ABOUT AJPP

The African Journal of Pharmacy and Pharmacology (AJPP) is published weekly (one volume per year) by Academic Journals.

African Journal of Pharmacy and Pharmacology (AJPP) is an open access journal that provides rapid publication (weekly) of articles in all areas of Pharmaceutical Science such as Pharmaceutical Microbiology, Pharmaceutical Raw Material Science, Formulations, Molecular modeling, Health sector Reforms, Drug Delivery, Pharmacokinetics and Pharmacodynamics, Pharmacognosy, Social and Administrative Pharmacy, Pharmaceutics and Pharmaceutical Microbiology, Herbal Medicines research, Pharmaceutical Raw Materials development/utilization, Novel drug delivery systems, Polymer/Cosmetic Science, Food/Drug Interaction, Herbal drugs evaluation, Physical Pharmaceutics, Medication management, Cosmetic Science, pharmaceuticals, pharmacology, pharmaceutical research etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in AJPP are peer-reviewed.

Contact Us

Editorial Office: ajpp@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/AJPP
Submit manuscript online http://ms.academicjournals.me/
Editors

Himanshu Gupta
Department of Pharmacy Practice
University of Toledo
Toledo, OH
USA.

Prof. Zhe-Sheng Chen
College of Pharmacy and Health Sciences
St. John’s University
New York,
USA.

Dr. Huma Ikram
Neurochemistry and Biochemical Neuropharmacology Research Unit,
Department of Biochemistry,
University of Karachi
Karachi-75270
Pakistan

Dr. Shreesh Kumar Ojha
Molecular Cardiovascular Research Program
College of Medicine
Arizona Health Sciences Center
University of Arizona
Arizona,
USA.

Dr. Vitor Engracia Valenti
Departamento de Fonoaudiologia
Faculdade de Filosofia e Ciências,
UNESP
Brazil.

Dr. Caroline Wagner
Universidade Federal do Pampa
Avenida Pedro Anunciação
Brazil.

Associate Editors

Dr. B. Ravishankar
SDM Centre for Ayurveda and Allied Sciences,
SDM College of Ayurveda Campus,
Karnataka
India.

Dr. Natchimuthu Karmegam
Department of Botany,
Government Arts College,
Tamil Nadu,
India.

Dr. Manal Moustafa Zaki
Department of Veterinary Hygiene and Management
Faculty of Veterinary Medicine,
Cairo University
Giza,
Egypt.

Prof. George G. Nomikos
Takeda Global Research & Development Center
USA.

Prof. Mahmoud Mohamed El-Mas
Department of Pharmacology,
Faculty of Pharmacy
University of Alexandria,
Alexandria,
Egypt.

Dr. Kiran K. Akula
Electrophysiology & Neuropharmacology Research Unit
Department of Biology & Biochemistry
University of Houston
Houston, TX
USA.
Editorial Board

Prof. Fen Jicai
School of life science, Xinjiang University, China.

Dr. Ana Laura Nicoletti Carvalho
Av. Dr. Arnaldo, 455, São Paulo, SP. Brazil.

Dr. Ming-hui Zhao
Professor of Medicine
Director of Renal Division, Department of Medicine
Peking University First Hospital
Beijing 100034
PR. China.

Prof. Ji Junjun
Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, China.

Prof. Yan Zhang
Faculty of Engineering and Applied Science, Memorial University of Newfoundland, Canada.

Dr. Naoufel Madani
Medical Intensive Care Unit
University hospital Ibn Sina, University Mohamed V Souissi, Rabat, Morocco.

Dr. Dong Hui
Department of Gynaecology and Obstetrics, the 1st hospital, NanFang University, China.

Prof. Ma Hui
School of Medicine, Lanzhou University, China.

Prof. Gu Huijun
School of Medicine, Taizhou university, China.

Dr. Chan Kim Wei
Research Officer
Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra, Malaysia.

Dr. Fen Cun
Professor, Department of Pharmacology, Xinjiang University, China.

Dr. Sirajunnisa Razack
Professor of Pharmacology, Faculty of Medicine
Assiut University, Assiut, Egypt.

Prof. Ehab S. EL Desoky
Assistant Professor, Department of Clinical Neuroscience
Karolinska University Hospital, Huddinge 141 86 Stockholm, Sweden.

Dr. Yakisich, J. Sebastian
Department of Pharmacology, Faculty of Medicine
Assiut University, Assiut, Egypt.

Dr. Naoufel Madani
Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamilnadu, India.

Dr. Sirajunnisa Razack
Professor of Pharmacology, Faculty of Medicine
Assiut University, Assiut, Egypt.

Dr. Naoufel Madani
Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamilnadu, India.

Dr. Yasar Tatar
Marmara University, Turkey.

Dr Nafisa Hassan Ali
Assistant Professor, Dow Institute of Medical Technology
Dow University of Health Sciences, Chand bbi Road, Karachi, Pakistan.

Dr. Krishnan Namboori P. K.
Computational Chemistry Group, Computational Engineering and Networking, Amrita Vishwa Vidyapeetham, Amritanagar, Coimbatore-641 112 India.

Dr. Liu Xiaoji
School of Medicine, Shihezi University, China.
ARTICLES

Myelo-protective and haematopoietic effects of seed extract fractions of *Phoenix dactylifera* in Wistar rats
Ufelle, S. A., Achukwu, P. U. and GHASI, S. I.

Evaluation of *in vitro* antioxidant, reducing, lipoxygenase and ACE inhibition activity of polyherbal drug linkus
Hina Rehman, Zeeshan Ahmed Shaikh, Safila Naveed, Mahreen Latif and Khan Usmanghani
Myelo-protective and haematopoietic effects of seed extract fractions of *Phoenix dactylifera* in Wistar rats

Ufelle, S. A.*1, Achukwu, P. U.1 and GHASI, S. I.2

1Department of Medical Laboratory Sciences, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria Enugu Campus Enugu State, Nigeria.
2Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria Enugu Campus Enugu State, Nigeria.

Received 25 August, 2016; Accepted 5 October, 2016

Myelo-protective and haematopoietic effects of seed extract fractions (SEF) of *Phoenix dactylifera* were investigated in Wistar rats. The acute toxicity of the SEF were determined in mice (n=12). Wistar rats (n=45), aged 2 to 3 months and weighing 150 to 220 g were grouped into 9, labeled (A to I). Groups A to D were intraperitoneally-induced for myelo-suppression with 3 mg/kg bodyweight (b.wt) of cyclophosphamide for 7 days. Groups A to H orally received graded-doses of SEF (A = (SEF1)100, B = (SEF1) 200, C = (SEF2) 100, D = (SEF2) 200, E = (SEF1) 100, F = (SEF1) 200, G = (SEF2) 100, and H = (SEF2) 200 mg/kg b.wt) for 21 days. Group I served as control. Blood samples (2.0 ml) were collected from each rat on days 8 and 15 into tri-potassium ethylene diaminetetraacetic acid anticoagulants and analyzed using haematological auto analyzer (Sysmex KX-21N) following manufacturers guideline. Bone marrow was collected from myelo-suppressed groups (B, D) and normal groups (F, H) on days 15 and 22 into fetal calf serum for cell count. The acute toxicity test revealed an oral LD50 of 2000 mg/kg b.wt. The SEF revealed flavonoids, saponins, tannin, proteins, reducing sugars and steroids. On day 8, the myelo-suppressed and normal groups revealed dose-dependant and time-dependent significant increase (p < 0.05) in haemoglobin, haematocrit, RBC and total WBC compared to control. On day 15, the myelo-suppressed and normal groups revealed dose- and time-dependent significant increase (p<0.05) in haemoglobin, haematocrit, RBC and total WBC and significant decrease (p < 0.05) in bone marrow cells of group B compared to control. Day 22 revealed significant increase (p < 0.05) in bone marrow cells of groups B, D, F and H compared to control. The observed effects indicate myelo-protective and haemopoietic potentials of the SEF in Wistar rats.

