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals.

The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peer reviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

Contact Us

Editorial Office: jmpr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JMPR
Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Akah Peter Achunike
Editor-in-chief
Department of Pharmacology & Toxicology
University of Nigeria, Nsukka
Nigeria

Associate Editors

Dr. Ugur Cakilcioğlu
Elazığ Directorate of National Education
Turkey.

Dr. Jianxin Chen
Information Center,
Beijing University of Chinese Medicine,
Beijing, China
100029,
China.

Dr. Hassan Sher
Department of Botany and Microbiology,
College of Science,
King Saud University, Riyadh
Kingdom of Saudi Arabia.

Dr. Jin Tao
Professor and Dong-Wu Scholar,
Department of Neurobiology,
Medical College of Soochow University,
199 Ren-Ai Road, Dushu Lake Campus,
Suzhou Industrial Park,
Suzhou 215123,
P.R.China.

Dr. Pongsak Rattanachaikunsopon
Department of Biological Science,
Faculty of Science,
Ubon Ratchathani University,
Ubon Ratchathani 34190,
Thailand.

Prof. Parveen Bansal
Department of Biochemistry
Postgraduate Institute of Medical Education and Research
Chandigarh
India.

Dr. Ravichandran Veerasamy
AIMST University
Faculty of Pharmacy, AIMST University, Semeling - 08100,
Kedah, Malaysia.

Dr. Sayeed Ahmad
Herbal Medicine Laboratory, Department of Pharmacognosy and Phytochemistry,
Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062,
India.

Dr. Cheng Tan
Department of Dermatology, first Affiliated Hospital of Nanjing University of Traditional Chinese Medicine.
155 Hanzhong Road, Nanjing, Jiangsu Province,
China. 210029

Dr. Naseem Ahmad
Young Scientist (DST, FAST TRACK Scheme)
Plant Biotechnology Laboratory
Department of Botany
Aligarh Muslim University
Aligarh- 202 002,(UP)
India.

Dr. Isiaka A. Ogunwande
Dept. Of Chemistry,
Lagos State University, Ojo, Lagos,
Nigeria.
Editorial Board

Prof Hatil Hashim EL-Kamali
Omdurman Islamic University, Botany Department, Sudan.

Prof. Dr. Muradiye Nacak
Department of Pharmacology, Faculty of Medicine, Gaziantep University, Turkey.

Dr. Arash Kheirmand
Lorestan University, Iran.

Prof. Dr. Cemşit Karakurt
Pediatrics and Pediatric Cardiology, Inonu University Faculty of Medicine, Turkey.

Dr. Sadiq Azam
Department of Biotechnology, Abdul Wali Khan University Mardan, Pakistan.

Samuel Adelani Babarinde
Department of Crop and Environmental Protection, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

Kongyun Wu
Department of Biology and Environment Engineering, Guiyang College, China.

Dr. Wafaa Ibrahim Rasheed
Professor of Medical Biochemistry National Research Center Cairo, Egypt.

Dr. Swati Sen Mandi
Division of Plant Biology, Bose Institute, India.

Dr. Ujjwal Kumar De
Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122, Veterinary Medicine, India.
ARTICLES

Caryocar brasiliense fruit intake ameliorates hepatic fat deposition and improves intestinal structure of rats 640

Screenings of *In-vitro* antimicrobial, cytotoxic and anti-inflammatory activity of crude methanolic extracts of *Crinum latifolium* (Leaves) 649

Acute oral toxicity study of *Mystroxylon aethiopicum* root bark aqueous extract in albino mice 656
Mhuji Kilonzo, Patrick A. Ndakidemi and Musa Chacha
Caryocar brasiliense fruit intake ameliorates hepatic fat deposition and improves intestinal structure of rats

Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas Universidade Federal dos Vales do Jequitinhonha e Mucuri, Brazil.

Received 9 August, 2016; Accepted 19 September, 2016

Caryocar brasiliense (*pequi*) is an exotic fruit, high in monounsaturated fat acids (MUFA) and bioactive compounds, which have beneficial effects on cardiometabolic risk factors. However, this fruit is poorly studied in this context. In this study, the effects of *pequi* pulp intake on cardiometabolic risk factors of rats were evaluated. Therefore, 16 male weaned rats were divided into two groups: Control group and *Pequi* group. Control group was fed a standard diet and *pequi* group, the same diet added *pequi* pulp (3.26 g.100 g⁻¹) for 15 weeks. At the end, plasma lipids, glucose, insulin, Homeostasis Model Assessment of Insulin Resistance index (HOMA-IR), blood pressure, heart rate, hepatic and fecal lipids and intestinal histomorphometric parameters were accessed. Liver and heart samples were harvested for redox status assays. There were no differences between experimental groups for blood pressure, heart rate, glucose, insulin, HOMA-IR, triglycerides, cholesterol, HDL-cholesterol, and liver and heart redox status (p<0.05). *Pequi* group had lowered lipid hepatic deposition and increased fecal output (p<0.05), increased intestinal villus height and crypt depth. Thus, *pequi* pulp intake minimized liver fat deposition by increasing its intestinal output and improved intestinal structure of rats, which can contribute for reducing cardiometabolic risk factors. MUFA, carotenoids and fibres can be associated, at last in part, with these effects.

Key words: Caryocar brasiliense, pequi, cardiometabolic risk, lipid metabolism, redox status.

INTRODUCTION

Non communicable diseases (NCD), such as type 2 diabetes and cardiovascular diseases, are major causes of mortality worldwide (up to 38 million by year), and are responsible for 80% of deaths occurring in developing countries (WHO, 2014). Increasing the intake of fruits and vegetables are one of the main recommendations for reducing NCD risk. From this perspective, consumer interest in foods with functional properties is increasing.
blood pressure, insulin sensitivity and glycemic control.

Reduced platelet aggregation, favourable modulation of

have been associated with improvements in lipid profile,

beta-carotene, neoxanthin and cryptoxanthin, as well as reduced platelet aggregation, favourable modulation of lipid profile, and protection from cell oxidative damage (Gülçin, 2012; Ried and Fakler, 2011).

Thus, the composition of nutrients and bioactive compounds of pequi pulp suggests that it could be a food supplement and it can exert effects on metabolism, cardiovascular function and cell redox status as a functional food. However, this fruit has been poorly studied. To the author's knowledge, there are only some research showing healing (Quirino et al., 2009; Bezerra et al., 2015), chemopreventive (Palmeira et al., 2016; Colombo et al., 2015) and anti-inflammatory (Miranda-Vilela et al., 2009) properties of pequi oil. Studies regarding functional properties from pequi pulp intake are scarce (Teixeira et al., 2013).

Therefore, the aim of this study was to evaluate the effects of pequi pulp intake on cardiometabolic risk markers of rats. The in vitro antioxidant activity and the chemical composition of pequi pulp were determined previously because some compounds could be related to its potential health benefits.

MATERIALS AND METHODS

Pequi pulp samples

Ripe pequi fruits were acquired from the local market of Diamantina city, Minas Gerais State, Brazil. They were washed with tap water and subsequently with distilled water. After drying at room temperature, each fruit was cut in half and the pulp was separated from the almond manually. Afterwards, the pulps were placed on trays and dried in a temperature of 65°C for 48 h (Teixeira et al., 2013). After drying, the material was grounded, wrapped in a plastic bag, labeled and stored at -18±2°C until the analysis.

Chemical composition and in vitro antioxidant activity of pequi pulp

Protein, total lipids, dietary fibres (enzymatic-gravimetric method) and total carotenoids were determined as described by The Association of Official Analytical Chemists - AOAC methods (AOAC, 1995). Carbohydrates were calculated by difference, and the total energy value (TEV) was estimated using the Atwater factors (Buchholz & Schoeller 2004). Fatty acids were analyzed by gas chromatography (CGC Agilent 6850 Series GC System) according to The American Oil Chemist’s Society – AOCS (AOCS, 2009).

The in vitro pequi pulp antioxidant activity was performed in both 6:4 ethanol: water and 1:1 methanol: acetone extracts. Briefly, dehydrated pequi pulp samples were extracted with 40 mL of 1:1 methanol/water solution for 1 h, at room temperature. Afterwards, the mixture was centrifuged (Biosystem, 80-2B, Curitiba-PR) at 3,000 rpm for 15 min. The supernatant was harvested and the step was repeated, using a 7:3 acetone/water solution (Larrauri et al., 1997). After the solvents evaporation, the mixtures were diluted in 6:4 ethanol: water and 1:1 methanol: acetone solutions. The 2,2-diphenyl-1-picrylhydrazyl free radical scavenging (DPPH) and ferric reducing antioxidant power (FRAP) methods were used according to Rufino et al. (2010).

Rat study

Experimental protocols were performed in accordance with the EU Directive 2010/63/EU for animal experiments. They were approved by the Ethics Committee on Animal Use/Federal University of Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil (Protocol 010/2012).

Sixteen male Wistar rats, four weeks aged, were housed in individual stainless steel cages and maintained in a room with controlled temperature (22±2°C) and a 12 h light/dark cycle, with free access to food and water during the experimental period.

A commercial chow (Renafood Labs) was used as a standard diet, and its energy density was 3.28 kcal g⁻¹ (13.77 kJ g⁻¹). Based on the lipid composition of the pequi pulp, the standard diet was added, pequi pulp at 3.26.100 g⁻¹, which resulted in a 50% increase in total lipid content, so its energy density turned into 3.39 kcal g⁻¹ (14.21 kJ g⁻¹), a 3.35% increase. The pequi pulp supplementation was also added, 1.19 g.100 g⁻¹ of oleic acid; 0.63 g.100 g⁻¹ of fibres and 0.14 mg.100 g⁻¹ of carotenoids to the standard diet.

