The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals.

The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peer reviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

Contact Us

Editorial Office: jmpr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JMPR
Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Akah Peter Achunike
Editor-in-chief
Department of Pharmacology & Toxicology
University of Nigeria, Nsukka
Nigeria

Associate Editors

Dr. Ugur Cakilcioglu
Elazig Directorate of National Education
Turkey.

Dr. Jianxin Chen
Information Center,
Beijing University of Chinese Medicine,
Beijing, China
100029,
China.

Dr. Hassan Sher
Department of Botany and Microbiology,
College of Science,
King Saud University, Riyadh
Kingdom of Saudi Arabia.

Dr. Jin Tao
Professor and Dong-Wu Scholar,
Department of Neurobiology,
Medical College of Soochow University,
199 Ren-Ai Road, Dushu Lake Campus,
Suzhou Industrial Park,
Suzhou 215123,
P.R.China.

Dr. Pongsak Rattanachaikunsopon
Department of Biological Science,
Faculty of Science,
Ubon Ratchathani University,
Ubon Ratchathani 34190,
Thailand.

Prof. Parveen Bansal
Department of Biochemistry
Postgraduate Institute of Medical Education and Research
Chandigarh
India.

Dr. Ravichandran Veerasamy
AIMST University
Faculty of Pharmacy, AIMST University, Semeling - 08100,
Kedah, Malaysia.

Dr. Sayeed Ahmad
Herbal Medicine Laboratory, Department of Pharmacognosy and Phytochemistry,
Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062,
India.

Dr. Cheng Tan
Department of Dermatology, first Affiliated Hospital of Nanjing University of Traditional Chinese Medicine.
155 Hanzhong Road, Nanjing, Jiangsu Province,
China. 210029

Dr. Naseem Ahmad
Young Scientist (DST, FAST TRACK Scheme)
Plant Biotechnology Laboratory
Department of Botany
Aligarh Muslim University
Aligarh- 202 002,(UP)
India.

Dr. Isiaka A. Ogunwande
Dept. Of Chemistry,
Lagos State University, Ojo, Lagos,
Nigeria.
Editorial Board

Prof Hatil Hashim EL-Kamali
Omdurman Islamic University, Botany Department, Sudan.

Prof. Dr. Muradiye Nacak
Department of Pharmacology, Faculty of Medicine, Gaziantep University, Turkey.

Dr. Arash Kheiradmand
Lorestan University, Iran.

Dr. Sadiq Azam
Department of Biotechnology, Abdul Wali Khan University Mardan, Pakistan.

Prof Dr. Cemsit Karakurt
Pediatrics and Pediatric Cardiology, Inonu University Faculty of Medicine, Turkey.

Samuel Adelani Babarinde
Department of Crop and Environmental Protection, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

Dr. Swati Sen Mandi
Division of Plant Biology, Bose Institute, India.

Kongyun Wu
Department of Biology and Environment Engineering, Guiyang College, China.

Dr. Ujjwal Kumar De
Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122 Veterinary Medicine, India.

Dr. Wafaa Ibrahim Rasheed
Professor of Medical Biochemistry, National Research Center, Cairo, Egypt.
ARTICLES

Chemical composition, antioxidant and topical anti-inflammatory activities of *Croton cordiifolius* Baill. (Euphorbiaceae)
Iasmine Andreza Basilio dos Santos Alves, Simone Maria dos Santos, Raudiney Franklin Vasconcelos Mendes, José Welinton da Silva, Maria de Fátima Rodrigues, Bárbara de Azevedo Ramos, Márcia Vanusa da Silva, Maria Tereza dos Santos Correia, Fernanda das Chagas Angelo Mendes Tenório, Roberta Jeane Bezerra Jorge, René Duarte Martins, Julianna Ferreira Cavalcanti de Albuquerque, Rafael Matos Ximenes and Karina Perrelli Randau

Induction of biochemical active constituents of Jojoba (*Simmondsia chinensis* (Link) Schneider) callus affected by hormones
Mohei El-Din Solliman, Wael F. Shehata, Heba Allah A. Mohasseb, Mohammed I. Aldaej, Abdullatif A. Al-Khateeb, Solliman A. Al-Khateeb, Adel E. A. Hegazy and Hesham M. Abdel-Moneim
Chemical composition, antioxidant and topical anti-inflammatory activities of *Croton cordiifolius* Baill. (Euphorbiaceae)

Iasmine Andreza Basilio dos Santos Alves¹, Simone Maria dos Santos¹, Raudiney Franklin Vasconcelos Mendes¹, José Welinton da Silva¹, Maria de Fátima Rodrigues¹, Bárbara de Azevedo Ramos², Márcia Vanusa da Silva², Maria Tereza dos Santos Correia², Fernanda das Chagas Angelo Mendes Tenório³, Roberta Jeane Bezerra Jorge⁴, René Duarte Martins⁴, Julianna Ferreira Cavalcanti de Albuquerque¹, Karina Perrelli Randau⁵ and Rafael Matos Ximenes¹*, Karina Perrelli Randau⁵

¹Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, Brazil.
²Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Brazil.
³Departamento de Histologia e Embriologia, Universidade Federal de Pernambuco, Recife, Brazil.
⁴Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil.
⁵Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Brazil.

Received 8 November, 2016; Accepted 23 December, 2016

Croton cordiifolius is widely used in Brazilian Caatinga folk medicine to treat general inflammation, pain, and gastrointestinal disturbances. Currently, its medicinal properties are not well understood, owing to the absence of chemical and pharmacological studies. The aims of this work were to analyze the chemical composition of *C. cordiifolius* stem bark and evaluate its *in vitro* antioxidant and *in vivo* anti-inflammatory activities. *C. cordiifolius* ethanolic extract (CcEE) was obtained by maceration, while essential oil (CcEO) was extracted by hydrodistillation in a Clevenger-type apparatus. The chemical composition was evaluated by thin-layer chromatography and GCMS. Total phenolics, flavonoids, and antioxidant activity were quantitated by spectrophotometry. Topical anti-inflammatory activity was evaluated by different ear edema models in mice. The major compounds in CcEO were α-pinene (51.76%) and β-pinene (19.08%). CcEE analysis indicated the presence of alkaloids, mono- and sesquiterpenes, flavonoids, phenylpropanoids, triterpenes, steroids, and coumarins. CcEE showed antioxidant activity *in vitro*. In a topical anti-inflammatory assay, CcEO showed no activity. On the contrary, CcEE inhibited ear edema induced by phorbol 12-myristate 13-acetate (PMA), arachidonic acid (AA), ethyl phenylproprionate (EPP), and phenol. Probable mechanisms include inhibition of AA metabolite biosynthesis, vasoactive amine activity, and cytokine release/activity. These results corroborate the popular reputation of *C. cordiifolius* as an anti-inflammatory remedy.