Key words: *Phoenix dactylifera*, anaemia, graded-doses, myelo-protection, haematopoietic.

INTRODUCTION

Treatment of oncology patients with cytotoxic drugs affect haematopoietic cells, especially the granulocyte-macrophage progenitors (CFU-GM) which results to neutropenia (Ozkan et al., 2005). Neutropenia is a
decrease in circulating neutrophil in the peripheral blood. It is essential to introduce means to provide myeloprotective effects (Nichols et al., 1994). Biological response modifiers have been synthesized to circumvent this haematopoietic toxicity by the cytotoxic drugs. The colony-stimulating factors and interleukins regulate the proliferation of tumor-killing T lymphocytes and so called natural killer cells by inducing cell viability (Kiss et al., 2004).

Apoptosis of haematopoietic progenitors exposed to DNA-damaging drugs or γ-irradiation is mediated by p53 (Alyasiri et al., 2011). Furthermore, p53 appears to be a key regulator of the proliferation of haematopoietic progenitors, as p53 status influences both long- and short-term repopulation following bone marrow transplantation. Other approaches such as employing herbal medicine with a view to myelo-protection have equally been pursued (Ufelle et al., 2011).

Phoenix dactylifera possess numerous medicinal properties and is used in the treatment of stroke, building up body weight, help in slowing ageing and in treatment of toothache (Biglari et al., 2008). The extract of the date have exhibited anti-diabetic, anti-inflammatory and antioxidant activity (Michael et al., 2013; Rahmani et al., 2014).

Most anti-neoplastic agents are known to cause myelo-suppression. It has also been demonstrated that various crude and fractions of Vitex doniana leaves extracts have myelo-protective activity in cyclophosphamide-induced myelotoxicity (Ufelle et al., 2011). There is paucity of data on the myelo-protective and haematopoietic effects of SEF of Phoenix dactylifera. The aim of this study was to investigate the myelo-protective effects of SEF of P. dactylifera in myelo-suppressed and normal Wistar rats. The specific objectives were to determine the acute toxicity (LD₅₀) of the seed extract in mice, fractionate the extract using column chromatography and Gas Chromatography Mass Spectrometry (GC-MS), haematological parameters and bone marrow count of the myelo-suppressed and normal Wistar rats after oral administration of SEF of P. dactylifera.

MATERIALS AND METHODS

Collection of the plant materials

The fruits of P. dactylifera were bought from Daji market, Sokoto, Sokoto State, Nigeria. It was authenticated by a taxonomist in the Department of Plant Science and Biotechnology, University of Nigeria Nsukka Campus, Nigeria. A voucher specimen (UNH-M3) was kept in the herbarium unit for future reference.

Animal housing

Wistar rats (n=45) were purchased and housed in the Animal House of College of Medicine, University of Nigeria Enugu Campus. They were allowed to acclimatize for two weeks and fed with commercially available rat feed and have access to water and feed and have access to water and feed ad libitum. Wistar rats were handled in this study according to International guidelines for handling experimental animals by American Physiological Society (APS).

Preparation of extract

The seeds (150 g) were harvested from its fruits, shade-dried and grinded into fine powder and then soaked in 2.5L of methanol for 48 h. Filtration was carried out using what man Number 1 filter paper. The filtrate was evaporated to dryness. The dried extract(18.75 g) was scrapped out of the stainless bowl giving a percentage yield of 12.5 %. Ten (10)grams of the extract was dissolved in 100 ml of distilled water to get a concentration of 100 mg/ml, ready for use.

Acute toxicity test: (median lethal dose, LD₅₀)

This was performed on mice according to the procedure described by Lorke (1983). The LD₅₀ was performed in two stages. In the first stage, 3 groups of 3 mice each were treated with 10, 100 and 1000 mg/kg b.wt of the extract and observed for number of deaths in 24 h. Based on the percentage survival rates, 4 mice were treated with 1500, 2000, 2500 and 3000 mg/kg b.wt of extract in the second stage and the number of deaths in 24 h recorded. The LD₅₀ was calculated as the geometric mean of the highest non-lethal and the lowest lethal doses.

Column chromatography was performed according to the method described by Still et al. (1978).

Phytochemical analysis

Phytochemical analysis of seed extract fractions of P. dactylifera were done in the Department of Pharmacognosy, University of Nigeria, Nsukka, Nigeria with the method described by Ioan (1984). In general tests for the presence or absence of phytochemical compounds using the above methods involve the addition of an appropriate standard chemical agent to the extract in a test-tube and shaken vigorously or gently as the case may be. Gentle heat may sometimes be required.

Gas chromatography-mass spectrometry (GC-MS sample preparation)

Extract (0.02 g) was dissolved into 10.0 ml of methylene chloride in GC-MS sample vial. A screw cap and septa (red side facing out) was placed onto the sample vial. The sample vial was placed into the sample tray for GC-MS samples. The information requested for the sample was printed onto the log in sheet for the sample tray. GC-MS-QP 2010 PLUS SHIMADZU JAPAN was used to separate the methanol seeds extract of P. dactylifera after column chromatography and named the different compounds (Alon and Amirav, 2006).

Experimental design

The acute toxicity of the SEF were determined in mice (n=12). Wistar rats (n=45), aged 2 to 3 months and weighing 150 to 220 g were grouped into 9, labeled (A to I). Groups A to D were intraperitoneally-induced for myelo-suppression with 3 mg/kg bodyweight (b.wt) of cyclophosphamide for 7 days. Groups A to H
RESULTS AND DISCUSSION

Phoenix dactylifera possess numerous medicinal properties and is used in the treatment of many ailments (Onuh et al., 2012). The extract of date has been reported to possess anti-ulcer, hepato-protective, anti-diarrheal effects. Whereas the methanol and aqueous extract of the date have exhibited anti-inflammatory and antioxidant activity by significantly increasing the plasma levels of vitamin C, E and A (Zhang et al., 2013). Dates are being consumed in modern cultures for the pleasant flavor, odor, and their biting texture in addition to their use for flavoring foods, beverages and medicine (Al-shahib and Marshall, 2003). The fruit is a natural source of folic acid, an important micronutrient and independent risk factor for cardiovascular disease because of its tannin content; it is used medicinally as a deterrent and astrigent in intestinal trouble. Due to paucity of data on the myelo-protective and haematopoietic properties of SEF of *P. dactylifera*, this study was designed to investigate the myelo-protective and haematopoietic effects of SEF of *P. dactylifera* in myelo-suppressed and normal Wistar rats.