All 16 animals were randomly assigned to two treatment groups (n=8): Control group - animals fed the standard diet and Pequi pulp group - animals fed the standard diet added pequi pulp. The study lasted for 15 weeks. During this period, body weight and food intake were monitored for energy efficiency ratio (EER = weight gain/kcal) and feed efficiency ratio (FER = weight gain/g of diet) calculations. Faeces were collected in the last 72 h of the experiment, dried and kept at -80°C until analysis. The body weight and length (nose–anus length) were measured in all anaesthetized rats (quetamin + xilazine/50 mg/kg + 10 mg/kg) in the previous day to the euthanasia for the Lee index calculation (weight body.g ⁰.³³/nose–anus length).

On the last day, overnight fasted animals were anaesthetized (quetamin + xilazine/50 mg/kg+10 mg/kg), euthanized by decapitation for blood and tissues (adipose tissues, liver, heart, duodenum) harvesting. Retinoprotein and epidymal fat pads were used for adiposity index ([retinoprotein + epidymal pads/body weight - (retinoprotein + epidymal pads)*100]) calculation. Blood was centrifuged in heparinized tubes to obtain plasma, and aliquots were transferred to Eppendorf tubes and kept at -80°C until analysis. Liver and heart tissues were processed for redox status analysis. Duodenum fragments of 5 cm were harvested and stored in a 10% formaldehyde solution for complementary histological analyses.
Figure 1. Morphometric analysis of duodenum: villus height and crypt depth. 5 µm cross-section, 100x magnification.

Cardiometabolic risk factors

Tail blood pressure (BP) and heart rate (HR) were measured in the last week of the experimental protocol by the non-invasive tail plethysmography method. The animals were heated to cause vasodilation of the caudal artery. The pulses were recorded by system (AD Instruments Ltd, UK). The BP and HR values were used for the double product calculation (BP x HR). The heart weight and body weight were used for cardiac hypertrophy evaluation, by heart weight/body weight calculation.

Fasted plasma glucose levels (GLU) were measured by means a commercial kit according the procedures recommended by the manufacturer and using a semi-automatic biochemical analyzer (PIOWAY-3000). Fasted plasma insulin (INS) was determined using a commercially available Enzyme-Linked Immunosorbent Assay kit (Linco Research Inc., St. Louis, MO, USA) and a micro-plate reader (Spectra MAX 190, Molecular Devices, USA). Insulin resistance was accessed by the homeostasis model assessment of insulin resistance (HOMA-IR index), from fasted glucose and insulin levels according to Matthews et al. (1985).

Total plasma cholesterol (CHOL), high-density lipoprotein cholesterol (HDL-C) and triglyceride (TG) levels were determined using a semi-automatic biochemical analyzer (PIOWAY-3000) and commercial kits according the procedures recommended by the manufacturer. Liver and faeces samples were oven-dried (60°C ± 2°C for 72 h) after harvesting, grounded, and their lipids were extracted according to Folch et al. (1957). CHOL and TG levels were determined using commercial kits according the procedures recommended by the manufacturer and using a semi-automatic biochemical analyzer (PIOWAY-3000).

Considering the possible influences of some chemicals from pequi pulp in the intestinal morphology, which could affect nutrient digestion and absorption, we also preceded histomorphometric assays. For that, fragments of duodenum were removed and fixed in a 4% buffered formaldehyde solution. After dehydration and fixation in paraffin, two 5 µm cross-sections which were stained with haematoxylin/eosin was performed. Results were obtained by means of a digital camera coupled to a microscope. All images were analysed using the Axion Vision software. The villus height (VH) and the crypt depth (CD) were expressed as the arithmetic mean determined from 20 measurements of each sample. The villus height/crypt depth ratio (VH/CD) was also calculated. The villi density per optical field (920764.14 μm²) was taken from five photos from each animal. All measurements were made in µm, at 100x magnification (Figure 1).

For the redox status analysis, liver and heart samples were homogenized in phosphate-buffered saline (PBS) (T 20 basic ULTRA-TURRAX; IKA Labortechnik, China), pH 7.2, and
Table 1. Nutritional composition (g.100 g⁻¹), energy density (kcal.g⁻¹) and total carotenoids (mg.100 g⁻¹) of boiled and dehydrated *pequi* pulp (*Caryocar brasiliense*).

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipids</td>
<td>66.76±1.16</td>
</tr>
<tr>
<td>Proteins</td>
<td>4.76±0.38</td>
</tr>
<tr>
<td>Fibres</td>
<td>19.19±0.09</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>1.41±3.27</td>
</tr>
<tr>
<td>Energy density**</td>
<td>6.25±0.10</td>
</tr>
<tr>
<td>Carotenoids</td>
<td>43.3±0.03</td>
</tr>
</tbody>
</table>

*Values expressed in mean ±standard deviation.
**26.27± 0.42 kj.g⁻¹.

Table 2. Fatty acid profile from boiled and dehydrated *pequi* pulp oil (*Caryocar brasiliense*).

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>g.100g⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lauric (C12:0)</td>
<td>0.04±0.01</td>
</tr>
<tr>
<td>Myristic (C14:0)</td>
<td>0.11±0.01</td>
</tr>
<tr>
<td>Palmitic (C16:0)</td>
<td>40.14±0.01</td>
</tr>
<tr>
<td>Stearic (C18:0)</td>
<td>1.50±0.00</td>
</tr>
<tr>
<td>Arachidonic (C20:0)</td>
<td>0.16±0.00</td>
</tr>
<tr>
<td>Behenic (C22:0)</td>
<td>0.05±0.01</td>
</tr>
<tr>
<td>Lignoceric (C24:0)</td>
<td>0.08±0.00</td>
</tr>
<tr>
<td>Total of saturated</td>
<td>42.13±0.00</td>
</tr>
<tr>
<td>Palmitoleic (C16:1)</td>
<td>0.89±0.00</td>
</tr>
<tr>
<td>Oleic (C18:1)</td>
<td>54.76±0.01</td>
</tr>
<tr>
<td>Linoleic (C18:2)</td>
<td>1.53±0.01</td>
</tr>
<tr>
<td>α-Linolenic (C18:3)</td>
<td>0.34±0.00</td>
</tr>
<tr>
<td>Eicosenoic (C20:1)</td>
<td>0.26±0.00</td>
</tr>
<tr>
<td>Total of unsaturated</td>
<td>57.87±0.01</td>
</tr>
</tbody>
</table>

*Values expressed in mean ±standard deviation.

Pequi pulp had expressive amounts of total lipids (Table 1). The main fatty acids from *pequi* lipids were oleic followed by palmitic (Table 2). *Pequi* pulp also had high amounts of fibres, being majorly insoluble, and total carotenoids (Table 1). For the in vitro antioxidant activity assays, *pequi* pulp methanol/acetone extract had higher antioxidant capacity, by both FRAP and DPPH methods (p<0.05) (Table 3).

Results from chemical composition and the in vitro antioxidant activity assays were expressed in mean ± standard deviation. Results from rat study were expressed in mean ± standard error. The experiment was performed in a completely randomized design with two treatments (experimental groups) and eight repetitions. Data were analyzed by one way ANOVA at p<0.05, using the Statistica 10.0 software. Figures were drawn by means of the SigmaPlot 11.0 software.

RESULTS

Chemical composition of pequi pulp and in vitro antioxidant assays

Pequi pulp had expressive amounts of total lipids (Table 1). The main fatty acids from *pequi* lipids were oleic followed by palmitic (Table 2). *Pequi* pulp also had high amounts of fibres, being majorly insoluble, and total carotenoids (Table 1). For the in vitro antioxidant activity assays, *pequi* pulp methanol/acetone extract had higher antioxidant capacity, by both FRAP and DPPH methods (p<0.05) (Table 3).

Rat study

Similar body weights were found at the beginning and end of the experiment. The food and caloric intake, FER, EER, Lee index and adiposity index did not differ between groups (Table 4). There were no differences for BP, HR, double product, hypertrophy index, plasma markers of glucose and lipids metabolism markers (glucose, insulin, HOMA-IR, triglycerides, cholesterol and HDL-C) (Table 5).

Regarding hepatic and faecal lipids, *pequi* pulp animals had lower hepatic levels of CHOL and TAG when compared with controls (p<0.05) (Figure 2A and B). Faecal CHOL did not differ between groups. *Pequi* group had higher faecal TAG levels when compared with C (p<0.05) (Figure 2D).

From the duodenum histomorphometric assays, an increase in the villus height (VH), Crypt depth (DC) and number of villous (NV) per optical field for *pequi* pulp group (p<0.05) was observed. However, differences were not observed between treatments for VH/DC ratio (Table 6). There were no differences between groups for both liver and heart lipid peroxidation levels and antioxidant capacity (Figure 3). However, for hearts, *pequi* group had a 23% increase in the antioxidant capacity and a 28% decrease in the peroxidation levels as compared to the control.
Table 4. General characteristics of experimental groups.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Control</th>
<th>Pequi pulp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (g)</td>
<td>286.37 ± 52.26</td>
<td>261.52 ± 25.69</td>
</tr>
<tr>
<td>Food Intake (g)</td>
<td>2209.54 ± 255.38</td>
<td>2148.23 ± 243.76</td>
</tr>
<tr>
<td>Caloric Intake (Kcal)</td>
<td>7247.29 ± 837.64</td>
<td>7475.84 ± 848.28</td>
</tr>
<tr>
<td>FER (g/g)</td>
<td>0.10 ± 0.02</td>
<td>0.10 ± 0.01</td>
</tr>
<tr>
<td>EER (g/kcal)</td>
<td>3.18 ± 0.57</td>
<td>2.82 ± 0.20</td>
</tr>
<tr>
<td>Lee Index</td>
<td>0.10 ± 0.02</td>
<td>0.10 ± 0.01</td>
</tr>
<tr>
<td>Adiposity Index</td>
<td>2.87 ± 0.63</td>
<td>3.01 ± 0.51</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± standard error. FER: feed efficiency ratio; EER: energy efficiency ratio.