Key words: *Croton cordiifolius*, Euphorbiaceae, caatinga, topical anti-inflammatory activity, ear edema.

INTRODUCTION

The Euphorbiaceae family comprises 228 genera and more than 6,500 species, including trees, shrubs, herbs and creepers (The Plant List, 2013). This family is, quantitatively, the second most representative of Brazilian Caatinga, with about 60 species only of *Croton* genus (Souza et al., 2012). This genus, the second
largest of the family, consists of about 1,200 species, of which 350 are distributed in Brazil (Silva et al., 2010). Species of Croton, the predominant genus in the Caatinga, attract interest owing to their diverse array of chemical compounds, ethnopharmacological uses, and proven biological activities. Various compounds have been isolated from many species of the genus Croton. These include mono- and sesquiterpenes, diterpenes, flavonoids, tannins, and alkaloids, suggesting that this genus can be a promising source of bioactive molecules with remarkable research potential (Randau et al. 2004).

Compounds extracted from several species to date display anti-inflammatory, antinociceptive (Falcão et al., 2005; Lima et al., 2015; Rocha et al., 2008), antioxidant (Shukla et al., 2009; Rocha et al., 2008), antiulcer (Almeida et al. 2003), antiadiabetic (Torrico et al. 2007), healing, anticancer, antimycotic, antibacterial, and antiviral activity (Pieters and de Bruyne, 1995; Melo et al., 2013; Rodrigues et al., 2012).

Croton cordifolius, popularly known as “quebra-faca” in the Brazilian Northeast, is used to treat general inflammation, pain, and gastrointestinal disturbances (Cartaxo et al., 2010; Monteiro et al., 2011). Nogueira et al. (2015) described the antinociceptive activity and chemical composition of its leaf’s essential oil.

Although the *Croton* genus is widely studied, including some species found in the caatinga, no studies characterizing the chemistry and pharmacology of *C. cordifolius* stem bark have been published. The present study analyzed the chemical composition of the extract and essential oil of the stem bark of *C. cordifolius* and evaluated its in vitro antioxidant and in vivo topical anti-inflammatory activities.

MATERIALS AND METHODS

Chemicals and drugs

Ethanol, phorbol 12-myristate 13-acetate (PMA), arachidonic acid (AA), ethyl phenylpropionate (EPP), phenol, capsaicin, Folin-Ciocalteu reagent, phosphomolibdenium, DPPH, and ABTS were purchased from Sigma (USA, St. Louis). All other reagents and substances were of analytical grade.

Plant material and extraction

Stem bark fragments from *C. cordifolius* were collected (April/2014) in the morning in the rural area of Salgueiro, Pernambuco, Brazil (8° 04' 27" S, -39° 07' 09" W, 420 m). The botanical material was authenticated by Maria Olivia de Oliveira Cano. A voucher specimen was deposited in the Herbarium of the Instituto Agronômico de Pernambuco (IPA 89,210).

For the essential oil extraction, fresh stem bark fragments were immediately submitted to hydrodistillation for 2 h in a Clevenger-type apparatus, yielding 1.56% of *C. cordifolius* essential oil (CcEO). The essential oil was subsequently dried over anhydrous sodium sulfate, protected from light and frozen under -20°C until use. Fresh plant material was also extracted with ethanol (1:10, w/v) by dynamic maceration for 3 h. After filtration, the solvent was evaporated using a rotary evaporator (RV10, IKA, Germany), yielding 6.1% of *C. cordifolius* ethanolic extract (CcEE).

Essential oil composition

Gas chromatography and mass spectrometry were carried out using a Shimadzu™ model 7A/QP 5050A equipped with a capillary non-polar DB-5 column (30 m x 0.25 mm x 0.25 μm). The oven temperature was programmed at 70°C with an increase of 4°C/min until 280°C, and maintained for 15 min. The carrier gas was helium, with a constant flow of 1.4 ml/min. The temperature of the ionization source was maintained at 280°C, the ionization energy at 70 eV, and the ionization current at 0.7 kV. Mass spectra were recorded from 30 to 450 m/z. Individual components were identified by matching their 70 eV mass spectra with those of the spectrometer data base using the Wiley L-Built and NIST libraries and by comparing their retention indices with those reported in the literature (Adams, 2001). The retention indices were compared with those of obtained by Craveiro et al. (1981) for other Euphorbiaceae species.

Phytochemical screening, total phenolic and flavonoid content

The ethanolic extract of *C. cordifolius* stem back was analyzed by thin-layer chromatography (TLC) using Si gel F254 plates (ALUGRAM® 818131, Macherey-Nagel, Germany) and different solvent systems. It was verified the presence or absence of flavonoids, phenylpropanoids, terpenoids, steroids, saponins, alkaloids, coumarins, proanthocyanidins and quinones as described in Table 1.

Total phenolic content was determined by the Folin-Ciocalteu method (Li et al., 2008). Briefly, an aliquot of 200 µL of the extracts diluted in methanol (1 mg/mL) was added to 1 mL of the 10-fold diluted Folin-Ciocalteu reagent. After 4 min, 2.5 mL of sodium carbonate solution (0.7 M) was added. The test tubes were incubated for 30 min at room temperature, protected from light, after which the absorbance was read at 765 nm. Gallic acid was used for standard curve calibration (0 – 100 mg/L). The results were obtained from the regression equation: \(y = 0.0121x + 0.032, R^2 = 0.9967 \) and expressed as milligram of gallic acid equivalent (mgGAE)/g of extract. The experiments were performed in triplicate.

The determination of flavonoids was made by the method described by Wosiacky and Salatino (1998). An aliquot of 0.5 mL of the extracts diluted in methanol (1 mg/mL) was added to 0.5 mL of 2% AlCl3 in methanol. The test tubes were incubated for 30 min at room temperature, protected from light, after which the absorbance was read at 420 nm. Quercetin was used for standard curve calibration (0 – 100 mg/L). The results were obtained from the regression equation: \(y = 0.0262x - 0.0892, R^2 = 0.9982 \) and expressed as milligram of quercetin equivalent (mgQE)/g of extract. The experiments were performed in triplicate.