The acute toxicity test revealed an oral LD$_{50}$ of 2000 mg/kg b.wt in mice. The observed high LD$_{50}$ of the SEF indicate its safety for consumption. The phytochemical analysis of SEF revealed flavonoids, saponins, tannin, proteins, reducing sugars and steroids Table 1. This indicates the pharmacological potentials of SEF of *P. dactylifera*.

On day 8, the myelo-suppressed groups (A and B) that received graded-doses of SEF 1 revealed significant decrease in haemoglobin, haematocrit, RBC and total WBC when compared with the control. However, the myelo-suppressed groups (C and D) that received graded-doses of SEF 2 revealed dose-dependent increases compared to A and B but were lower than the control values Table 2. The progressive increases in the haematological parameters indicate myelo-protective effect which was more pronounced in SEF 2. The more pronounced effects of SEF 2 may be due to the differences in the concentrations and molecular weight to their chemical constituents. The SEF 2 revealed smaller molecular weight compounds than SEF 1. The observed lower values than the control might be due to the effect of cyclophosphamide that was used to induce myelo-suppression. The observed effects may also be attributed to the duration of SEF administration at the stage and time of sample collection which may not be enough to cause significant effects. The normal groups (E to H)

Table 1. The phytochemical analysis results of the seed extract fractions (SEF) of *Phoenix dactylifera*.

<table>
<thead>
<tr>
<th>Constituents</th>
<th>SEF1</th>
<th>SEF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavonoids</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Proteins</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Reducing sugars</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Steroids</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

- = absent; + = present; ++ = moderately present; sef = seed extract fraction.
revealed progressive increases in haemoglobin, haematocrit, RBC and total WBC which were not significant when compared with the control Table 3. This may also be attributed to the duration of SEF administration at the stage and time of sample collection which may not be enough to cause significant effects.

On day 15, the myelo-suppressed groups (A and B) revealed significant decrease in haemoglobin, haematocrit, RBC and total WBC when compared with the control. This might be that the constituents SEF could not correct the myelo-suppressive actions of the cyclophosphamide at this stage. However, the parameters recorded progressive increases at increasing dosage of SEF and when day 15 was compared with day 8. The observed effects were dose and time-dependent. This indicates myelo-protective action by the extract (Ragab et al, 2013). The haemoglobin, haematocrit, RBC and total WBC of the myelo-suppressed group C that received lower dose of SEF 2 was not significant but increased significantly in myelo-suppressed group D that received higher dose of SEF 2 Table 4. The SEF might have stimulated erythropoietin production for haematopoiesis as well as the immune system for the leucocytosis. The myelo-protective effect manifests at increased concentration of SEF. The haemoglobin, haematocrit, RBC and total WBC of normal groups (E and F) that received graded-doses of SEF 1 and group G that received lower dose of SEF 2 were not significant but group H that received higher dose of SEF 2 increased significantly when compared with the control Table 5. The observed effects indicate haematopoietic potentials which was more noticeable in SEF 2.

On day 15, bone marrow cell count decreased significantly in group B rats that received SEF 1 when compared with the control. This might be due to duration of extract administration. On day 22, groups B, D, F and H revealed significant increase in bone marrow cell count when compared with the control. The bone marrow cell count of rats that received SEF 2 was higher than those that received SEF 1 Table 6. The observed effects indicate myelo-protective and haemopoietic potentials of the SEF. The SEF might be stimulating the liver to

Table 2. The mean ± SD of haematological parameters of Myelo-suppressed and control Wistar rats on day 8 oral administration of graded-doses of SEF1 and SEF2 of P. dactylifera.

<table>
<thead>
<tr>
<th>Groups/Parameters</th>
<th>A Myelo-suppressed 100 mg/kg b.wt SEF1</th>
<th>B Myelo-suppressed 200 mg/kg b.wt SEF1</th>
<th>C Myelo-suppressed 100 mg/kg b.wt SEF2</th>
<th>D Myelo-suppressed 200 mg/kg b.wt SEF2</th>
<th>I Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb (g/dL)</td>
<td>6.5 ± 2.5*</td>
<td>7.8 ± 0.9*</td>
<td>10.5 ± 0.5</td>
<td>11.8 ± 1.0</td>
<td>11.5 ± 0.9</td>
</tr>
<tr>
<td>Hct (L/L)</td>
<td>0.19 ± 0.01*</td>
<td>0.22 ± 0.01*</td>
<td>0.31 ± 0.01</td>
<td>0.34 ± 1.5</td>
<td>0.35 ± 0.02</td>
</tr>
<tr>
<td>RBC (×10¹²/L)</td>
<td>2.3 ± 0.27*</td>
<td>2.8 ± 0.32*</td>
<td>3.3 ± 0.54</td>
<td>3.6 ± 0.46</td>
<td>3.4 ± 0.19</td>
</tr>
<tr>
<td>MCHC (g/dL)</td>
<td>32.35 ± 1.5</td>
<td>32.50 ± 0.8</td>
<td>30.88 ± 2.1</td>
<td>31.71 ± 0.5</td>
<td>32.86 ± 0.3</td>
</tr>
<tr>
<td>MCH (Pg)</td>
<td>23.91 ± 2.3</td>
<td>27.86 ± 2.5</td>
<td>31.82 ± 2.1</td>
<td>32.78 ± 1.5</td>
<td>33.82 ± 1.7</td>
</tr>
<tr>
<td>MCV (FL)</td>
<td>73.91 ± 4.2</td>
<td>85.71 ± 3.7</td>
<td>103.03 ±5.4</td>
<td>94.44 ± 3.2</td>
<td>102.94 ± 4.8</td>
</tr>
<tr>
<td>TWBC(×10⁹/L)</td>
<td>1.5 ± 0.29*</td>
<td>2.6 ± 0.27*</td>
<td>3.7 ± 0.36</td>
<td>4.1 ± 0.5</td>
<td>4.4 ± 0.1</td>
</tr>
</tbody>
</table>

*p < 0.05 (Significant).

Table 3. The mean ± SD of haematological parameters of normal and control Wistar rats on day 8 oral administration of graded-doses of SEF1 and SEF2 of P. dactylifera.