Table 5. Cardiometabolic risk factors of the experimental groups.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Control</th>
<th>Pequi pulp</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP (mmHg)</td>
<td>152.38 ± 20.38</td>
<td>146.23 ± 26.22</td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>392.37 ± 58.17</td>
<td>397.43 ± 33.72</td>
</tr>
<tr>
<td>Double product</td>
<td>60451.59 ± 16078.48</td>
<td>58502.86 ± 14663.45</td>
</tr>
<tr>
<td>Cardiac hypertrophy (g/g)</td>
<td>0.46 ± 0.06</td>
<td>0.51 ± 0.04</td>
</tr>
<tr>
<td>Glucose (mg/dL)</td>
<td>123.75 ± 20.68</td>
<td>116.98 ± 16.02</td>
</tr>
<tr>
<td>Insulin (ng/mL)</td>
<td>0.89 ± 0.28</td>
<td>1.17 ± 0.34</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>7.91 ± 2.95</td>
<td>9.64 ± 3.59</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>32.56 ± 4.95</td>
<td>34.57 ± 10.46</td>
</tr>
<tr>
<td>Cholesterol (mg/dL)</td>
<td>58.11 ± 7.91</td>
<td>62.19 ± 10.36</td>
</tr>
<tr>
<td>HDL-cholesterol (mg/dL)</td>
<td>22.90 ± 5.50</td>
<td>22.13 ± 4.08</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± standard error. BP: blood pressure; HR: heart rate.

DISCUSSION

Pequi is an exotic fruit with a heavy potential to be a functional food, since it has a peculiar nutritional composition and is high in several bioactive compounds. In this study, the amount of lipids found in the *pequi* pulp samples was in accordance with previous data from the laboratory (Teixeira et al., 2013) and higher than that found by Cardoso et al. (2013) and Lima et al. (2007). Also, *pequi* pulp has a paradoxal composition in fatty acids, since oleic acid, a MUFA, is its major constituent and related to cardiometabolic risk reduction. Otherwise its second higher constituent is palmitic acid, a saturated fatty acid with several cytotoxic effects described (Akazawa et al., 2010; Eitel et al., 2002).

Its amount of fibres and carotenoids were comparable to other commonly consumed foods that are high in those compounds (Rodriguez-Amaya et al., 2008). Otherwise, carotenoids were lower than other samples analysed elsewhere (Cardoso et al., 2013; Lima et al., 2007; Teixeira et al., 2013). These differences may be due the different processing forms of *pequi* pulp samples in those studies. In these samples, boiling and dehydrating may have lowered carotenoid content and also, increased other nutrient concentrations, such as lipids and fibres. The higher antioxidant activity of methanol/acetone *pequi* pulp extract indicated that lipophilic compounds account significantly for the pulp antioxidant power.

Based on these findings, it is clear that this fruit has expressive amounts of certain nutrients and bioactive compounds that have been associated with protection in many biochemical processes that underly the development of cardiometabolic diseases. Therefore, study of some biological effects of these compounds together in a single food which is still poorly studied, is proposed.

Adding *pequi* pulp did not influence body weight gain, food intake, glucose and plasma lipids. In addition, this increase also did not affect BP and HR and it did not cause cardiac overload, since no changes in the double product and cardiac hypertrophy index was observed. There was 50% increase in total lipid content of standard diet by adding *pequi* pulp. Although, there was increase in calories and lipids, the diet did not turned into a high fat, which could cause metabolic disturbance. According to Buettner et al. (2006) and Hariri and Thibault (2010), to have high fat, a diet must have at least 30% of its energy from lipids. The *pequi* group diet had 18.51%.
Figure 2. Hepatic and faecal cholesterol and triglycerides levels of experimental groups. Values are expressed as mean ± standard error. * represent statistically significant difference (p<0.05) by one way ANOVA.

Table 6. Morphometry of the duodenum: villus height (VH), crypt depth (CD), VH/CD ratio (µm) and villous number (VN) (units per optical field) of the experimental groups.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Control</th>
<th>Pequi pulp</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV (µm)</td>
<td>398.11 ± 42.02</td>
<td>480.14 ± 65.79*</td>
</tr>
<tr>
<td>DC (µm)</td>
<td>247.01 ± 9.93</td>
<td>296.63 ± 38.34*</td>
</tr>
<tr>
<td>HV/DC Ratio</td>
<td>1.61 ± 0.11</td>
<td>1.62 ± 0.05</td>
</tr>
<tr>
<td>VN</td>
<td>19.03 ± 1.57</td>
<td>21.99 ± 2.07*</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± standard error. * represent statistically significant difference (p<0.05) by one way ANOVA.

Although, the main chemical constituents from *pequi* pulp (mainly MUFAs and fibre) are related to CHOL, TG and LDL-lowering effects (Ried and Fakler, 2011) as well as having antioxidant properties (carotenoids) (Gülçin,
2012), we did not observe these effects on plasma lipids. Otherwise, there were pronounced effects from *pequi* pulp supplementation in the hepatic and faecal lipids. The lower hepatic levels of TRI and CHOL and higher TRI faecal output in the *pequi* group may be associated with the higher *pequi* pulp fibre content.

Fibres, especially soluble, can increase the lumen viscosity, bind to cholesterol, triglycerides, bile acids and other lipids, impairing their digestion/absorption and increasing their faecal output (Lattimer and Haub, 2010). They can also be fermented by microflora and generate products, as acetate, propionate and butyrate, which affect the endogenous synthesis of these lipids (Ngoc et al., 2012). Insoluble fibres, in turn, regulate intestinal transit-time, contributing to the lower absorption of those nutrients (Lattimer and Haub, 2010). Furthermore, insoluble fibres are related to a higher expression of hepatic genes that increase fatty acid oxidation (Isken et al., 2010).

Therefore, the *pequi* pulp could have modulated the function of the gastrointestinal tract to increase the lipids excretion. Histological data corroborated these findings. *Pequi* group showed higher villous height and crypt depth, implying this food exerted a positive effect in the mucosa integrity. Conversely, the DC increase in this group indicated a high rate of cell differentiation in crypts. In addition, the increase in VH indicated cell migration and renovation to the villus (Rosa et al., 2010). Some compounds of *pequi* pulp can be related to that. Fibres were associated with VH increase (Ashraf et al., 2013) and oleic acid was associated with a better gut development and a DC increase (Rosa et al., 2010). In addition, carotenoids, as vitamin A precursors can act on intestinal cell growth and differentiation (Allen et al.,...
As antioxidants, they can decrease damage caused by oxidative agents and therefore, contribute to cell preservation (Turan et al., 2009). Then, it can be inferred that pequi pulp may have increased the duodenal absorption surface area and cell renovation, helping the maintenance of the mucosa integrity.

Regarding redox status, statistical differences were not observed between groups for livers and hearts. According to several authors (Feillet-Coudray et al., 2009; Sour et al., 2015), changes on redox status parameters are easily detectable when dietary lipid and caloric overload occurs, or when there are some physiological disturbance, such as inflammation, obesity and dyslipidaemia. Adding pequi pulp did not increase significantly lipid content of the diet. In addition, the lipid lower liver accumulation and increased faecal output upon pequi pulp intake may also be related to these results, since it can have contributed to a less generation of reactive oxygen and nitrogen species with subsequent lower peroxidation of membrane lipids.

However, in the heart, it is important to consider that pequi pulp led to a trend in increasing antioxidant capacity and decreasing lipid peroxidation levels. It seems that the heart was the more sensitive organ upon pequi pulp intake. Carotenoids are natural antioxidants, have lipophilic characteristic and may be incorporated into mitochondrial membranes, which are the main site for free radical production during the electron flow (Vega et al., 2009). Furthermore, this in vitro assay showed that methanol and ethanol extracts of pequi pulp had a high antioxidant capacity.

Conclusion

Taken together, the results indicate that pequi pulp intake minimized liver fat deposition by increasing its faecal output and improved intestinal structure, which could account for reduction of cardiometabolic risk in rats. Fibres, MUFA and carotenoids from this fruit may be responsible, at last in part, for these effects.

Conflicts of interests

The authors have not declared any conflict of interest.

ACKNOWLEDGEMENTS

This work was supported by the Brazilian agencies Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors gratefully acknowledge the Instituto de Pesquisas e Estudos de Lassance (IPEL) for the contribution of the biochemical kits.

REFERENCES

Cardoso LDM, Reis BDL, Hamacek FR, Sant’ana HMP (2013). Chemical characteristics and bioactive compounds of cooked pequi fruits (Caryocar brasiliense Camb.) from the Brazilian savannah. Fruits 68:3-14.

Accessed in March 6, 2016.
Screenings of *In-vitro* antimicrobial, cytotoxic and anti-inflammatory activity of crude methanolic extracts of *Crinum latifolium* (Leaves)

Md. Abdur Rahman¹*, Md. Saddam Hussain¹, Md. Shalahuddin Millat¹, Mithun Chandra Ray¹, Mohammad Tohidul Amin¹ and Md. Mizanur Rahman Moghal²

¹Department of Pharmacy, Noakhali Science and Technology University, Sonapur-3814, Noakhali, Bangladesh.
²Department of Pharmacy, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh.