Total antioxidant activity by phosphomolybdate assay (P-Mo)

Total antioxidant capacity of CcEE was determined by the **Creative Commons Attribution License 4.0 International License**
phosphomolybdate method using ascorbic acid as standard (PIETRO et al., 1999). A 0.1 mL aliquot of extract diluted to 1 mg/mL in methanol was added to 1 mL of solution containing 600 mM sulfuric acid, 28 mM sodium phosphate, and 4 mM ammonium molybdate. Test tubes were capped and incubated in a boiling water bath at 95°C for 90 min. Samples were then cooled to 25°C at room temperature and absorbance relative to a blank (1 mL of reagent solution and 0.1 mL of methanol) was measured at 695 nm. Total antioxidant activity (TAC) was expressed relative to ascorbic acid and calculated by the following formula,

\[
\%TAC = \frac{Sabs - Babs}{AAabs - Babs} \times 100
\]

Where Babs is the absorbance of the blank, Sabs is the absorbance of the sample (extracts) and AAabs is the absorbance of ascorbic acid.

1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging activity

DPPH free radical-scavenging activity of CcEE was determined using 96-well microplates as described by Brand-Williams et al. (1995). Briefly, 0.04 mL of CcEE or gallic acid diluted in methanol (31.25, 62.5, 125, 250, 500, 1000 µg/mL) and 0.25 mL of 1 mM DPPH in methanol was added to each well. Microplate was kept for 30 min at 25°C, protected from light. After this time, absorbance was measured at 517 nm. The free radical-scavenging activity of CcEE was expressed as percentage of inhibition of DPPH, calculated by the following formula,

\[
DPPH \text{ inhibition} (\%) = \frac{(Sabs - Babs)}{Babs} \times 100
\]

Where Babs is the absorbance of the blank (0.04 mL of methanol and 0.25 mL of 1 mM DPPH) and Sabs is the absorbance of the sample (CcEE or gallic acid).

2,2-azino-bis-(3 ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical cation scavenging activity

ABTS (7 mM) was oxidized by the addition of 140 Mm potassium persulphate. The solution was kept at 25°C for 16 h, in the dark. Before use, the ABTS+ solution was diluted with ethanol to an absorbance of 0.70 ± 0.02 units at 734 nm. For the determination of ABTS+ radical scavenging activity of CcEE, 0.01 mL of CcEE (31.25, 62.5, 125, 250, 500, 1000 µg/mL) diluted in methanol was added to 1.0 mL of ABTS+ solution. After 6 min, the absorbance was measured at 734 nm. ABTS radical cation scavenging activity of CcEE was expressed as percentage of inhibition of ABTS+, calculated by the following formula,

\[
ABTS \text{ inhibition} (\%) = \frac{(Sabs - Babs)}{Babs} \times 100
\]

Where Babs is the absorbance of the blank (0.01 mL of methanol and 1.0 mL of ABTS+) and Sabs is the absorbance of CcEE.

Animals

Male Swiss or BALB/c mice (20–30, n = 6) were provided by the Animal Facility of the Universidade Federal de Pernambuco. The animals were housed in a room with controlled temperature (23 ± 2°C) under a 12/12 h light/dark cycle with food and water ad libitum. Experiments were carried out according to the Guide for the Care and Use of Laboratory Animals of the US Department of Health and Human Services (NIH publication number 85-23, revised in 1985). The project received prior approval from the Animal Ethics Committee of Universidade Federal de Pernambuco (protocol number 23076.016724/2016-62).

Topical anti-inflammatory activity

Ear edema measurement

For evaluation of ear weight, animals were euthanized and samples of 6 mm diameter were taken from both ears using a biopsy punch (Richter®, Brazil). Each biopsy was weighed on a semi-micro analytical balance (AUW-D 220, Shimadzu, Japan). Ear edema (EE) was expressed as the increase in ear sample weight, using the following formula:

\[
EE (mg) = wRE - wLE
\]

Where wRE is the weight obtained from the right ear sample (inflamed ear) and wLE is the weight obtained from the left ear sample (noninflamed ear).

For all treatments, animals were anesthetized with 1% halothane. Right ears were then challenged with different phlogistic agents diluted in acetone (20 µL). CcEE and CcEO were applied topically in 20 µL acetone. Dexamethasone or indomethacin (0.1 and 0.5 mg/ear, respectively) was used topically as a positive control. Ruthenium red (3 mg/kg, s.c.) was used as a positive control for capsaicin-induced ear edema.

PMA-induced ear edema

Ear edema was induced by topical application of 20 µL of PMA (2.5 µg/ear) in acetone on both sides of the right ear. Immediately after, CcEE (0.1, 0.5, 1.0 mg/ear), CcEO (1, 3 and 10 µL/ear) or dexamethasone (0.1 mg/ear) was topically applied on both sides of the right ear, while the left ear received 20 µL of acetone. After 6 h, animals were euthanized for ear edema measurement (Carlson et al., 1985).

Histological analysis

After weighing, ear samples were fixed in buffered formalin for 24 h. Fixed tissues were then dehydrated by adding increasing concentrations of ethanol (70-100%), and processed for embedding in paraffin. The resulting blocks were sliced into 4 µm thick sections, stained with hematoxylin and eosin and observed under a light microscope (Nikon, Japan).

Investigation of the mode of action of CcEE on ear edema

The mechanisms of topical anti-inflammatory activity of CcEE on PMA-induced ear edema were evaluated using different phlogistic agents to induce ear edema: arachidonic acid (2 mg/ear), ethyl phenylpropionate 5% (20 µL/ear), phenol 10% (20 µL/ear), and capsaicin (0.25 mg/ear). Immediately, CcEE (1.0 mg/ear) or dexamethasone (0.1 mg/ear) was topically applied on both sides of the right ear, while the left ear received 20 µL of acetone. After 1 h, animals were euthanized for ear edema measurement. Animals challenged with capsaicin were euthanized after 30 min of exposure (Brattsand et al., 1982; Carlson et al., 1985; Gábor and Rázga, 1992).
Table 1. Solvent systems and spray reagents used for thin-layer chromatography analysis of *Croton cordifolius* Baill. (Euphorbiaceae) stem bark ethanolic extract.