<table>
<thead>
<tr>
<th>Groups/parameter</th>
<th>E Normal 100 mg/kg b.wt SEF1</th>
<th>F Normal 200 mg/kg b.wt SEF1</th>
<th>G Normal 100 mg/kg b.wt SEF2</th>
<th>H Normal 200 mg/kg b.wt SEF2</th>
<th>I Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb (g/dL)</td>
<td>11.6 ± 2.5</td>
<td>12.1 ± 0.9</td>
<td>12.5 ± 0.5</td>
<td>12.8 ± 1.0</td>
<td>11.5 ± 0.9</td>
</tr>
<tr>
<td>Hct (L/L)</td>
<td>0.34 ±0.01</td>
<td>0.36 ± 0.01</td>
<td>0.37 ± 0.01</td>
<td>0.38 ± 1.5</td>
<td>0.35 ± 0.02</td>
</tr>
<tr>
<td>RBC (×10¹²/L)</td>
<td>3.3 ± 0.27</td>
<td>3.8 ± 0.32</td>
<td>3.5 ± 0.54</td>
<td>4.2 ± 0.46</td>
<td>3.4 ± 0.19</td>
</tr>
<tr>
<td>MCHC (g/dL)</td>
<td>32.35 ± 1.5</td>
<td>32.50 ± 0.8</td>
<td>30.88 ± 2.1</td>
<td>31.71 ± 0.5</td>
<td>32.86 ± 0.3</td>
</tr>
<tr>
<td>MCH (Pg)</td>
<td>23.91 ± 2.3</td>
<td>27.86 ± 2.5</td>
<td>31.82 ± 2.1</td>
<td>32.78 ± 1.5</td>
<td>33.82 ± 1.7</td>
</tr>
<tr>
<td>MCV (FL)</td>
<td>73.91 ± 4.2</td>
<td>85.71 ± 3.7</td>
<td>103.03 ±5.4</td>
<td>94.44 ± 3.2</td>
<td>102.94 ± 4.8</td>
</tr>
<tr>
<td>TWBC(×10⁹/L)</td>
<td>3.4 ± 0.29</td>
<td>3.7 ± 0.27</td>
<td>4.5 ± 0.36</td>
<td>5.2 ± 0.5</td>
<td>4.4 ± 0.1</td>
</tr>
</tbody>
</table>
Table 4. The mean ± SD of haematological parameters of myelo-suppressed and control Wistar rats on day 15 oral administration of graded-doses of SEF1 and SEF2 of *P. dactylifera*.

<table>
<thead>
<tr>
<th>Groups/parameter</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Myelo-suppressed 100 mg/kg b.wt</td>
<td>Myelo-suppressed 200 mg/kg b.wt</td>
<td>Myelo-suppressed 100 mg/kg b.wt</td>
<td>Myelo-suppressed 200 mg/kg b.wt</td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td>SEF1</td>
<td>SEF1</td>
<td>SEF2</td>
<td>SEF2</td>
<td></td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>8.5 ± 1.5*</td>
<td>9.8 ± 0.5*</td>
<td>12.5 ± 0.4</td>
<td>13.8 ± 0.5*</td>
<td>11.5 ± 0.9</td>
</tr>
<tr>
<td>Hct (L/L)</td>
<td>0.24 ± 0.01*</td>
<td>0.28 ± 0.01*</td>
<td>0.36 ± 0.01</td>
<td>0.39 ± 1.5*</td>
<td>0.35 ± 0.02</td>
</tr>
<tr>
<td>RBC (x10¹²/L)</td>
<td>3.2 ± 0.27*</td>
<td>3.7 ± 0.32*</td>
<td>4.1 ± 0.54</td>
<td>4.5 ± 0.46*</td>
<td>3.4 ± 0.19</td>
</tr>
<tr>
<td>MCHC (g/dL)</td>
<td>32.35 ± 1.5</td>
<td>32.50 ± 0.8</td>
<td>30.88 ± 2.1</td>
<td>31.71 ± 0.5</td>
<td>32.86 ± 0.3</td>
</tr>
<tr>
<td>MCH (Pg)</td>
<td>23.91 ± 2.3</td>
<td>27.86 ± 2.5</td>
<td>31.82 ± 2.1</td>
<td>32.78 ± 1.5</td>
<td>33.82 ± 1.7</td>
</tr>
<tr>
<td>MCV (FL)</td>
<td>73.91 ± 4.2</td>
<td>85.71 ± 3.7</td>
<td>103.03 ± 5.4</td>
<td>94.44 ± 3.2</td>
<td>102.94 ± 4.8</td>
</tr>
<tr>
<td>TWBC (x10⁹/L)</td>
<td>2.4 ± 0.29*</td>
<td>3.5 ± 0.27*</td>
<td>4.6 ± 0.36</td>
<td>5.0 ± 0.5*</td>
<td>4.4 ± 0.1</td>
</tr>
</tbody>
</table>

*p < 0.05 (Significant).

Table 5. The mean ± SD of haematological parameters of normal and control Wistar rats on day 15 oral administration of graded-doses of SEF1 and SEF2 of *P. dactylifera*.

<table>
<thead>
<tr>
<th>Groups/parameter</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal 100 mg/kg b.wt</td>
<td>Normal 200 mg/kg b.wt</td>
<td>Normal 100 mg/kg b.wt</td>
<td>Normal 200 mg/kg b.wt</td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td>SEF1</td>
<td>SEF1</td>
<td>SEF2</td>
<td>SEF2</td>
<td></td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>11.9 ± 2.5</td>
<td>12.6 ± 0.9</td>
<td>12.8 ± 0.5</td>
<td>13.3 ± 1.0*</td>
<td>11.5 ± 0.9</td>
</tr>
<tr>
<td>Hct (L/L)</td>
<td>0.34 ± 0.01</td>
<td>0.36 ± 0.01</td>
<td>0.37 ± 0.01</td>
<td>0.39 ± 1.5*</td>
<td>0.35 ± 0.02</td>
</tr>
<tr>
<td>RBC (x10¹²/L)</td>
<td>3.3 ± 0.27</td>
<td>3.8 ± 0.32</td>
<td>3.4 ± 0.54</td>
<td>4.1 ± 0.46*</td>
<td>3.4 ± 0.19</td>
</tr>
<tr>
<td>MCHC (g/dL)</td>
<td>32.35 ± 1.5</td>
<td>32.50 ± 0.8</td>
<td>30.88 ± 2.1</td>
<td>31.71 ± 0.5</td>
<td>32.86 ± 0.3</td>
</tr>
<tr>
<td>MCH (Pg)</td>
<td>23.91 ± 2.3</td>
<td>27.86 ± 2.5</td>
<td>31.82 ± 2.1</td>
<td>32.78 ± 1.5</td>
<td>33.82 ± 1.7</td>
</tr>
<tr>
<td>MCV (FL)</td>
<td>73.91 ± 4.2</td>
<td>85.71 ± 3.7</td>
<td>103.03 ± 5.4</td>
<td>94.44 ± 3.2</td>
<td>102.94 ± 4.8</td>
</tr>
<tr>
<td>TWBC (x10⁹/L)</td>
<td>3.5 ± 0.29</td>
<td>3.6 ± 0.27</td>
<td>4.7 ± 0.36</td>
<td>5.1 ± 0.5*</td>
<td>4.4 ± 0.1</td>
</tr>
</tbody>
</table>

Table 6. The mean ± SD of Bone Marrow cell count of myelo-suppressed and normal rats on days 15 and 22 of the study.