Received 21 July, 2016; Accepted 9 September, 2016

Crude methanolic extracts of *Crinum latifolium* plant (Leaves) was assayed to identify various pharmacological properties. Antimicrobial potential of crude methanolic extracts of *C. latifolium* was accomplished by most commonly used disc diffusion method against a wide range of Gram positive (+ve) and Gram negative(-ve) bacteria. Extracts showed slight antimicrobial activity against Gram positive (+ve) bacteria while surprisingly showed significant antimicrobial activity against Gram negative (-ve) bacteria *Escherichia coli*. In contrast to vincristine sulphate, the crude methanolic, n-hexane soluble, petroleum ether soluble and chloroform soluble extracts showed slight to moderate cytotoxic properties with LC₅₀ value of 7.06, 48.978, 242.83 and 153.93 µg/ml respectively. Plant extract showed significant (*P<0.05*) anti-inflammatory properties, that is, 16.21 and 20.55%10 mg/ml for hypotonic solution and heat induced condition respectively. So, this plant extract demands further research for revealing all its potency to have new safe drug for the entire respective field of medical science.

Key words: *Crinum latifolium*, zone of inhibition, brine shrimp lethality bioassay, anti-inflammatory.

INTRODUCTION

Cancer or tumor is the most common cause of death in both developed and developing countries. There are many methods are available to describe how cancer spread throughout the body. One method showed cancer is preliminary effect on specific part of our body and then invade to the other parts of our body very quickly and ultimately causes death of the patient (Evan, 2002; Ueda et al., 2002). So it is very necessary to identify or diagnosis of cancer at early stage otherwise if it is spread other part of the body then difficult to treat. However, there are several approaches of cancer treatments are available including surgery, radiation therapy and chemotherapy. All of these approaches are aimed to destroy cancerous cell from the body. Each approach
possesses several side effect (Kintzios et al., 2004). That is why it is now demand of the present era to discover drug with fewer side effect. There are many chemotherapeutic agents is being invented to treat various cancer. They utilize sometimes in individual form or in conjunction with other drugs in the form of chemotherapy. But most of these drugs are synthetic and shown numerous side effects. We know that plant is always the safer source for treating any kind of disease. By considering this universal truth our present study was undertaken to discover drug from natural source with fewer side effect for treating different types of cancer.

Again, Antibiotic resistance has become a great concern of treating infectious disease globally which offers great challenges for clinicians and pharmaceutical industry (Bauer et al., 2003). Many of our currently used antibiotics have become less active against a wide range of pathogen due to emergences of drug resistance. On the other hand, newly discovered drug possess many unwanted side effect. So the analysis of medicinal plants to explore antimicrobial agents will be a fruitful task in generating new way of treatment (Shahidi, 2004; Runyoro et al., 2006). That is why our present study was undertaken.

Another outcome of our present research is to determine anti-inflammatory potentials of our plant part. In the perspective of inflammatory disease it is established that stabilization of lysosomal membrane limiting the inflammatory response through inhibiting the release of lysosomal constituents such as bactericidal enzymes and proteases which cause further tissue inflammation and damage upon extracellular release (Rajendran et al., 2008). It is evidence that RBC membrane represents the lysosomal membrane. So, if the drugs effect on the stabilization of erythrocyte membrane could be resembled to the stabilization of lysosomal membranes (Omale et al., 2008). Anti-inflammatory agent causes the red blood cells membrane stabilization, subjected to hypotonic stress, through the release of hemoglobin (Hb) from RBCs (Naibi et al., 1985). Therefore, the stabilization of red blood cells hypotonic solution induced condition represent useful technique for the assessing the anti-inflammatory activity of various plant extractives (Oyedapo et al., 1999).

Our present research was conducting on Crinum latifolium, which is an herb belonging to the family Amaryllidaceae that arises from an underground bulb. It is locally known as sukhdarsan. Phytochemical screening of leaves reveals the presence of a wide variety of compounds such as alkaloids, phenolic compounds, tannins, flavonoids, terpenoids, amino acids, steroid saponis, and antioxidants. Traditionally Bulbs are used as a rubefacient for rheumatism. Juices of the leaves are used for earaches. Crushed and toasted bulbs are used for piles and abscesses to hasten suppuration (Dewan et al., 2013). The purpose of our current study is to analyze antimicrobial, cytotoxic and membrane stabilizing potentials of the plant methanolic extract.

MATERIALS AND METHODS

Collection and identification of plant material

The fresh leaves of C. latifolium were collected from Noakhali, a coastal region of Bangladesh on 26th July, 2012 and were taxonomically identified by taxonomist and botanist of Bangladesh National Herbarium, Mirpur, and Dhaka. Their given Accession number was -37751.

Plant extracts preparation and isolation

The leaves were collected by hand plucking from plant and cleaned of debris. The leaves were then air-dried by using mechanical graded e aluminum foil and finally kept at room temperature for 14 days (Atata et al., 2003). From which 400 gm of powdered material was taken into a suitable clean, flat-bottomed glass container and extracted with 1600 ml of 80% methanol. Then the container with plant part in powder form was made air tight by using mechanical graded e aluminum foil and finally kept at room temperature for 14 days. During this time the sample mixture were shacked and stirred at regular interval of time. The mixture was then placed through Markin cloth in order to obtain maximum quantity of extract. It was then filtered through Whatman filter paper and allowed to evaporate at a convenient rotary evaporator. The filtrate (Methanol extract) was then placed in a water bath. After a certain period of time the extract converted into a brownish black color residue, properly preserved at 4º C temperature, which was then used as a sample for further study.

Antimicrobial activity

To determine the antimicrobial potential of this plant, antimicrobial screening was performed by using disk diffusion method with slight modification for convenience. Many of the recent work was done by this method we used here (Bauer et al., 1966; Prabhu et al., 2011; Pratibha et al., 2012).

Test organism

Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa) bacteria were used as a test organisms for antimicrobial activity. The strains of these organisms were collected from the Department of Microbiology, Noakhali Science and Technology University, Sonapur-3814, Noakhali, Bangladesh and are sub-cultured in nutrient broth and nutrient agar culture media.

Media preparation

To prepare fresh cultures and to test the sensitivity of the materials against micro-organism we used Nutrient agar medium (DIFCO). For preparing the media specified amount of nutrient agar was taken in a conical flask and distilled water was added to it to make the required volume of 1000 ml. For perfect dissolution the contents were heated in a water bath with continuous stirring and the pH (at 25°C) was maintained at 7.2-7.6 using NaOH or HCl. The tip of the flask was mounted with a flag of cotton and aluminum foil and subjected to sterilization by autoclaving machine at a pressure of 15 lbs/sq inch, for 25 min at 125°C temperature. About 10 ml and 5 ml
of the medium was then transferred into screw cap test tubes to prepare plates and slants respectively and lower the temperature to 45-50°C. The slants were used for making fresh culture of microorganisms that were in turn used for sensitivity study.

Application of discs, diffusion and incubation

Freshly prepared sample discs and commercially available standard antibiotic disc were transferred to each petri dish. The plates were then inverted and kept in a refrigerator for about 24 h at 4°C to allow sufficient diffusion of the materials from the discs to the surrounding area of the medium. The dishes were then incubated at 37°C for 24 h to allow optimal growth of microorganism.

Measurement of zone of inhibition

Antibacterial activity of test sample was measured by calculating zone of inhibition (Scalbert, 1991), which can be expressed in millimeter or centimeter unit by using suitable antibiotic zone scale. Different antibiotics discs (Ampicillin, Imipenem, Penicillin and Cefixitime) and sterile filter paper disc with respective solvent (methanol) of 25 µl were used as positive and negative control respectively. If the test sample possesses any antimicrobial activity, it will reduce the growth of the microorganisms and a clear, distinct zone of inhibition will be appeared surrounding the medium.

Brine shrimp lethality bioassay

The measurement of toxicity plays a vital role in drug discovery and is a useful tool in biological, especially ecological investigations (Opler et al., 2002). It also serves as a tool for screening plant extracts of possible medicinal value. In this study, we used simple brine shrimp bioassay test of Meyer with slight modification by using *Artimia salina* as test organism, which was collected from a pet shop (Meyer et al., 1982).

Brine shrimp hatching

Sea water was prepared by dissolving 38 g sea salt (pure NaCl) in one liter of distilled water, which is then filtered to get clear solution of 3.8% concentration (Krishnaraju et al., 2006). In a suitable plastic or glass vessel sea water was taken and shrimp eggs were added to one side of the vessel and allowed to hatch for 24 h till the mature nauplii were found. Continuous oxygen and light supply were provided to support the hatching process.

Sample preparation

All the test samples were taken in vials and dissolved in 100 µl of pure dimethyl sulfoxide (DMSO) to get stock solutions. Then 50 µl of solution was taken in the first test tube containing 5 ml of simulated seawater and 10 shrimp nauplii. Thus, final concentration of the prepared solution in the first test tube was 400 µg/ml. Then a series of solutions of varying concentrations were prepared from the stock solution by serial dilution method. In every case, 50 µl samples were added to test tube and fresh 50 µl DMSO was added to vial.

Negative control group test

100 µl of DMSO was added to each of three pre-marked glass vials containing 5 ml of simulated sea water and 10 shrimp nauplii to use as negative control groups.