<table>
<thead>
<tr>
<th>Secondary metabolite classes</th>
<th>Standard</th>
<th>Solvent system</th>
<th>Spray reagent</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavonoids and phenylpropanoids</td>
<td>Quercetin, rutin and chlorogenic acid</td>
<td>EtOAc-HCOOH-AcOH-H₂O (100:11:11:26 v/v)</td>
<td>Natural products-polyethylene glycol reagent</td>
<td>Wagner and Bladt (1996); Brasseur and Angenot (1986)</td>
</tr>
<tr>
<td>Triterpenes and steroids</td>
<td>β-sitosterol</td>
<td>Toluene:EtOAc (90:10 v/v)</td>
<td>Lieberman-Burchard reagent</td>
<td>Harborne (1998)</td>
</tr>
<tr>
<td>Mono and sesquiterpenes</td>
<td>Thymol</td>
<td>Toluene: EtOAc (97:3 v/v)</td>
<td>Anilsaldehyde-sulfuric acid reagent</td>
<td>Harborne (1998)</td>
</tr>
<tr>
<td>Coumarins and quinones</td>
<td>Coumarin and lapachol</td>
<td>CHCl₃-MeOH (98:2 v/v)</td>
<td>Potassium hydroxide reagent</td>
<td>Wagner and Bladt (1996)</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>Pilocarpine</td>
<td>EtOAc-HCOOH-AcOH-H₂O (100:11:11:26 v/v)</td>
<td>Dragendorf reagent</td>
<td>Wagner and Bladt (1996)</td>
</tr>
<tr>
<td>Proanthocyanidins</td>
<td>Catechin</td>
<td>EtOAc-HCOOH-AcOH-H₂O (100:11:11:26 v/v)</td>
<td>Vanillin-hydrochloric acid reagent</td>
<td>Roberts et al. (1957)</td>
</tr>
<tr>
<td>Hydrolysable tannins</td>
<td>Gallic acid</td>
<td>n-BuOH-H₂O-AcOH (40:50:10 v/v)</td>
<td>Ferric ammonium sulfate 1%</td>
<td>Sena Filho et al. (2008)</td>
</tr>
</tbody>
</table>

Statistical analysis

Data are expressed as mean ± S.E.M. and analyzed by ANOVA followed by Bonferroni post-test using GraphPad Prism 5.0 with significance * set at p < 0.05.

RESULTS

Chemical composition and antioxidant activity

Phytochemical screening of CcEE showed the presence of flavonoids (aglycones, mono and diglycosides of 3',4'-OH flavonoids), phenylpropanoids, mono- and sesquiterpenes, triterpenes and steroids, alkaloids, and coumarins. The predominant compounds were terpenes and steroids. There were no hydrolyzable tannins, quinones, saponins, proanthocyanidins, or leucoanthocyanidins. The total phenolic and flavonoid contents of CcEE were determined by spectrophotometry to be 135.8 ± 7.62 EAG/g extract and 21.24 ± 0.37 EQ/g extract. GCMS analysis of CcEO identified 97.92% of the compounds, revealing a monoterpenoid rich essential oil (91.13%), with only 6.79% of sesquiterpenoids. The major compounds identified were α-pinene (51.76%), β-pinene (19.08%), camphene (9.71%), bornol (4.52%), camphor (4.37%), and β-caryophyllene (4.31%) are listed in Table 2.

Total antioxidant activity was determined with the phosphomolybdenum method, which is based on reduction of molybdenum VI to molybdenum V, in the presence of antioxidants. This reduction results in the formation of a green complex. According to this assay, total antioxidant activity in CcEE was 26.88 ± 2.83% of the activity of the ascorbic acid control. Free radical scavenging activity by DPPH and ABTS+ assays were also measured, with EC₅₀ values > 1,000 µg/mL of CcEE for both assays.

Anti-inflammatory activity

PMA-induced ear edema

CcEE (0.1, 0.3 and 1 mg/ear) significantly inhibited PMA-induced ear edema at all tested doses as seen in Figure 1A. By contrast, CcEO (1, 3 and 10 µL/ear) showed less promising results, with significant activity only at the highest dose (Figure 1B). Histological analysis of ear samples aimed to evaluate the following parameters: congested vessels (CV); polymorphonuclear cells infiltration (PCI) and/or edema (E). Total ear and epidermis thickness was also evaluated relative to the negative control group. PMA-induced ear edema produced CV filled with white blood cells, intense PCI and edema. Dexamethasone (0.1 mg/ear) and CcEE at 0.3 and 1 mg/ear yielded similar results. CV were present and filled with red blood cells and discrete PCI and E. Ears treated with CcEE at 0.1 mg/ear and CcEO at all doses tested (1, 3 and 10 µL/ear) had CV filled with red and white blood cells and moderate PCI and E (Figure 2A-H). Based on these results, CcEE at 1.0 mg/ear was chosen for elucidation of CcEE’s mechanism of topical anti-inflammatory activity using other phlogist agents.

Investigation of the anti-inflammatory mechanism of CcEE

CcEE (1 mg/ear) and indomethacin (0.5 mg/ear) demonstrated significant reductions of 57.7 and 53.2% respectively in AA-induced ear edema relative to the negative control (Figure 3A). In EPP-induced ear edema, CcEE (1.0 mg/ear) inhibited ear edema by 42%. This was less effective than the positive control drug dexamethasone (0.1 mg/ear), which inhibited ear edema by 75.2% (Figure 3B). CcEE (1.0 mg/ear) reduced phenol-
induced ear edema by 33.9%, while dexamethasone (0.1 mg/ear) reduced this edema by 91.6% (Figure 3C). In capsaicin-induced ear edema, CcEE (1.0 mg/ear) was not able to inhibit ear edema. Ruthenium red (3 mg/kg), a standard positive control drug, when given 30 min prior to capsaicin administration, inhibited ear edema by 73.5% (results not shown).

DISCUSSION

The *Croton* genus is characterized by a large chemical diversity. Based on the existing descriptions of chemical composition of many *Croton* species, this genus can be characterized as a promising source of bioactive molecules with a remarkable potential for discovery of novel biological activities. Growing interest in studying *Croton* species has resulted in isolation and identification of more than 100 currently known chemical compounds in Brazil (Angêlico, 2011; Song et al., 2015).

Although not common in the Euphorbiaceae family, some *Croton* species should be highlighted for the production of different alkaloid classes (Salatino et al., 2007). Identification of this group of secondary metabolites by TLC in *C. cordifolius* corroborates several studies in other species of the same genus. Salatino et al. (2007) described 35 alkaloid types from 14 *Croton* species. Among the species present in Brazilian caatinga, α-carbolines alkaloids 2-ethoxycarbonyltetrahydroarman and 6-hydroxy-2-methyltetrahydroarman have been isolated from *C. moritibensis* (Araújo-Júnior et al., 2004); anabasine and the novel guaiane-type alkaloids musicapines A, B and C were isolated from roots of *C. muscicapa* (Araújo-Júnior et al., 2005). Alkaloids were also identified in *C. campestris* (Brito-Júnior et al., 2014) and *C. rhamnifolius* roots, and *C. rhamnifolioides* leaves, stem and roots (Randau et al., 2004); however, no compounds have been isolated.

Flavonoids are a class of polyphenols widely distributed in plants, including the genus *Croton*. Different studies have reported antioxidant, analgesic, antibacterial, antifungal, anti-inflammatory, antiviral, antitumor, antiallergic, and antiparasitic activities for these metabolites (Coelho et al., 2016). Among *Croton* species, it has not yet been possible to establish a standard for flavonoids. Although some compounds have already been isolated from hexanic, ethanolic and methanolic extracts of *Croton* spp., most investigations are not directed at the characterization of the flavonoid

Table 2. Chemical composition of the essential oil of *Croton cordifolius* Baill. (Euphorbiaceae) stem bark.