<table>
<thead>
<tr>
<th>Groups/cellularity</th>
<th>B</th>
<th>D</th>
<th>F</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Myelo-suppressed 200 mg/kg b.wt</td>
<td>Myelo-suppressed 200 mg/kg b.wt</td>
<td>Normal 200 mg/kg b.wt</td>
<td>Normal 200 mg/kg b.wt</td>
</tr>
<tr>
<td></td>
<td>SEF1</td>
<td>SEF2</td>
<td>SEF1</td>
<td>SEF2</td>
</tr>
<tr>
<td>Day 15 (x10⁶/femur)</td>
<td>7.80 ± 0.77*</td>
<td>10.30 ± 1.5</td>
<td>8.40 ± 0.5</td>
<td>11.62 ± 1.2</td>
</tr>
<tr>
<td>Day 22 (x10⁶/femur)</td>
<td>12.37 ± 0.65*</td>
<td>13.50 ± 1.5*</td>
<td>12.72 ± 0.9*</td>
<td>13.85 ± 0.48*</td>
</tr>
</tbody>
</table>

*p < 0.05 (Significant)

synthesize more erythropoietin to cause haematopoiesis. The observed effects were more consistent in SEF2 probably due to the smaller molecular weight compounds in SEF2 which may have easier penetration into the tissue to cause the observed effects. The GC-MS of SEF 1 and SEF 2 of Phoenix dactylifera with their Formulae, molecular weights and compound names are shown in Figures 1 to 12.

In conclusion, this study has demonstrated myeloprotective and haematopoietic properties by SEF as shown by the observed progressive increases in the parameters of both the myelo-suppressed and normal Wistar rats.

Conflicts of Interests

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

Authors wish to acknowledge the taxonomist from the Department of Plant Science and Biotechnology, University of Nigeria Nsukka Campus, Nigeria.
Figure 1. SEF1. Formula: C57H10406; CAS: 537-39-3; Molecular weight: 884; compound name: 9-Octadecenoic acid, I, 2, 3-propanetriyl ester, (E, E, E) - $$$ 2, 3-Bis [(9E)-9-octadecenoyloxy] propyl (9E)-9-octadecenoate $$.

Figure 2. SEF1. Formula: C16H300; CAS: 562-19-0 4-6; Molecular Weight: 238; Compound Name: cis-9-Hexadecenal $$$ 9-1-hexadecenal, (Z) - $ (Z)-9-Hexadecenal $ Z-9-Hexadecenal $$$ (9Z)-9-Hexadecenal $$.

Figure 3. SEF1. Formula: C18H3402; CAS: 112-80-1; Molecular Weight: 282; Compound Name: Oleic Acid S 9-Octadecenoic acid (Z) - $$$ delta (Sup9)-cis-Oleic acid$$$ cis-dJta. (Sup9)-Octadecenoic acid $$$ cis-Oleic Acid $$$ cis-9-Octad.

Figure 4. SEF1. Formula: C17H320; CAS: 606953-2; Molecular Weight: 252; Compound Name: 8-Hexadecenal, 14-methyl-, (Z)- $$ 14-Methyl-8-hexadecenal Z (8Z)-14-Methyl-8-hexadecenal $$.
Figure 5. SEF1. Formula: C18H36O2; CAS: 57-1-4; Molecular Weight: 284; Compound Name: Octadecanoioc acid SS Stearic acid n-Octadecanoic acid Humko Industrene R SS Hydrofol Acid 150 SS Hystrene S-97Hysrene T-70.

Figure 6. SEF1. Formula: C18H36O2; CAS: 57-1-4; Molecular Weight: 284; Compound Name: Octadecanoic acid SS Stearic acid SS n-Octadecanoic acid SS Humko Industrene R SS Hydrofol Acid 50 SS Hystene S-97 SS Hystrene T-7.

Figure 7. SEF2. Formula: C14H26O; CAS: 53939-27-8; Molecular Weight: 210; Compound Name: 9-Tetradecenal, (Z) - SS (Z) - 9-Tetradecenal SS Z-9-Tetradecenal SS Z-9-Teadecenol SS (9Z)-9-Tetradecenal # Z-9-Tetadecenal $.$

Figure 8. SEF2. Formula: C16H30O; CAS: 56219-9-04-6; Molecular Weight: 238; Compound Name: cis-9-Hexadecenal S 9-Hexadecenal, (Z) - SS (Z) - 9-Hexadecen SS Z-9-Hexadecenal S (9Z)-9-Hexadecenal.
Figure 9. SEF2. Formula: C15H28O2; CAS: 4727-18-8; Molecular Weight: 240; Compound Name: Cyclopentadecanone, 2-hydroxy-S-2 Hydroxycyclopentadecanone # $$.

Figure 10. SEF2. Formula: C8H36O2; CAS: 57-1-4; Molecular Weight: 284; Compound Name: Octadecanoic acid S$ Stearic acid n-Octadecanoic acid S$ Humko Industrene R S Hydrolbi Acid ISO $ Hysirene S-07 Hystrene T-7O.

Figure 11. SEF2. Formula: C16H30O; CAS: 56219-04-6; Molecular Weight: 238; Compound Name: cis-9-Hexadecena S$ 9-Hexadecenal, (Z) - S$ (Z)-9-Hexadecenal $$ Z-9-Hexadecenal $$ (9Z)-9-Hexadecenal # $$.

Figure 12. SEF2. Formula: C16H30O; CAS: 56219-04-6; Molecular Weight: 238; Compound Name: cis-9-Hexadecenal S$ 9-Hexadecenal [(Z) - $$ (Z)-9-Hexadecenal $$ Z-9-Hexadecenal $$ (9Z)-9-Headecenal # $$.

Abbreviations

SD, Standard deviation; SEF, seed extract fraction; b.wt, body weight; Hb, haemoglobin; Hct, haematocrit; RBC, red blood cell; MCHC, mean cell haemoglobin concentration; MCH, mean cell haemoglobin; MCV, mean
cell volume; **TWBC**, total white blood cell

REFERENCES

Full Length Research Paper

Evaluation of in vitro antioxidant, reducing, lipoxygenase and ACE inhibition activity of polyherbal drug linkus

Hina Rehman¹*, Zeeshan Ahmed Shaikh², Safila Naveed¹, Mahreen Latif³ and Khan Usmanghani²

¹Faculty of Pharmacy, Jinnah Women University, Karachi-74600, Pakistan.
²Herbion Pakistan (Pvt.) Ltd., Korangi Industrial Area, Karachi-74900, Pakistan.
³Multidisciplinary Research Laboratory (MDRL), Bahria University Medical and Dental College, Karachi-75500, Pakistan.

Received 29 December, 2015; Accepted 18 February, 2016

Oxidative, reductive, lipoxygenase and angiotensin converting enzyme (ACE) activities are the condition where there is an inequity among concentrations can cause a multiple pathological effects. Vast results of medical plants and the remarkable contribution on humans has been observed since centuries. The current study has showed the antioxidant, lipoxygenase, ACE inhibition, urease activity and reducing ability in vitro on linkus formulation, including lozenges and syrup. The anti-oxidant activities was assessed by scavenging ability of the linkus on free radical (DPPH; C₁₈H₁₂N₅O₆) 2,2'-diphenyl-1-picryl hydrazyl. For lipoxygenase measurements, purified lipoxygenase with linoeleic acid as substrate was used for the activity, however for lipoxygenase activity the thiocholine and diothiobisnitrobenzoic acid (DTNB) was used. Indophenol method has been used for determination of urease activity, however the reducing ability has been assessed by the conversion of ferric into ferrous state. In vitro results of linkus syrup as compared to standard showed good anti-oxidant and reducing ability. Moderate activity of urease, lipoxygenase and ACE inhibition were observed with comparison of standard. These activities of polyherbal formulation might be helpful for reducing cough and related symptoms.