Positive control group test

Here we used vincristine sulphate (VINCRIST ®, Techno Drugs Ltd., Bangladesh) as a positive control. Measured amount of vincristine sulphate was dissolved in DMSO to get an initial concentration of 40 µg/ml from which serial dilutions were made using DMSO to get 20, 10, 5, 2.5, 1.25, 0.625, 0.3125, 0.15625 and 0.078125 µg/ml respectively. Then the positive control solutions were added to the pre-marked vials containing ten living brine shrimp nauplii in 5 ml simulated sea water to get the positive control groups (Islam et al., 2009).

Counting of nauplii

After 24 h, the number of survived nauplii in each vial was counted by using magnifying glass. From this data the percent (%) of mortality of brine shrimp nauplii was calculated for each concentration.

Membrane stabilizing activity

The membrane stabilizing activity of the extractives was assessed by evaluating their ability to inhibit hypotonic solution hemolysis of human erythrocytes following the method developed by Omale et al. (2008).

Statistical analysis

All the above assays were conducted in triplicate and repeated threes for consistency of results and statistical purpose. The data were expressed as Mean±SD and analyzed by one way analysis of variance (ANOVA) followed by Dunnett ‘t’ test using SPSS software of 10 version. P<0.05 was considered statistically significant.

RESULTS

Antimicrobial activity

From the experiment, we observed that, crude methanolic extracts of *C. latifolium* showed slight activity against Gram positive (+ve) *S. aureus* bacteria. On the other hand, it showed good antibacterial properties against Gram negative (-ve) *E. coli* bacteria. The overview of the results is shown in Table 1.

Findings of brine shrimp lethality bioassay

By using brine shrimp bioassay, developed by Meyer we could understand the cytotoxic potential and anti-tumor properties. In our current study we used various solvent soluble extracts of *C. latifolium*. Different solvent soluble extracts showed various rate of mortality at different concentration. By plotting the log of concentration against percent of mortality for all test sample, we found a linear correlation. On the basis of this correlation the LC50 (the concentration at which 50% of mortality of brine shrimp
Table 1. Antimicrobial effect of crude methanolic extract of *Crinum latiflium*.

<table>
<thead>
<tr>
<th>Test microorganism (Bacteria)</th>
<th>Zone of inhibition of extract in various concentration</th>
<th>Response of the standard against microorganism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram Positive (+ve)</td>
<td>25 µl 50 µl 75 µl 100 µl 10/30 µl/Disc</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>- - - 1.0±0.039* cm (+) Ampicillin (10 µl) +++</td>
<td></td>
</tr>
<tr>
<td>Gram Negative (-ve)</td>
<td>1.0±0.025* cm (+) 1.2±0.18 cm (+) 1.4±0.37 cm (+) 1.6±0.004** cm (++)</td>
<td></td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>- - - Penicillin (10 µl) +++</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>1.0±0.025* cm (+) 1.2±0.18 cm (+) 1.4±0.37 cm (+) 1.6±0.004** cm (++)</td>
<td>Cefoxitin (30 µl) +++</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>- - - Imipenem (10 µl) +++</td>
<td></td>
</tr>
</tbody>
</table>

Here, (+++) = highly active; (++) = moderately active; (+) = slightly active; (-) = No activity against microorganism. ** = P < 0.001, * = P < 0.05.

Table 2. Results of brine shrimp lethality bioassay of crude methanolic extract of *Crinum latiflium*.

<table>
<thead>
<tr>
<th>Sample</th>
<th>LC₉₀ (µg/ml)</th>
<th>Regression Equation</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vincristine Sulphate (positive Control)</td>
<td>0.79</td>
<td>y = 2.65x + 2.60</td>
<td>1.71</td>
</tr>
<tr>
<td>Crude methanol extract</td>
<td>7.06</td>
<td>y = 2.74x + 2.57</td>
<td>3.40</td>
</tr>
<tr>
<td>Chloroform fraction</td>
<td>48.978</td>
<td>y = 42.88x - 22.502</td>
<td>0.671</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>242.83</td>
<td>y = 66.137x - 102.82</td>
<td>0.9125</td>
</tr>
<tr>
<td>Petroleum ether fraction</td>
<td>153.93</td>
<td>y = 29.79x - 15.16</td>
<td>0.93</td>
</tr>
</tbody>
</table>

nauplii occurred) was determined for each solvent soluble extracts. We also found that, there was no rate of mortality obtained, in case of control study. The overview of the results is shown in Table 2.

Anti-inflammatory activity

The anti-inflammatory activities of the Crude methanolic extracts of *C. latifolium* are showed in Tables 3 and 4. The crude methanolic extracts dose dependently increased in anti-inflammatory study, whereas 10 mg/ml concentration most significantly showed 16.21 and 20.23% inhibition of hemolysis respectively by hypotonic solution and heat induced hemolysis. Acetyl salicylic acid was used as standard in membrane stabilization.

ASA (0.10 mg/mL) revealed 70.01 and 56.32% inhibition of hemolysis, respectively induced by hypotonic solution and heat induced hemolysis correspondingly.

DISCUSSION

Antimicrobial activity

The medicinal properties of the plants lie in a several chemical group such as tannins, flavonoids, alkaloids and phenolic compound. Many parts of the plant especially leaves possess antimicrobial properties due to presence of tannins and flavonoids (Scalbert, 1991; Chung et al., 1998). Plants also synthesize huge amount of aromatic compound among which phenols or their oxygen-substituted derivatives are predominant (Geissman, 1963). These compounds provide protection against microbes for the plant (Cowan, 1999). This is great to see our plant extract showed to have phytochemicals responsible for anti-microbial effect (Dewan et al., 2013).

May be that is why Extracts showed slight antimicrobial activity against Gram positive (+ve) bacteria while Surprisingly showed significant antimicrobial activity against Gram negative (-ve) bacteria *E. coli*.

Cytotoxic activity

Cancer-related research is conducted all over the
Table 3. Effect of different conc. of methanolic extract of C. latifolium on hypotonic solution-induced haemolysis of erythrocyte membrane.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concentration (mg/ml)</th>
<th>Optical density of samples in hypotonic solution (Mean ± SD)</th>
<th>% inhibition of haemolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>_ _ _</td>
<td>3.701±0.058</td>
<td>7.51±0.0077</td>
</tr>
<tr>
<td>ME</td>
<td>2</td>
<td>3.423±0.075</td>
<td>11.78±0.0080</td>
</tr>
<tr>
<td>ME</td>
<td>4</td>
<td>3.265±0.108</td>
<td>12.61±0.0088</td>
</tr>
<tr>
<td>ME</td>
<td>6</td>
<td>3.234±0.082</td>
<td>15.62±0.0092</td>
</tr>
<tr>
<td>ME</td>
<td>8</td>
<td>3.123±0.1012*</td>
<td>16.21±0.0101</td>
</tr>
<tr>
<td>ME</td>
<td>10</td>
<td>3.101±0.098**</td>
<td>53.74±0.0265</td>
</tr>
<tr>
<td>Acetyl salicylic acid</td>
<td>0.10</td>
<td>1.712±0.043***</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Effects of different concentration of methanolic extract of C. latifolium on heat induced hemolysis of erythrocyte membrane.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concentration</th>
<th>OD of sample ±SD</th>
<th>% inhibition of hemolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>- - -</td>
<td>1.093±0.035</td>
<td>-</td>
</tr>
<tr>
<td>ME</td>
<td>2</td>
<td>0.879±0.107</td>
<td>9.7±0.069</td>
</tr>
<tr>
<td>ME</td>
<td>4</td>
<td>0.780±0.004</td>
<td>10.57±0.043</td>
</tr>
<tr>
<td>ME</td>
<td>6</td>
<td>0.715±0.014</td>
<td>14.67±0.062</td>
</tr>
<tr>
<td>ME</td>
<td>8</td>
<td>0.587±0.082</td>
<td>19.93±0.036</td>
</tr>
<tr>
<td>ME</td>
<td>10</td>
<td>0.405±0.008</td>
<td>20.55±0.087</td>
</tr>
<tr>
<td>Acetyl Salicylic Acid</td>
<td>0.10</td>
<td>0.672±0.025</td>
<td>56.32±0.228</td>
</tr>
</tbody>
</table>

Figure 1. Effect of different conc. of C. latifolium on hypotonic solution induced haemolysis of erythrocyte membrane.

world for discovering new hopes for patient suffering with cancer. These studies frequently able to originate biologically active agents from plants used and will be used for treating different carcinoma (Mukherjee et al., 2001). In addition, it is important to understand the mechanisms of anticancer agents for future application in cancer therapy (Half et al., 2009). Our present study investigated the cytotoxic activity of the methanolic
extract of *C. latifolium*. It was found that many of the phytochemicals provide protection against cancer due to poly-phenyl antioxidant and anti-inflammatory effect. Several studies also suggest that these phytochemicals provide protection against colorectal plus other types of cancer (Michaud et al., 2000; Greenberg et al., 1994; Birt et al., 2001). Our plant part also contain polyphenol so this plant was one will be one of the most trusted source for discovering anticancer drug, that was so far established through our present study as our plant methanolic extract showed remarkable cytotoxic activity.

Membrane stabilizing activity

C. latifolium methanolic extract inhibited hypotonic solution and heat induced hemolysis of erythrocyte at varying percentage that was comparable with membrane stabilizing activity shown by standard acetyl salicylic acid. As through the standard anti-inflammatory drug showed higher stabilization activity than the experimental plant methanolic extract, but our plant extract will be the existing source of anti-inflammatory activity with fewer or no side effects. The moderate membrane stabilizing activity shown by our plant methanolic extract may be due to the presence of flavonoid contents. It has been established by many experimental study that plants with flavonoids shown profound stabilizing effects on lysosomes both *in vitro* and *in vivo* laboratory condition (Middleton, 1996).