<table>
<thead>
<tr>
<th>Peak</th>
<th>Compound</th>
<th>Retention time (min)</th>
<th>RI<sup>a</sup></th>
<th>RI<sup>b</sup></th>
<th>Relative area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NI</td>
<td>5.092</td>
<td>-</td>
<td>-</td>
<td>0.51</td>
</tr>
<tr>
<td>2</td>
<td>α-pinene</td>
<td>5.405</td>
<td>938</td>
<td>932</td>
<td>51.76</td>
</tr>
<tr>
<td>3</td>
<td>Camphene</td>
<td>5.781</td>
<td>943</td>
<td>946</td>
<td>9.71</td>
</tr>
<tr>
<td>4</td>
<td>β-pinene</td>
<td>6.573</td>
<td>968</td>
<td>974</td>
<td>19.08</td>
</tr>
<tr>
<td>5</td>
<td>Myrcene</td>
<td>6.917</td>
<td>978</td>
<td>988</td>
<td>0.39</td>
</tr>
<tr>
<td>6</td>
<td>Cymene</td>
<td>7.992</td>
<td>1011</td>
<td>1020</td>
<td>0.29</td>
</tr>
<tr>
<td>7</td>
<td>Limonene</td>
<td>8.158</td>
<td>1022</td>
<td>1024</td>
<td>1.01</td>
</tr>
<tr>
<td>8</td>
<td>NI</td>
<td>8.242</td>
<td>-</td>
<td>-</td>
<td>0.21</td>
</tr>
<tr>
<td>9</td>
<td>NI</td>
<td>10.192</td>
<td>-</td>
<td>-</td>
<td>0.23</td>
</tr>
<tr>
<td>10</td>
<td>NI</td>
<td>10.583</td>
<td>-</td>
<td>-</td>
<td>0.58</td>
</tr>
<tr>
<td>11</td>
<td>Camphor</td>
<td>12.203</td>
<td>1121</td>
<td>1141</td>
<td>4.37</td>
</tr>
<tr>
<td>12</td>
<td>Borneol</td>
<td>13.017</td>
<td>1148</td>
<td>1165</td>
<td>4.52</td>
</tr>
<tr>
<td>13</td>
<td>NI</td>
<td>13.425</td>
<td>-</td>
<td>-</td>
<td>0.26</td>
</tr>
<tr>
<td>14</td>
<td>NI</td>
<td>13.908</td>
<td>-</td>
<td>-</td>
<td>0.28</td>
</tr>
<tr>
<td>15</td>
<td>β-caryophyllene</td>
<td>22.075</td>
<td>1434</td>
<td>1417</td>
<td>4.31</td>
</tr>
<tr>
<td>16</td>
<td>β-selinene</td>
<td>23.175</td>
<td>1479</td>
<td>1489</td>
<td>0.50</td>
</tr>
<tr>
<td>17</td>
<td>α-murolene</td>
<td>24.675</td>
<td>1480</td>
<td>1500</td>
<td>1.08</td>
</tr>
<tr>
<td>18</td>
<td>Caryophyllene oxide</td>
<td>27.267</td>
<td>1567</td>
<td>1582</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Total identified

Monoterpene hydrocarbons
Oxygenated monoterpens
Sesquiterpene hydrocarbons
Oxygenated sesquiterpenes

97.92

82.24
8.89
5.89
0.90

^aKovats retention index according to n-alkanes (C8–C26); ^bAccording to Adams (2009).
profile presented by the plant. A standardized analysis of the flavonoids present in different species of *Croton* may be an auxiliary tool in the differentiation of this genus subgroups.

In this context, the presence of flavonoids and phenylpropanoids in *C. cordifolius* stem bark is consistent with the findings of Palmeira Júnior and collaborators (2005, 2006) for *C. sellowii* leaves and stem, containing the flavonoids artemetin, crysosplenetin, casticin, penduletin, tiliroside, and the phenylpropanoid threo-7-ethoxy-8-hydroxy-dihydroanol; and *C. brasiliensis* leaves and stem, containing casticin, penduletin,
Figure 2. Histological analyses of PMA-induced ear edema samples. A. Negative control group. B. Dexamethasone (0.1 mg/ear); C., E., and G. C. cordifolius ethanolic extract (CcEE, 0.1, 0.3 and 1 mg/ear, respectively). D., F., and H. C. cordifolius essential oil (CcEO, 1, 3 and 10 µL/ear, respectively). The ears were stained with hematoxylin and eosin. The tissue sections were observed under light microscope at 400x and 100x (detail). Scale bars represent 10 µm.
Figure 3. Effects of *C. cordifolius* ethanolic extract (CcEE, 1 mg/ear) on A. arachidonic acid-, B. ethyl phenylpropionate, and C. phenol-induced ear edema in mice. Indomethacin (Indo, 0.5 mg/ear) and dexamethasone (Dexa, 0.1 mg/ear) were used as positive controls. Results are expressed as mean ± S.E.M. (n = 6) and analyzed by ANOVA with Bonferroni post test. * p <0.05, ** P <0.01, and *** p <0.001 compared to negative control group.
chrysosplenol-D and artemetin; of Morais and collaborators (1988) for C. mucronifolius aerial parts, who found polyhydroxylated flavonoids; of Barreto and collaborators (2013) for C. muscarpa leaves, stem and roots, which contains the flavonoids retusin, 3,7,4’-trimethoxy kaempferol, oumbine, pachipodol, kaempferol, casticin, 5-hydroxy-3,6,7,4’-tetramethoxyflavone and artemetin; of Coelho and collaborators (2016) for C. betulaster leaves, which isolated 5-hydroxy-7,4’-dimethoxyflavone, casticin, and penduletin and of Lopes and collaborators (2012) for C. pedicellatus leaves, who found seven flavonoids: tiliroside, 6’-O-p-coumaroyl-β-galactopyranosyl-kaempferol, 6’-O-p-coumaroyl-β-glucopyranosyl-3’-methoxy- kaempferol, kaempferol, 3’-glucopyranosyl-queretin and alpinumosiflavone, as well as 4-hydroxy-3,5-dimethoxybenzoic acid.

Although tannins are ubiquitous polyphenols in plants, only proanthocyanidins have been reported for Croton species, specifically those containing red latex such as C. urucurana, C. lechleri and C. panamensis. These metabolites were not found in Caatinga species (Salatino et al., 2007).