Key words: Antioxidant activity, reducing ability, urease activity, lipoxygenase and ACE inhibition, linkus.

INTRODUCTION

Reactive oxygen species (ROS) is the byproduct of oxidative stress under the physiological conditions. These extreme ROS accretion will lead to cell damage, such as damage to proteins, DNA, and lipid membranes. The cell injury/damage is initiated by ROS and has been associated with the development of numerous disease

*Corresponding author. E-mail: drhinarehman@hotmail.com, hina.rehman@pharmevo.biz.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
Figure 1. *In vitro* antioxidant activity of Linkus formulation including lozenges and syrup w.r.t standard.

injury/damage is initiated by ROS and has been associated with the development of numerous disease conditions, such as diabetes, atherosclerosis, cancer and cardiovascular disease etc. Its comprising multiple free radicals and exogenous factors play vital role (Finkel et al., 2000).

ROS *in vivo* inside the cell membrane performs multiple mechanism by sunlight or by different chemical and metabolic process, including DNA damage, carcinogenesis etc (Gyamfi et al., 1999; Ganapathy et al., 2011; Gutteridge and Halliwell, 2000; Halliwell, 2001). The free radical, chemicals and toxins creates effects in immune system and are declared as the major contributor of free radicals in the oxidation process (Halliwell, 1994; Kuhnna, 1976; Kumpulainen and Salonen, 1999; Younes, 1981).

Urease is the prominent agent for gastrointestinal track (GI) and help to inhibit *Helicobacter pylori*. Urease also acts directly as virulence factor in infections other than GI, including urinary tract both in humans and animals (Ghous et al., 2010; Halliwell et al., 2008; Nabati et al., 2012). Lipoxigenase is the significant main enzyme for biosynthesis of leukotriene and different potential drug to cope with asthma, arthritis, circulatory diseases etc (Wasserman et al., 1991) (incorporated inside text). Consequently, over a decade, the foremost effort has invested and many vitro active like 5-lipoxigenase inhibitors has developed (Ford-Hutchinson, 1991; Batt, 1992; McMillan and Walker, 1992; Ford-Hutchinson et al., 1994). ACE inhibitors are known to induce dry cough. There has an observation that prostaglandins with others are responsible for this effects but the statement is still controversial (Morice et al., 1987; Gilchrist et al., 1989; Fox et al., 1996).

Naturally occurring antioxidants have effective pharmacological action, including less toxicity and price effectiveness. Multiple plant products, including terpines and phenols also have this activity too (De Souza et al., 2007; Lin and Yin, 2007; Rice-Evans et al., 1996). This present study was based on linkus syrup and lozenges which have a wonder blend of polyherbs, including *Glycyrrhiza glabra*, *Adhatoda vasica*, *Viola odorata*, *Piper longum*, *Hyssopus officinalis* and *Alpinia galangal* (Appendix 1 and 2). The study focused on anti-oxidant and reducing ability on linkus dosage forms and proved the strength of activity inside the herbal formulation (Figure 1). By proving the activities, it claims that linkus might work on associated symptoms of cough and respiratory tract.

METHODOLOGY

Plant material and techniques

Herb extracts and mentioned chemical constituents were the part of Linkus lozenges and Syrup (Figure 2). Major specification included organoleptic evaluation, qualitative reaction of glycyrrhetic acid, tanning agents and ascorbic acid. Quantitative determination with spectrophotometric evaluation was observed. The total flavonoids contents as luteolin-7-glucoside were not less than 0.080 mg/lozenge (Zeeshan et al., 2014).
Preparation of plant extract

Individual herbs were taken separately, cleaned, grind, weighed and distill water added together with sugar and liquid glucose. Ingredients were transferred from weighing tank to storing tank with temperature range from 110 to 120°C for syrup and 60 to 80°C for lozenges. For lozenges, boiling and vacuum cooking was needed. Kneading, roping and sizing were the next step with the help of uniplast machine. Lozenges were finally passed through cooling tunnel to obtain the desired hardness. For syrup, hot water filtrate was evaporated via a condenser. Methyl paraben, and Propyl paraben together with flavoring agents were added after completion (Zeeshan et al., 2014)

Chemicals and Reagents

All chemicals were high performance liquid chromatography (HPLC) grade. For reduction, 1, 1-diphenyl-2-picrylhydrazyl was used and obtained from Merck, Pakistan. 2,2'-diphenyl-1-picryl hydrazyl (DPPH) was obtained from Sigma-Aldrich Chemie (Buchs, Switzerland) and used for anti-oxidant activity.

Scavenging activity by DPPH radical

The antioxidant activity was measured by the scavenging aptitude of the syrup and capsules on free radical (DPPH). Antiradical activity analyzed depended on the reduction of DPPH. Its free radicals showed strong absorption at 517 nm due to odd electrons. When this electron was paired in the company of hydrogen donor, for example any antioxidant, the absorption strength decreased and color changed from purple to yellow, with respect to the number of electrons captured (Gülçin et al., 2005). For performing the process, 2, 2-Diphenyl-1-(2, 4, 6-trinitrophenyl) hydrazyl (M.W = 394.24) (Sigma) was prepared in ethanol in a concentration of 3 mM. Each well in 96-well plate was labelled as control, blank and test compound of various concentrations. DPPH solution (95 µl) was added in the labeled wells. The test compound (5 µl) of concentration 10 to 1000 µM in dimethyl sulphoxide (DMSO) was then added in DPPH solution and reaction mixture was mixed for few seconds. The reaction took place in wells when 96 well plates were incubated at 37°C for 30 min. The micro titre plate was read at the absorbance of 515 nm (Spectramax plus 384 Molecular Device, USA) after 30 min. The percentage of radical scavenging activity was considered with respect to DMSO treated control. Butylated hydroxyanisole (BHA) was taken as standard. The DPPH activity was performed with the help of the following equation:

DPPH radical scavenging effect (%) = Ac – As / Ac × 100%

Where As = absorbance of test compound, Ac = absorbance of control

Reducing ability by the conversion of ferric into ferrous state

The reducing ability was determined by the conversion of ferric into ferrous state by antioxidant compounds using the method of Oyaizu (1986). Each test compound (100 µl: 10 to 1000 µM) prepared in DMSO was mixed with phosphate buffer (250 µl: pH 6.6: 0.2 M). Potassium ferricyanide (250 µl: 1%) was then added to the contents in the test tube. This mixture was then incubated at 50°C for twenty minutes in water bath and was centrifuged for ten minutes at 3000 rpm. Subsequently on centrifugation, the top layer of solute (250 µl) was separated in another set of test tubes and mixed with equal volume of DMSO (250 µl). Ferric chloride (0.1 %: 50 µl) was added to the mixture with absorbance at 700 nm on spectrophotometer (Specord 2000, Germany). Percent reduction ability was determined in terms of percentage with respect to BHA used as standard.