Conclusion

From the above experiments we could terminated that the crude methanolic and various solvent soluble extracts of *C. latifolium* (leaves) showed slight to moderate cytotoxic activities. We also confreres that, it also revealed excellent antibacterial and membrane stabilizing activities (Figures 1 and 2).

Conflict of interest

The authors have not declared any conflict of interest.

ACKNOWLEDGEMENT

The authors would like to express their heartfelt gratitude, indebtedness, profound appreciation to all honorable teacher, staff and supervisor Md. Mizanur Rahman Moghal, Assistant Professor, Department of Pharmacy, Mawlana Bhashani Science and Technology University, for their continuous support, uniring inspiration, scholastic supervision, constructive criticism, affectionate feeling and optimistic counseling throughout the project work.

REFERENCES

Full Length Research Paper

Acute oral toxicity study of *Mystroxylon aethiopicum* root bark aqueous extract in albino mice

Mhuji Kilonzo, Patrick A. Ndakidemi and Musa Chacha*

School of Life Sciences and Bio-Engineering, Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha-Tanzania.

Received 31 August, 2016; Accepted 19 September, 2016

Acute oral toxicity of *Mystroxylon aethiopicum* root bark aqueous was evaluated in albino mice of either sex. In this study, five groups of mice were orally treated with doses of 1000, 2000, 3000, 4000 and 5000 mg/kg body weight of crude extract. The mortality, signs of toxicity and body weights were observed individually for two weeks. At the end of the two weeks study, all animals were sacrificed and the hematological and biochemical parameters as well as organ weights relative to body weight of each animal were determined. No mortality, signs of toxicity and abnormalities in vital organs were observed in the entire period of study for both treated and control groups of mice. Additionally, there were no significant changes (p>0.05) in the blood hematology and biochemical analysis. However, the body weights of all mice increased significantly. The *M. aethiopicum* root bark aqueous extract were found to have a high safe margin when administered orally. Hence, the extract can be utilized for pharmaceutical formulations.

Key words: *Mystroxylon aethiopicum*, acute oral toxicity, albino mice.

INTRODUCTION

The use of medicinal plants has received great attention in the world as an alternative to conventional drugs and the demand for these remedies has recently increased (Phani and Kumar, 2014). Plant based medicines have been used by traditional healthcare in most parts of the world for thousands of years (Newman et al., 2000). According to the World Health Organization, 80% of the populations in developing countries rely on traditional medicines for their healthcare (WHO, 2007). Some of these traditional medicines involve the use of crude plant extracts in the form of infusion, decoction or tincture which may contain an extensive diversity of molecules, often with indefinite biological effects (Olowa and Nuñeza, 2013).

The *Mystroxylon aethiopicum* (Celastraceae) is a small to medium sized evergreen tree that grow up to 12 m high (Pope, 1995). The plant grows in a wide range of habitats including the forest margins, evergreen forests, open woodland, riverine fringes and also on termite mounds and rocky ridges (Burrows and Willis, 2005). In Africa, the plant is widely distributed in Ethiopia, Sudan, South Africa, Namibia, Angola, Cameroon, Madagascar, Seychelles and Comoro (Curtis and Mannheimer, 2005). In Tanzania, the species is found in highlands of Arusha

*Corresponding author. E-mail: musa.chacha@nm-aist.ac.tz. Tel: +255 753458177.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
and Kilimanjaro regions, where it locally known as “Oldonyanangui” in Maasai language (Kokwaro, 1993). Traditionally, the plant is consumed by many ethnic groups in Africa for the management of hemorrhagic diarrhea, stomach, respiratory tract infections, coughs and anemia (Boera et al., 2005: Iwu, 2014). In Kenya, root bark extract of this plant is reportedly to be used in making a kind of tea which is drank as a stomach medicine, particularly by children (Kokwaro, 1993). Despite the wide use of M. aethiopicum in the management of different diseases, there is lack of scientific studies regarding the prevalence of the toxicological profile of this plant. This study hypothesize that extracts of M. aethiopicum is safe for usage in traditional medicine since it has been used by many communities in Africa as an alternative to conventional drugs. The aim of this paper therefore was to determine the safety profile of the aqueous root bark extracts of M. aethiopicum in albino mice.

MATERIALS AND METHODS

Plant materials and preparation of extracts

The plant materials were collected from Imibiya village in Arusha rural district, Tanzania. Plant species were identified by Mr. Gabriel Laizer, a botanist from the Tropical Pesticide Research Institute (TPRI) and voucher specimen coded MA-001 was kept at Nelson Mandela African Institution of Science and Technology (NM-AIST). Root barks were harvested without affecting the plant, air dried under the shade and pulverized into fine particles using electric blender. Pulverized materials (250 g) were added to a 1 L of distilled water maintained at 30°C for 4 h and allowed to cool to room temperature. The extracts were sieved and centrifuged at 5000 rpm for 10 min. The supernatant was collected and filtered using Whatman No. 1 filter paper and dried by freezing to eliminate water by sublimation. The extracts were stored in a deep freezer at -20°C for further activities.

Experimental animals

Albino mice of both sexes, weighing between 19 and 20 g and aged 3 to 4 weeks were randomly obtained from the Plant Protection Division of the Tropical Pesticides Research Institute (TPRI) Arusha, Tanzania. The animals were allowed to stay in cages with sawdust litters in a controlled temperature environment of about 23°C. Lighting was controlled to supply 12 h of light and 12 h of darkness for each 24 h period.

Ethical consideration

Prior to the experimental work, an ethical clearance with notification number NIMR/HQ/R.8a/Vol. IX/2145 was given by the National Health Research Ethics Sub-Committee (NatHREC) of the National Institute for Medical Research (NIMR) in Tanzania.

Experimental design

Acute oral toxicity test was done according to OECD guideline number 425 of 2001 (OECD, 2001). The mice were acclimatized for 7 days before experimentation. Before dosing with extract, the mice were starved for 4 h with access to adequate drinking water only. The mice were divided into a control group and five experimental groups with six mice each (3 males and 3 females). Body weights of the mice were determined and the dose was calculated in accordance with their body weights. The control group received 1% between 80 in normal saline only by the oral route (5 mL/kg body weight), whereas the animals in the treatment group were administered oral doses of 1000, 2000, 3000, 4000 and 5000 mg/kg body weight, respectively, of crude extract that was dissolved in 1% Tween 80 in normal saline. Food was withheld for 1 h after administration of the extract but not water. The mice were observed regularly for mortality and any sign of toxicity such as change in skin and fur, eyes, respiratory effects, mucus membrane, diarrhea and sleep.

By the 14th day, all mice were weighed and blood samples were collected by cardiac puncture into two vacutainer tubes for each animal. The first vacutainer tube contained anti-coagulant substance (EDTA) and the second vacutainer tube was plain. Hematological parameters including red blood cell (RBC), mean cell volume (MCV), mean cell hemoglobin (MCH), mean cell hemoglobin concentration (MCHC), white blood cell (WBC), lymphocyte and hemoglobin concentration (Hb) were determined using the blood samples contained in the EDTA tubes. The blood samples contained in plain vacutainer tubes were centrifuged at 4000 rpm for 10 min and the serum obtained were subjected to biochemical parameters which included cholesterol, protein, bilirubin and alkaline phosphate (ALP). After blood collection, all mice were sacrificed and dissected for macroscopic organ analysis. The internal organs such as liver, heart, lungs, spleen and kidneys were carefully removed and weighed.

Statistical analysis

The student’s t-test was employed to compare mean body weight between day zero and day fourteen for both control and treated groups of mice while one way analysis of variance (ANOVA) was used in multiple comparisons of the means for organ weight, hematological and biochemical data between the control and treated groups of animals. All statistical analysis was performed using STATISTICA software version 8 (StatSoft, 2007) with the level of significance set at p< 0.05

RESULTS

Findings from this study indicate that there were no signs of toxicity in mice of both control and treated groups up to a dose level of 5000 mg/kg body weight. All animals were normal throughout the study period and they survived until the end of the 14th day of experimentation.

Body weight changes

The body weights of the control and treated mice with aqueous extract of root barks of the plant are shown in Table 1. Results from this study revealed that there were a gradual increase in body weights of both control and treated groups of mice.

Hematological parameters

The results of hematological parameters of control and
treated mice are shown in Table 2. These results show that there were no significant changes (p>0.05) in hematological parameters, both in the control and treated groups of mice after 14 days of treatment with M. aethiopicum root bark aqueous extract. All values of hematological parameters such as red blood cell, mean cell volume, mean cell hemoglobin, mean cell hemoglobin concentration, white blood cell, lymphocyte and hemoglobin concentration remained within normal limits throughout the experimental period.

Biochemical parameters

In this study, no significant changes (p>0.05) were observed at all doses in alkaline phosphate (ALP) and cholesterol levels between the control and treated group of mice as shown in Table 3. Furthermore, the values of protein and bilirubin did not differ significantly (p>0.05) in the treated mice as compared to the control group.

Macroscopic examination

The macroscopic examination of the internal organs of animals revealed no difference between the control and treated mice groups after administration even with higher dose of 5000 mg/kg body weight.

Organ weight

The organ weights relative to body weights of the animals were determined and results are summarized in Table 4. Findings from this study indicated that there were no significant differences (p>0.05) in weight changes of each organ between the control and treated mice at all doses.