Terpenes and steroids are chemical constituents of interest to their anti-inflammatory, analgesic, antimicrobial, antiviral, hepatoprotective, and hormonal activities (Gupta et al., 1969; Mahato et al., 1988). Clerodane diterpenes are frequently found in the stem bark of Croton species, such as C. cajucara, C. urucurana, C. lechleri, but few were found in caatinga species, such as C. brasiliensis, from which clerodanes diterpenes crotobrasilins A and B were isolated from leaves and stem bark (Palmeira-Júnior et al., 2005). Diterpenes bearing the novel skeleton sarpcomepetala, besides labdane, trachylobe, cembranoid, and halimane skeletons are not found in species from Caatinga.

The presence of triterpenes and steroids in C. cordiifolius agrees with the findings for C. muscarpa leaves, stem, and roots, from which were isolated 6a-methoxy-cyperene, dammaradienol, squalene, acetyl aleuritolic acid and spathulenol (Barreto et al., 2013); C. regelianus leaves and stem, from which were found the bisnorlitorpeno rel-(5b,8a,10a)-8-hydroxy-13-methylpodocarpa-9(11),13-diene-3,12-dione and the guaiane sesquiterpene rel-(1R,4S,6R,7S,8aR)-decahydro-1-(hydroxymethyl)-4,9,9-trimethyl-4,7-(epoxymethano)azulene-6-ol (Torres et al., 2010); and C. selloiwii leaves and stem, from which were isolated sitosterol, stigmasterol, cycloaa-25-ene-3β,24β-diol, cycloaa-25-ene-3β,24a-diol and betulonic acid (Palmeira-Júnior et al., 2006).

Coumarins, which are rare in the Euphorbiaceae family and Croton genus, were found in C. cordiifolius in this study. This result concurs with those reported by Lima and collaborators (2010), who related the presence of a coumarin in C. adenocalyx, representing an important role in the chemotaxonomy differentiation of these species. Essential oils have been described for various species of this genus (Almeida et al., 2015; LIMA et al., 2010; LEITE et al., 2015; Melo et al., 2013; Neves and Camara, 2012; Ramos et al., 2013; Turiel et al., 2016). Nogueira et al. (2015) described the constituents of the essential oil of C. cordiifolius leaves, which is rich in mono- and sesquiterpenes and whose main constituents were the monoterpenes 1,8-cineole and α-phellandrene. By contrast, the major constituents of the essential oil of Croton cordiifolius stem bark were the monoterpenes α- and β-pinene. α-pinene was also a major compound of the essential oil of C. argyrophylloides aerial parts (Morais et al., 2006), C. conduplicatus stem bark (Almeida et al., 2015), and C. adenocalyx leaves (Lima et al., 2010). Some authors have speculated that the co-occurrence of α- and β-pinene is a characteristic of the genus Croton. Others claim that β-caryophyllene and linalool are equally frequent major constituents (Almeida et al., 2015).

In addition to differences in essential oil constitution among distinct species of the genus Croton, several authors have demonstrated distinct essential oil compositions of different tissues from the same species (Brasil et al., 2009; Lima et al., 2010; Morais et al., 2006; Neves and Camara, 2012). In general, the essential oils of Brazilian Croton species present mono and sesquiterpenes as major components, with the exception of C. zehntneri, in which the phenylpropanoids eugenol and anetol predominate (Craveiro et al., 1981).

Most studies of the chemical constitution of the essential oil of Croton species refer to the leaves or aerial parts. Among the studies that report the constitution of the stem essential oil, it can be highlighted the one realized by Neves and Camara (2012) for C. pulegioides, with α-calacorene as the major compound, and for C. heliotropiiifolius, with guaiol as the major compound; by Almeida et al. (2015) for C. conduplicatus, with α-pinene as the major compound; and by Suarez et al. (2005) for C. molambo with methyleugenol as the major compound.

The chemical composition of Croton species may be correlated with their geographical distribution. An example of this is the labdane and caurane diterpenes, which have not yet been reported for New World species; alkaloids, which were only found in American species; and the aromatic species, which are also prevalent in America (Salatino et al., 2007). Moreover, the presence of compounds found only in Brazilian caatinga species could indicate the existence of unique chemotypes within species of Croton found only in that biome (Angélico, 2011).

C. cordiifolius, C. heliotropiiifolius, and C. conduplicatus are popularly known as "quebra-faca" due to the rigidity of their stem (Randau et al., 2004). These species also present similar popular uses: C. cordiifolius is used to treat general inflammation, pain, and gastrointestinal disturbances (Nogueira et al., 2015); C. heliotropiiifolius is used as folk remedy for the treatment of wounds.
inflammation, fever, cancer, stomach pain, vomiting, bloody diarrhea and to alleviate fever (Neves and Camara, 2012; Randau et al., 2004); the decoction of *C. conduplicatus* leaves and stem bark is used in folk medicine to treat influenza, headache, indigestion, stomach problems and stomachache (Almeida et al., 2015).

In this context, the differentiation of their chemical composition and pharmacological activities, together with their botanical characterization, constitute a diagnostic tool for these species. Neves and Camara (2012) studied the chemical composition of the essential oil of *C. heliotropifolius* stem bark, observing a characteristic profile of the genus by the presence of β-caryophyllene as one of the major constituents. It differs from *C. cordiifolius* stem bark essential oil by the presence of sesquiterpenes and phenylpropanoid derivatives. Almeida et al. (2015) described for the first time the chemical constitution of the essential oil of *C. conduplicatus* stem bark, whose main compounds were α-pinene, β-pinene, camphor and (E)-caryophyllene. The chemical composition of *C. cordiifolius* stem bark essential oil is very similar, with α- and β-pinene as major constituents. The major difference is the presence of the monoterpene camphene as the third major constituent in *C. cordiifolius*, which can be converted into camphor in vivo. Randau et al. (2004) performed a phytochemical study of the extract of different parts of *C. rhamnifoliioides*. It was observed the presence of alkaloids, triterpenes and steroids, sugars, flavonoids and phenylpropano-glycosides. Therefore, the presence of coumarins in *C. cordiifolius* bark extract can be considered a useful marker in the differentiation of these species. Despite the existence of some studies that point to chemical patterns in the genus, given its variability and the small sampling of species chemically studied, definitive conclusions can not be drawn about chemical relationships among *Croton* species (Salatino et al., 2007).