Percent reduction activity = At/As × 100

Where As = absorbance of standard, At = absorbance of test.
Table 1. *In-vitro* antioxidant activity of Linkus formulation including lozenges and Syrup w.r.t. Standard.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Concentration Tested (µg/ml)</th>
<th>Percent Activity (%) (syrup) ± SEM</th>
<th>Percent activity ± SEM (%) (Lozenges)</th>
<th>Percent activity ± SEM (%) (standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>33.4±0.9464</td>
<td>21.2±0.421</td>
<td>71.2±0.41</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>45.7 ± 0.6454</td>
<td>40.7 ± 0.443</td>
<td>87.9± 0.45</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>65.0±0.9124</td>
<td>58.0±0.512</td>
<td>96.8±0.51</td>
</tr>
</tbody>
</table>

Table 2. Linkus lozenges and syrup reducing ability w.r.t. Standard.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Concentration tested (µg/ml)</th>
<th>Percent Activity (%) (syrup) ± SEM</th>
<th>Percent Activity (%) (capsules) ± SEM</th>
<th>Percent Activity (%) (standard) ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>12.8 ± 0.312</td>
<td>10.3 ± 0.131</td>
<td>43.7 ± 0.421</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>34.5 ± 0.412</td>
<td>24.7 ± 0.213</td>
<td>65.8 ± 0.321</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>43.6 ± 0.561</td>
<td>34.6 ± 0.312</td>
<td>87.4 ± 0.112</td>
</tr>
</tbody>
</table>

Antiulcer/anti urease activity

By using the indophenol method, the urease activity was evaluated by ammonia production as described by Weatherburn. Reaction mixtures encompassing 25 µl of enzymatic (Jack bean Urease) solution and 55 µl of buffers comprising 100 mM urea were incubated with 5 µl of test compounds for 15 min at 30°C in 96-well plates (Tariq et al., 2011). With the help of indophenol method, activity was determined by measuring ammonia production. After that, 45 µl of phenol reagent (1% w/v phenol and 0.005% w/v sodium nitroprusside) and 70 µl of alkali reagent (0.5% w/v NaOH and 0.1% active chloride NaOCl) were added with each well. By using a microplate reader (Molecular Device, USA), the absorbance at 630 nm was measured after 50 min. In a final volume of 200 µl, all reactions were performed in triplicate. By using SoftMax Pro software (Molecular Device, USA), the results (change in absorbance per min) were processed. All the assays were performed (0.01 M K$_2$HPO$_4$, 3H$_2$O, 1 mM EDTA and 0.01 M LiCl) at pH 8.2. Percentage inhibitions were determined that the lozenges and capsules have some anti-urease activity too as shown in Figure 3 and Table 3. Lipoxigenase compounds are the derivatives of arachidonic acid. After analysis, it was determined that the lozenges and capsules have good antioxidant potential that is, 23.4, 45.7, 65.0% w.r.t standard BHA. For determining the reducing activity, ferrous were the leading component. Both dosage forms of syrup and lozenges have some reducing ability as compared to standard as shown in Table 2.

RESULTS

Linkus is the poly herbal formulation analyzed for antioxidant, reducing, and lipoxigenase and ACE inhibition activity with different concentration (10, 50, 100 µ/ml) on 2 dosage of different dosage forms, comprising lozenges and syrup. When formulations of syrup and lozenges were compared at various concentrations (10, 50, 100 µg/ml), DPPH radical scavenging activity increased in a dose dependent manner for both formulations just like standard BHA as shown in Table 1. It showed that both dosage forms, including syrup and lozenges have good antioxidant potential that is, 23.4, 45.7, 65.0% w.r.t standard BHA.

Lipoxigenase inhibition activity

Lipoxigenases are family of iron encompassing dioxygenases that convert the addition of molecular oxygen to fatty acid comprising a cis-1, 4- pentadiene classification. The prime product of this response is a "4-hydroperoxycis-trans-1, 3-conjugated pentadienyl moiety" within unsaturated fatty acid. This assay processes the hydroperoxides produced in the lipoxgenation reaction using a purified lipoxigenase with linoleic acid as substrate (Tappel, 1986: Chedea et al., 2012). In the proposed method, lipoxigenase enzyme solution was prepared in sodium phosphate buffer with such concentration to give 130 U per well. Sodium phosphate buffer (pH 8.0: 160 µl:100 mM) was occupied in each well of plate labelled as Blank named B substrate and B enzyme, as control and Test. Test compound solution in methanol (10 to 1000 µM; 10 µl) was added in each well labelled as test. Lipoxigenase solution (LOX: 20 µl) was added in each well including B enzyme, Control and Test except B substrate and the mixture was incubated at 25°C for ten minutes. Substrate solution was prepared by adding linoleic acid (155 µl:0.5 mM) into 0.12% w/v tween 20 (257 µl). The mixture was mixed and 0.6 ml NaOH (1 N) was added to remove turbidity and volume was made up to 20 ml with deionized water. This mixture was dispersed with the gas nitrogen to evade autoxidation before adding to each other. The response was started by the adding of 10 µl substrate in each well except enzyme B, also the absorbance was measured at 234 nm for 5 min.

DISCUSSION

Oxidant cause damage to proteins, macromolecules and DNA and this causes many damages in human tissues.
including aging (Ames et al., 1992; Fraga et al., 1990; Harman, 1981; Sai et al., 1992; Stadtman et al., 1992; Harman, 1992). Currently, available antioxidant compound including butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) have negative impact on human health (Barlow, 1990; Branen, 1975). For reducing the impact of oxidants, the natural occurring plants have been used for medical purpose (Schuler, 1990). Various plant species have been explored for antioxidant activity (Chu et al., 2000; Koleva et al., 2002; Mantle et al., 2000; Oke and Hamburger, 2002). DPPH is the sensitive method for antioxidant screening for plant extracts (Koleva et al., 2002). For determining the antioxidant activity in poly herbal formulation, scavenging

![Graph](image)

Figure 3. Antiurease activity of linkus lozenges and syrup w.r.t. standard.

Table 3. Antiurease activity of Linkus lozenges and syrup w.r.t. Standard.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Concentration tested (μg/ml)</th>
<th>Percent Activity (%) (syrup)±SEM</th>
<th>Percent Activity (%) (capsules)±SEM</th>
<th>Percent Activity (%) (standard)±SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>13.9±0.121</td>
<td>10.8±0.210</td>
<td>64.5±0.321</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>44.9±0.321</td>
<td>35.7±0.412</td>
<td>76.5±0.213</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>65.9±0.213</td>
<td>50.8±0.312</td>
<td>89.9±0.312</td>
</tr>
</tbody>
</table>

Table 4. Lipoxygenase inhibiting activity by poly herbal formulation linkus.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Concentration tested (μg/ml)</th>
<th>Percent Activity (%) (syrup)±SEM</th>
<th>Percent Activity (%) (capsules)±SEM</th>
<th>Percent Activity (%) (standard)±SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>14.9±0.213</td>
<td>12.2±0.312</td>
<td>64.5±0.410</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>46.8±0.611</td>
<td>31.0±0.410</td>
<td>76.5±0.612</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>56.1±0.412</td>
<td>40.8±0.312</td>
<td>89.9±0.712</td>
</tr>
</tbody>
</table>
ability was used. Absorption was noted on 517 nm due to odd electron. Good antioxidant activity was observed in both dosage forms. For determination of reducing activity Fe$^{3+}$ to Fe$^{2+}$ was the investigating point (Oyaizu, 1986). For antioxidant activity, the decreasing potential of a compound seems to be a substantial indicator (Meir et al., 1995). Percentage reducing ability was determined by the BHA standard formula and the results found good reducing ability in the poly herbal formulation.