DISCUSSION

Medicinal plants have been used worldwide for thousands of years in the form of crude drugs such as tinctures, teas, poultices, powders and other herbal formulations (Gurib, 2006). M. aethiopicum is among the medicinal plant which is known for many traditional applications in humans (Schmidt et al., 2002). The root bark extract has been commonly used by many populations in Africa for medicinal purposes (Burkil, 2004). Despite the usage of this plant as traditional medicine, there are few studies on the safety evaluations. Therefore, experimental screening methods using animal models are essential to ascertain the safety of this plant.

In this study, the M. aethiopicum root bark aqueous extract did not affect the body weight of the treatment mice as compared to the control mice. The gradual body weight gain shown by animals against the extract, provide circumstance evidence that the administration of the crude extract has negligibly level of toxicity on the growth of the animals. According to Raza et al. (2002) and Teo et al. (2002), the reduction in gain body weight is a sensitive indicator of toxicity after exposing the animals to the toxic substances and it is usually significant if such losses are more than 10% of the initial weight. Findings from this study are in agreement with previous study conducted by Ndukui et al. (2014) who reported weight gain in albino rats treated with aqueous leaf extract of M. aethiopicum in Uganda.

Blood parameters analysis is relevant to risk evaluation as the hematological system has a higher predictive value for toxicity in humans when assay involves animals (Olson et al., 2000). Blood is an important index of physiological and pathological status in both animals and humans and the parameters usually measured are red

Table 1. Body weight (g) values of control and mice treated with M. aethiopicum root bark aqueous extract measured during the acute toxicity study.

<table>
<thead>
<tr>
<th>Dose (mg/kg BW)</th>
<th>Sex</th>
<th>Mean at day 0</th>
<th>Mean at day 14</th>
<th>Mean difference</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>20.355 ± 0.078</td>
<td>24.67 ± 0.400</td>
<td>4.322</td>
<td>0.000448</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>19.316 ± 0.065</td>
<td>23.416 ± 0.219</td>
<td>4.100</td>
<td>0.000057</td>
</tr>
<tr>
<td>1000</td>
<td>M</td>
<td>20.321 ± 0.047</td>
<td>24.217 ± 0.062</td>
<td>3.896</td>
<td>0.000001</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>19.248 ± 0.044</td>
<td>23.310 ± 0.047</td>
<td>4.062</td>
<td>0.000000</td>
</tr>
<tr>
<td>2000</td>
<td>M</td>
<td>20.220 ± 0.060</td>
<td>24.309 ± 0.089</td>
<td>4.089</td>
<td>0.000003</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>19.311 ± 0.145</td>
<td>23.288 ± 0.079</td>
<td>3.977</td>
<td>0.00018</td>
</tr>
<tr>
<td>3000</td>
<td>M</td>
<td>20.292 ± 0.115</td>
<td>23.738 ± 0.357</td>
<td>3.446</td>
<td>0.000782</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>19.149 ± 0.050</td>
<td>23.260 ± 0.119</td>
<td>3.440</td>
<td>0.000006</td>
</tr>
<tr>
<td>4000</td>
<td>M</td>
<td>20.393 ± 0.072</td>
<td>24.147 ± 0.260</td>
<td>3.754</td>
<td>0.000154</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>19.437 ± 0.100</td>
<td>23.502 ± 0.248</td>
<td>3.977</td>
<td>0.000108</td>
</tr>
<tr>
<td>5000</td>
<td>M</td>
<td>20.223 ± 0.052</td>
<td>23.643 ± 0.106</td>
<td>3.42</td>
<td>0.000008</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>19.141 ± 0.064</td>
<td>23.202 ± 0.137</td>
<td>3.977</td>
<td>0.000011</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM, M = male, F = female, BW = body weight.
study has shown that acute oral ingestion of *M. aethiopicum* root bark aqueous extract did not affect lymphocyte and hemoglobin concentration (Vaghasiya et al., 2011). The normal range of these parameters can be altered by the intake of some toxic plants (Ajagbonna et al., 1999). This

Table 2. Hematological values of control and mice treated with *M. aethiopicum* root bark aqueous extract measured during the acute toxicity study.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sex</th>
<th>Control</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC (m/mm³)</td>
<td>M</td>
<td>8.099 ± 0.265</td>
<td>8.058 ± 0.145</td>
<td>7.948 ± 0.071</td>
<td>7.978 ± 0.234</td>
<td>8.311 ± 0.114</td>
<td>8.308 ± 0.091</td>
<td>0.525153</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>7.323 ± 0.064</td>
<td>7.283 ± 0.015</td>
<td>7.250 ± 0.021</td>
<td>7.287 ± 0.038</td>
<td>7.373 ± 0.056</td>
<td>7.377 ± 0.187</td>
<td>0.864938</td>
</tr>
<tr>
<td>MCV (fl)</td>
<td>M</td>
<td>47.167 ± 0.186</td>
<td>46.867 ± 0.203</td>
<td>47.057 ± 0.030</td>
<td>46.860 ± 0.146</td>
<td>46.910 ± 0.124</td>
<td>47.070 ± 0.032</td>
<td>0.542368</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>49.130 ± 0.214</td>
<td>49.083 ± 0.020</td>
<td>49.313 ± 0.041</td>
<td>48.993 ± 0.219</td>
<td>49.017 ± 0.284</td>
<td>48.700 ± 0.062</td>
<td>0.308154</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>M</td>
<td>18.800 ± 0.321</td>
<td>19.043 ± 0.159</td>
<td>18.233 ± 0.120</td>
<td>18.333 ± 0.088</td>
<td>18.733 ± 0.285</td>
<td>19.033 ± 0.176</td>
<td>0.073604</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>19.900 ± 0.190</td>
<td>18.790 ± 0.114</td>
<td>19.327 ± 0.059</td>
<td>19.217 ± 0.164</td>
<td>18.893 ± 0.131</td>
<td>19.233 ± 0.103</td>
<td>0.805373</td>
</tr>
<tr>
<td>MCHC (g/dl)</td>
<td>M</td>
<td>34.600 ± 0.404</td>
<td>34.190 ± 0.107</td>
<td>34.700 ± 0.379</td>
<td>34.467 ± 0.186</td>
<td>34.303 ± 0.170</td>
<td>35.087 ± 0.297</td>
<td>0.325877</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>33.157 ± 0.230</td>
<td>32.930 ± 0.268</td>
<td>33.293 ± 0.091</td>
<td>32.850 ± 0.189</td>
<td>33.370 ± 0.151</td>
<td>33.360 ± 0.064</td>
<td>0.249899</td>
</tr>
<tr>
<td>WBC (m/mm³)</td>
<td>M</td>
<td>8.177 ± 0.127</td>
<td>7.943 ± 0.217</td>
<td>7.953 ± 0.159</td>
<td>8.327 ± 0.039</td>
<td>8.070 ± 0.192</td>
<td>8.253 ± 0.052</td>
<td>0.383882</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>7.453 ± 0.338</td>
<td>7.430 ± 0.058</td>
<td>74.200 ± 0.115</td>
<td>75.133 ± 0.120</td>
<td>74.520 ± 0.321</td>
<td>74.907 ± 0.254</td>
<td>0.094817</td>
</tr>
<tr>
<td>LYM (%)</td>
<td>M</td>
<td>73.593 ± 0.038</td>
<td>73.760 ± 0.058</td>
<td>73.240 ± 0.115</td>
<td>75.133 ± 0.120</td>
<td>74.520 ± 0.321</td>
<td>74.907 ± 0.254</td>
<td>0.094817</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>73.693 ± 0.059</td>
<td>73.670 ± 0.176</td>
<td>73.640 ± 0.052</td>
<td>73.653 ± 0.035</td>
<td>73.583 ± 0.043</td>
<td>73.373 ± 0.028</td>
<td>0.144279</td>
</tr>
<tr>
<td>Hb (g/dl)</td>
<td>M</td>
<td>14.967 ± 0.233</td>
<td>14.965 ± 0.120</td>
<td>15.167 ± 0.088</td>
<td>15.100 ± 0.208</td>
<td>14.967 ± 0.233</td>
<td>15.010 ± 0.116</td>
<td>0.942121</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>14.390 ± 0.021</td>
<td>14.383 ± 0.032</td>
<td>14.363 ± 0.028</td>
<td>14.417 ± 0.034</td>
<td>14.413 ± 0.054</td>
<td>14.393 ± 0.048</td>
<td>0.919693</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM, M = Male, F = Female, BW = Body weight, RBC = Red blood cell, MCV = Mean cell volume, MCH = Mean cell hemoglobin concentration, MCHC = Mean cell hemoglobin concentration, WBC = White blood cell, LYM = Lymphocyte, Hb = Hemoglobin concentration.