Many *Croton* species studies have reported outstanding antioxidant activities, which set a precedent for the results of this study of *C. cordiifolius*. Morais and collaborators (2006) evaluated the antioxidant activities of *C. zenhtneri*, *C. nepeatefolius*, and *C. argyrrophyllioïdes* essential oils. This activity is probably due to the presence of E-anethole in *C. zenhtneri*, methyleugenol in *C. nepetaefolius*, and α-pinene, E-caryophyllene, and 1,8-cineole in *C. argyrphyllioïdes*. Angélico (2011) reported antioxidant activities in *C. blanchetianus* and *C. heliotropifolius* extracts, attributing it to the possible presence of phenolic compounds belonging to the tannin and flavonoid classes.

Chronic inflammation mediates the development of various diseases, and increased levels of free radicals have been found in many pathological conditions other than inflammation, including cancer, ischemic disorders, and dementia (Ramos et al., 2013). The search for medicinal plants with anti-inflammatory and antioxidant activities is fundamental to direct the development of pharmaceutical products designed to treat major diseases.

Mechanisms of anti-inflammatory activity can be elucidated through research with animal models in which edema is induced by different phlogistic agents with different well-understood mechanisms. To identify topical anti-inflammatory mechanisms of *C. cordiifolius*, we used five phlogistic agents with distinct mechanisms in a mouse model of topical inflammation.

Ear edema induced by PMA is primarily mediated by prostaglandin E2 and protein kinase C. This model is useful for screening topical active extracts and/or compounds, and anti-inflammatory efficacy implies the presence of prostaglandin and leukotriene biosynthesis inhibitors (Silva et al., 2005). In this model, CcEE probably inhibited edema by directly interfering with prostaglandins’ action or by inhibiting enzymes such as cyclooxygenase or phospholipase A2 (PLA2). According to Nair and collaborators (2006), the flavonoid quercetin decreased production and expression of proinflammatory cytokine TNF-α in human mononuclear cell cultures stimulated by phorbol myristate acetate (PMA). This effect was associated with inhibition of NF-κB. Other flavonoids, such as santin and ermanin, also inhibited PMA-induced ear edema in mice, being more active than the positive controlindomethacin at identical concentrations (3 mg/ear) (Martinez et al., 1997). Thus, the presence of flavonoids demonstrated in phytochemical screening and quantified by spectrophotometry could contribute to this activity.

The inflammatory process instigated by AA is mediated by production of metabolites such as prostaglandin E2 (PGE2), leukotriene C4 (LTC4), and leukotriene D4 (LTD4) (Humes et al., 1986). The ear edema induced by AA is characterized by sensitivity to inhibitors of cyclooxygenase and lipoxygenase enzymes. Therefore, AA is commonly used to validate substances capable of inhibiting the action of mediators of edema (Crummey et al., 1987; Opas et al., 1986; Humes et al., 1986). This model is not sensitive to PLA2 inhibitors such as glucocorticoids. CcEE probably inhibit edema in this model by preventing the metabolism of arachidonic acid to prostaglandins and leukotrienes or by inhibiting the action of its metabolites. In the literature, there is no evidence of topical anti-inflammatory activity in that model from species of the genus *Croton*.

Because ethyl phenylpropionate (EPP) is responsible for release of inflammatory mediators such as histamine and serotonin (Nualkaew et al., 2009), CcEE may interfere with the release of these inflammatory mediators. Phenol-induced ear edema mimics contact dermatitis processes visualized in humans (Lim et al., 2004). The intense irritation resulting from application of this phlogistic agent is a consequence of disruption of keratinocytes plasma membranes, with release of
preformed IL-1α, IL-8, TNF-α, free radicals, and inflammatory mediators such as AA downstream metabolites.

Although this process occurs independently of AA metabolites, the mentioned cytokines (IL-1α, IL-8, TNF-α) can induce production and release of AA and reactive oxygen species (Lim et al., 2004; Murray et al., 2007; Wilmer et al. 1994). In contrast to PMA, phenol activates nuclear transcription factors through protein kinase C dependent pathways to induce inflammatory cytokines. Despite using different routes, both models produce arachidonic acid metabolites and reactive oxygen species in the inflammatory response (Wilmer et al., 1994). In this context, the performance of CcEE in reducing production of inflammatory mediators and cytokines through protein kinase C dependent pathways can be highlighted.

Capsaicin, an alkaloid obtained from species of the genus Capsicum, mediates a neurogenic inflammatory response characterized by vasodilation-induced edema with increased blood flow, and plasma extravasation, in addition to sensitized nociceptors responsible for contact-induced pain sensation in skin or mucous membranes (Zegarska et al., 2006). In this process, TRPV-1 receptors are activated, resulting in the release of neuropeptides, such as substance P, which are responsible for erythema and papule formation and macrophage degranulation, followed by release of substances such as histamine and serotonin (Inoue et al., 1993).

Topical application of capsaicin promotes the release of pro-inflammatory mediators which result in an immediate vasodilation and erythema response followed by edema, which peaks within 30 minutes after administration (Gabor, 2000; Zegarska et al., 2006). CcEE did not reduce capsaicin-induced edema, suggesting that it does not act on TRPV-1 receptors, and therefore does not inhibit mast cell degranulation or release of histamine and serotonin, mediators responsible for increasing cell permeability and edema (Inoue et al., 1993).

The anti-inflammatory activity of C. cordifolius found in this study corroborates the ethnotaxonomical survey conducted by Nogueira and collaborators (2015), which showed the highest number of “quebra-faca” citations for inflammation and pain treatment.

Conclusions

The first of its kind phytochemical survey of Croton cordifolius stem bark extract and the characterization of its essential oil provide important information for directing future research aimed at isolating chemical constituents of this species, which is widely used in Northeast Brazilian folk medicine.

Our in vivo anti-inflammatory activity tests showed that C. cordifolius essential oil is not effective at the doses tested. In contrast, the extract contained anti-inflammatory compounds with different mechanisms of action because it showed significant activity in four of the five assays. Our results suggest that the extract can interfere with AA metabolism and prostaglandin biosynthesis, release of inflammatory mediators such as histamine and serotonin, and inhibition of preformed cytokine release. No inhibition of TRPV-1 receptors or mast cells degranulation was observed. Additionally, the observed antioxidant activity of C. cordifolius stem bark extract could be, in part, responsible for its anti-inflammatory effects.

Conflict of interests

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENT

Authors are grateful to Propesq/UFPE for research grants.