Free radical and lipid peroxide play a vital role for the development of ulcer in human (Gutteridge, 1995). Linkus poly herbal formulation shows a good gastric protection. Herbal formulations have anti-inflammatory activity, including many disorders such as cough, chronic laryngitis and many others (Kapoor, 2000; Madras, 1993). Beside all the functions and activities linkus formulation shows good lipoxygenase inhibition activity (Figure 4).

Cough is the furthermore common today’s symptom seen in overall family practice. Clinically, a cough is nearly a symptom of an underlying illness. It is significant to look beyond it to treat the cause and, hence achieve the maximal relief from cough and related symptoms. Studies have shown that there is an interaction between respiratory tract infections and antioxidant activities (Rubin et al., 2004; Gilliland, 2003) and oxidative stress present in blood due to respiratory infections (Gilliland et al., 2003). Lipoxygenase and leukotriene are the key factors for the inflammatory responses and respiratory distress (Wasserman et al., 1991). Multiple events suggested that lipoxygenase have strong relation in physiological event in respiratory tract infection (Holroyde, 1981; Weiss, 1982; Barne, 1984; Smith, 1985; Adelroth, 1986).

This study has shown the visible antioxidant activity, urease and lipoxygenase activity in poly herbal formulation Linkus cough syrup and lozenges (Figure 4). These dosage forms have contributing factors towards the indication cough as antioxidant and anti-inflammatory activity. These type of activity are due to free radical 2,2'-diphenyl-1-picryl hydrazyl, conversion of ferric into ferrous state, ammonia production using the indophenol method and hydroperoxides produced in the lipoxygenation reaction.

Conclusion

The poly herbal extract based lozenges and syrup were analyzed in vitro for anti-oxidant, urease and ACE inhibiting activity. Syrup was found to be more potent in comparison with lozenges but significant ability was found in contrast assessment with standard. It might be helpful for the reduction of respiratory tract infection and allied problems with minimum adverse/side effects.

Conflict of Interest

The authors have not declared any conflict of interest.

ACKNOWLEDGMENT

Thank you for my teachers and friends for moral support.
REFERENCES

Appendix 1. Linkus Syrup composition per 10 ml.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Ingredients</th>
<th>Quantity/10 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Adhatoda vasica – Bansa</td>
<td>600.00 mg</td>
</tr>
<tr>
<td>02</td>
<td>Piper longum – Fifil Daraz</td>
<td>100.00 mg</td>
</tr>
<tr>
<td>03</td>
<td>Cordia latifolia – Sapistan</td>
<td>100.00 mg</td>
</tr>
<tr>
<td>04</td>
<td>Glycyr rhiza glabra – Mulethi Extract</td>
<td>75.00 mg</td>
</tr>
<tr>
<td>06</td>
<td>Alpinia galanga – Khulanjan</td>
<td>50.00 mg</td>
</tr>
<tr>
<td>07</td>
<td>Viola odorata – Banafshan</td>
<td>25.00 mg</td>
</tr>
<tr>
<td>09</td>
<td>Onosma bracteatum – Gaozaban</td>
<td>100.00 mg</td>
</tr>
<tr>
<td>11</td>
<td>Methyl Paraben</td>
<td>10.928 mg</td>
</tr>
<tr>
<td>12</td>
<td>Propyl Paraben</td>
<td>2.168 mg</td>
</tr>
<tr>
<td>13</td>
<td>Sugar</td>
<td>7000.0 mg</td>
</tr>
<tr>
<td>14</td>
<td>Citric acid</td>
<td>20.00 mg</td>
</tr>
<tr>
<td>15</td>
<td>Glycerin</td>
<td>0.100 ml</td>
</tr>
<tr>
<td>16</td>
<td>Peppermint Oil</td>
<td>0.003748 ml</td>
</tr>
<tr>
<td>17</td>
<td>Clove Oil</td>
<td>0.001252 ml</td>
</tr>
<tr>
<td>18</td>
<td>Propylene Glycol</td>
<td>0.001668 ml</td>
</tr>
</tbody>
</table>

Appendix 2. Composition of Linkus Lozenges per lozenges.

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>Composition</th>
<th>Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Adhatoda vasica Nees.</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>Glycyrrhiza glabra L.</td>
<td>0.28</td>
</tr>
<tr>
<td>3</td>
<td>Piper longum L.</td>
<td>0.24</td>
</tr>
<tr>
<td>4</td>
<td>Hyssopus officinalis L.</td>
<td>0.12</td>
</tr>
<tr>
<td>5</td>
<td>Alpinia galanga (L.) Wild</td>
<td>0.12</td>
</tr>
<tr>
<td>6</td>
<td>Viola odorata L.</td>
<td>0.08</td>
</tr>
<tr>
<td>7</td>
<td>Mentha piperita L.</td>
<td>0.08</td>
</tr>
<tr>
<td>8</td>
<td>Sugar</td>
<td>q.s 100</td>
</tr>
<tr>
<td>9</td>
<td>Liquid glucose</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>Anhydrous citric acid</td>
<td>1.28</td>
</tr>
<tr>
<td>11</td>
<td>Talc</td>
<td>0.48</td>
</tr>
<tr>
<td>12</td>
<td>Mineral oil</td>
<td>0.176</td>
</tr>
<tr>
<td>13</td>
<td>Menthol</td>
<td>0.16</td>
</tr>
<tr>
<td>14</td>
<td>Eucalyptus Oil</td>
<td>0.12</td>
</tr>
<tr>
<td>15</td>
<td>Paraffin</td>
<td>0.04</td>
</tr>
<tr>
<td>16</td>
<td>Beeswax</td>
<td>0.04</td>
</tr>
<tr>
<td>17</td>
<td>Lanolin</td>
<td>0.04</td>
</tr>
<tr>
<td>18</td>
<td>White soft paraffin</td>
<td>0.024</td>
</tr>
<tr>
<td>19</td>
<td>Tablet essence for Orange lozenges</td>
<td>0.852</td>
</tr>
<tr>
<td>20</td>
<td>Tablet essence for Honey lemon lozenges</td>
<td>0.852</td>
</tr>
</tbody>
</table>
African Journal of Pharmacy and Pharmacology

Related Journals Published by Academic Journals

- Journal of Medicinal Plant Research
- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- International Journal of Nursing and Midwifery
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Toxicology and Environmental Health Sciences