Table 3. Clinical biochemical values of control and mice treated with *M. aethiopicum* root bark aqueous extract measured during the acute toxicity study.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sex</th>
<th>Control</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>M</td>
<td>86.975 ± 0.187</td>
<td>86.993 ± 0.136</td>
<td>87.079 ± 0.269</td>
<td>86.996 ± 0.092</td>
<td>87.019 ± 0.164</td>
<td>87.105 ± 0.192</td>
<td>0.993597</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>88.068 ± 0.145</td>
<td>88.246 ± 0.309</td>
<td>87.742 ± 0.387</td>
<td>88.048 ± 0.100</td>
<td>88.150 ± 0.096</td>
<td>88.96 ± 0.095</td>
<td>0.974879</td>
</tr>
<tr>
<td>Total protein (g/dl)</td>
<td>M</td>
<td>5.073 ± 0.136</td>
<td>5.184 ± 0.052</td>
<td>4.883 ± 0.150</td>
<td>5.228 ± 0.042</td>
<td>4.840 ± 0.192</td>
<td>5.197 ± 0.278</td>
<td>0.428318</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>6.191 ± 0.238</td>
<td>5.993 ± 0.239</td>
<td>6.180 ± 0.138</td>
<td>5.841 ± 0.157</td>
<td>6.412 ± 0.111</td>
<td>6.546 ± 0.174</td>
<td>0.147521</td>
</tr>
<tr>
<td>Direct bilirubin (mg/dl)</td>
<td>M</td>
<td>0.602 ± 0.036</td>
<td>0.588 ± 0.026</td>
<td>0.629 ± 0.008</td>
<td>0.614 ± 0.010</td>
<td>0.592 ± 0.019</td>
<td>0.622 ± 0.008</td>
<td>0.670220</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0.705 ± 0.017</td>
<td>0.678 ± 0.038</td>
<td>0.728 ± 0.015</td>
<td>0.682 ± 0.024</td>
<td>0.695 ± 0.050</td>
<td>0.736 ± 0.016</td>
<td>0.660283</td>
</tr>
<tr>
<td>ALP (U/L)</td>
<td>M</td>
<td>71.449 ± 0.410</td>
<td>71.777 ± 0.190</td>
<td>72.048 ± 0.201</td>
<td>71.613 ± 0.163</td>
<td>71.680 ± 0.154</td>
<td>70.855 ± 0.189</td>
<td>0.058343</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>71.865 ± 0.321</td>
<td>71.593 ± 0.332</td>
<td>72.190 ± 0.053</td>
<td>72.155 ± 0.085</td>
<td>71.976 ± 0.226</td>
<td>72.255 ± 0.093</td>
<td>0.322070</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM, M = Male, F = Female, BW = Body weight, ALP = Alkaline phosphate.
study has shown that acute oral ingestion of *M. aethiopicum* root bark aqueous extract did not cause any change in hematological parameters for both control and treated mice verifying the nontoxic nature of the extract. Findings from this study validate the safety nature of the extract through oral administration. This explains why there is no reported case of intoxication due to the use of this plant among the Maasai communities in Tanzania (Kokwara, 1993).

Disease or response to toxic substances is indicated by alterations in the biochemical parameters which are the sensitive indicators of organ function or metabolic defects (Reddy et al., 2013). Liver plays a major role in the metabolism and detoxification of compounds that reach the liver and hence it serves as a prime target organ for drugs and toxic substances (Reddy et al., 2013). A liver function test such as alkaline phosphate (ALP) is therefore useful in determining the extent of damage (Shah et al., 2011). In the same perspective, liver is the major site for cholesterol synthesis or disposal in mammals (Gautam and Goel, 2014). In this study, there were no significant changes in ALP and cholesterol levels for both control and treated mice, suggesting that *M. aethiopicum* root bark aqueous extract had no effects on the liver function and cholesterol metabolism of the mice and therefore strengthen the safety utilization of the plant in traditional medicine. Safety nature of the root bark extract of the plant is also indicated by other biochemical parameters such as protein and bilirubin which did not differ significantly as compared to control group of mice. These results support the reported use of *M. aethiopicum* by traditional healers in Uganda for treating various diseases with no severe adverse effect (Ndukui et al., 2014).

Macroscopic examination of internal organs of the experimental animals in this study did not reveal any abnormalities, presence of lesions or changes in the color for both control and treated group and therefore suggest that *M. aethiopicum* root bark aqueous extract is potentially safe for human consumption. In toxicological studies, internal organs such as liver, hearts, lungs, spleen and kidneys are primarily affected by metabolic reactions caused by the toxicants (Dybing et al., 2002).

Organ weight is an important index to diagnose whether the organ was exposed to the injury or not (Jothy et al., 2011). In this study, the weights of internal organs were not statistically significantly in both control and treated group of mice, indicating that the extract is virtually nontoxic. The non-toxicity shown by *M. aethiopicum* root bark aqueous extract towards albino mice, ratify the safety profile of the aqueous root bark extract of the plant. Results from this study collaborate with the previous cytotoxicity investigation study of the same plant growing in Uganda, which did not show significant changes

Table 4. Organ-body weight values of control and mice treated with *M. aethiopicum* root bark aqueous extract measured during the acute toxicity study.

<table>
<thead>
<tr>
<th>Organ</th>
<th>Sex</th>
<th>Control</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>M</td>
<td>4.658 ± 0.181</td>
<td>4.630 ± 0.087</td>
<td>4.502 ± 0.116</td>
<td>4.547 ± 0.219</td>
<td>4.534 ± 0.185</td>
<td>4.601 ± 0.057</td>
<td>0.973370</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>4.441 ± 0.008</td>
<td>4.432 ± 0.005</td>
<td>4.413 ± 0.001</td>
<td>4.419 ± 0.007</td>
<td>4.348 ± 0.043</td>
<td>4.405 ± 0.015</td>
<td>0.055842</td>
</tr>
<tr>
<td>Heart</td>
<td>M</td>
<td>0.533 ± 0.110</td>
<td>0.446 ± 0.050</td>
<td>0.444 ± 0.062</td>
<td>0.411 ± 0.067</td>
<td>0.319 ± 0.149</td>
<td>0.468 ± 0.083</td>
<td>0.720114</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0.348 ± 0.002</td>
<td>0.341 ± 0.006</td>
<td>0.345 ± 0.004</td>
<td>0.334 ± 0.006</td>
<td>0.342 ± 0.005</td>
<td>0.343 ± 0.005</td>
<td>0.427091</td>
</tr>
<tr>
<td>Lungs</td>
<td>M</td>
<td>0.696 ± 0.033</td>
<td>0.661 ± 0.048</td>
<td>0.611 ± 0.011</td>
<td>0.598 ± 0.026</td>
<td>0.611 ± 0.018</td>
<td>0.611 ± 0.018</td>
<td>0.446295</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0.535 ± 0.004</td>
<td>0.535 ± 0.002</td>
<td>0.534 ± 0.003</td>
<td>0.533 ± 0.006</td>
<td>0.528 ± 0.003</td>
<td>0.535 ± 0.003</td>
<td>0.699071</td>
</tr>
<tr>
<td>Spleen</td>
<td>M</td>
<td>0.638 ± 0.013</td>
<td>0.626 ± 0.015</td>
<td>0.612 ± 0.026</td>
<td>0.630 ± 0.007</td>
<td>0.574 ± 0.028</td>
<td>0.608 ± 0.019</td>
<td>0.289455</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0.438 ± 0.008</td>
<td>0.434 ± 0.004</td>
<td>0.434 ± 0.001</td>
<td>0.431 ± 0.003</td>
<td>0.432 ± 0.004</td>
<td>0.421 ± 0.005</td>
<td>0.293800</td>
</tr>
<tr>
<td>Kidney (R)</td>
<td>M</td>
<td>0.634 ± 0.012</td>
<td>0.606 ± 0.006</td>
<td>0.625 ± 0.012</td>
<td>0.614 ± 0.008</td>
<td>0.618 ± 0.009</td>
<td>0.599 ± 0.007</td>
<td>0.166221</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0.543 ± 0.002</td>
<td>0.534 ± 0.003</td>
<td>0.538 ± 0.004</td>
<td>0.542 ± 0.003</td>
<td>0.537 ± 0.002</td>
<td>0.538 ± 0.003</td>
<td>0.352114</td>
</tr>
<tr>
<td>Kidney (L)</td>
<td>M</td>
<td>0.620 ± 0.013</td>
<td>0.559 ± 0.023</td>
<td>0.590 ± 0.022</td>
<td>0.583 ± 0.026</td>
<td>0.602 ± 0.026</td>
<td>0.570 ± 0.023</td>
<td>0.484740</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0.543 ± 0.001</td>
<td>0.541 ± 0.001</td>
<td>0.542 ± 0.001</td>
<td>0.542 ± 0.001</td>
<td>0.541 ± 0.001</td>
<td>0.542 ± 0.000</td>
<td>0.665622</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM, M = male, F = female, BW = body weight, R = right, L = left.
Conclusion

This study presents evidence of nontoxic effects of *M. aethiopicum* root bark aqueous extract in animal models. No mortality or any sign of toxicity was observed in mice treated with the extract and therefore establishing its safety in use. The hematological and biochemical analysis showed no adverse effects between control and treated groups of mice. Furthermore, the plant extract did not induce any damage to the vital body organs and therefore considered as relatively safe for utilization especially in rural communities where conventional drugs are unaffordable due to their high costs. However, a detailed experimental analysis of sub-acute toxicity remains unveiled to complete the safety profile of this plant.

Conflict of Interests

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors are grateful to the Government of Tanzania through the Commission for Science and Technology (COSTECH) for financial support. Herbalists from Imbibiya village are appreciated for availing us ethnomedical information of medicinal plants. Last but not least, the authors wish to thank Mr. Alfred Mwanyika of the Department of Physiology, Pharmacology and Toxicology at the Sokoine University of Agriculture for his technical support.

REFERENCES

Journal of Medicinal Plant Research

Related Journals Published by Academic Journals

- *African Journal of Pharmacy and Pharmacology*
- *Journal of Dentistry and Oral Hygiene*
- *International Journal of Nursing and Midwifery*
- *Journal of Parasitology and Vector Biology*
- *Journal of Pharmacognosy and Phytotherapy*
- *Journal of Toxicology and Environmental Health Sciences*