REFERENCES

The present study aimed to identify some metabolites products obtained from different jojoba callus tissue extracts using gas chromatography/mass spectrometry analysis (GC-MS). It is known that Jojoba, a medicinal and oil-yielding, has multi-purpose uses. In addition, it produces toxins, fatty acids, phenolic compounds and other secondary metabolites from callus identified using GC-MS. Despite the direct effect of 2,4-D on directing the explant towards callus induction, it has interaction effect with Kin and achieves hormonal balance inside the explant. There is a significant interaction effect between Kin and 2,4-D. The increased concentration of both Kin and 2,4-D raises the extent of nodal segments response towards proliferation, development, and callus induction. Our results showed that the interaction effect between Kin and 2,4-D is the best results for phytochemical active constituents formation achieved from callus cultured. Qualitative results revealed that increasing cytokinins Kin concentration leads to slightly double increase in active constituents from the explants for Triodecanoic and Methoxyacetic acids. While, the gradual increase of 2,4-D to 2.0 mg l\(^{-1}\) caused a single increase in active constituents for Triodecanoic, Methoxyacetic and Octadecanoic acid, respectively. On the other hand, Decanoic acid has no effect by adding both hormones (Kin and 2,4-D) and also Octadecanoic acid when kin is added. Also, there is a direct relation between the development of callus and reproduction of active phytochemical constituents, which increase qualitatively by increasing callus development and 2,4-D hormone concentration at 2 mg l\(^{-1}\) for 1-Hexadecanol, Nonadecatriene, Aristolene and Tricosene, respectively compared to free hormone treatment.

Key words: Active constituents, callus, fatty acids, jojoba, *Simmondsia chinensis.*

INTRODUCTION

Jojoba [*Simmondsia chinensis*, family *Simmondsiaceae*] is a shrub with an oil seed. It has male and female sexual organs, and grows in semi and desert regions. Its native country is Southwestern US. Jojoba is used for medicinal
purposes and is a folk medication for cold, obesity, wounds, sore throat warts, dysuria, parturition, and cancer (Kolodziejczyk et al., 2000; Mohasseb et al., 2009a). Jojoba belongs to order Caryophyllales, which contains simmondsin and three non-ferulated compounds in different organs of tissue cultured plants which cause reduction in food intake.

Jojoba is a crop that bears harsh environment and thrives in areas where other crops cannot be cultivated. It consumes less water and therefore can be farmed in new areas. Conventional breeding, which aims to improve tolerance to drought and salinity, takes a long time and does not succeed in producing sustainable resistant plants. These circumstances necessitate the use of genetic engineering and biotechnology, as one of the most promising new technologies to improve jojoba (Mohasseb et al., 2009a, b).

Jojoba oil has many usages depending on the site where the modification is being done. Virtually, it has no traces of glycerine, making it a unique plant of oil along with the fact that it can be modified via hydrogenation, sulfurization, halogenation and many other techniques. With its uses in industries like cosmetic, pharmaceutical, lubricant and Petrochemicals, the importance of jojoba oil in the market is high (Arya and Khan, 2016).

Jojoba seed has a fluid wax (jojoba oil) used in pharmaceutical products, cosmetics, and mechanical lubricants. Jojoba meal, a waste from jojoba seeds, is the remaining product after extracting of oil and constitutes over half of the seed. Jojoba meal composed of 25 to 30% protein is rich in dietary fiber and may be used in livestock feed fortification. The defatted meal holds sugars and 11 to 15% of natural products, constantly on structurally identified simmondsin. Jojoba is clonally propagated by nodes and the rate of propagation is very limited because the nodes are hard to roots, so that the only solution to solve this problem is through rapid mass production by tissue culture technique (Mohasseb et al., 2009b).

Jojoba plants have many woody stems that commonly grow between 0.6 and 2 meters in height, and over 3 m have been observed in the wild. In full light, it branches near the base. Plants can vary from almost prostrating, with the branches growing laterally. The wood from mature plants is hard and heavy, lemon yellow and without distinctive scent or taste. The natural life span appears to be over 100 years and may exceed 200 years (Mohasseb et al., 2009a).

This study aimed to produce more amounts of biochemically active constituents and simmondsin by increasing the cell numbers of seeds that produce biochemical active constituents in it. So, callus was produced from seeds or leaf and root by in vitro culture technique. After that, a lot of biochemically active constituents used for many purposes can be extracted and also biochemical active constituents can be produced from callus and hairy roots of jojoba. Thus, there are two sources to produce commercial amounts of biochemical active constituents.

MATERIALS AND METHODS

This study was carried out at the Department of Agricultural Biotechnology, College of Agricultural and Food Sciences, King Faisal University, Al-Hassa, Saudi Arabia.

Explant preparation and sterilization process

Plant materials were taken from semi-hardwood stems of female jojoba adult shrub provided by Mohasseb et al. (2009a). 1. Each inter node (2 cm) explant was excised from a 5-years-old shrub.
2. The cuttings were thoroughly washed by 1% savlon solution for 20 min.
3. They were rinsed twice in sterile distilled water (SDW).
4. All subsequent operations were carried out inside a laminar air-flow cabinet.
5. The clean cuttings were given a quick (30 s) rinse in 70% ethanol, followed by two washings in SDW.
6. These cuttings were then surface-sterilized in 0.15% mercuric chloride (HgCl_2) solution for 13 min and rinsed thrice with SDW.

Establishment stage and callus induction

1. The cuttings were slightly trimmed at both ends to expose the fresh.
2. Tissues were exposed with inorganic salts, supplemented with (in mg l^{-1}): 100 MyoInositol; 30000 sucrose; 7000 agar (Sigma Chem. Co.)
3. They were planted in MS culture medium (Murashige and Skoog, 1962).
4. The pH value was adjusted at 5.7±0.1 before adding agar.
5. The medium was autoclaved at 121°C for 15 min, while, the changes in the nutrient medium are as follows (Table 1).
 All the cultures were maintained in diffused light, 2000 lux and 16 h photoperiod at 25±2°C. The nodal segments of each treatment were repeatedly subcultured for three subcultures at four weeks intervals. For parameters of callus induction stage, data were recorded at the end of 3 months from initial culture. Each treatment had five replicates. Each replicate contained one jar, and each jar contained three nodal segments. The data were presented as the average per callus induction as follows: 1- (Pro) = proliferation (No.), 2- (CP) = callus induction (No.), 3- (FW) = fresh weight (g), and 4- (DW) = dry weight (g).

Phytochemical qualitative analysis by GC-MS

Preparation of callus ethanol extracts

1. Callus was dried at 40°C for 24 h in an oven using a vacuum.
2. Samples were ground into powder using a mortar under steam.

*Corresponding author. msolliman@kfau.edu.sa or solliman@yahoo.com.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
of liquid nitrogen; after that it was extracted.
3. A quantity of 3.0 g dry base of callus powder was extracted with 15 ml of ethanol (70%) at room temperature, protected from sunlight and mixed several times with a sterile glass rod.
4. Mixture was then filtered through Wattman No.1 filter paper. The extracted liquid was subjected to rotary evaporation to dryness in order to remove the ethanol (Akueshi et al., 2002).
5. After that, the extract was stored at 4°C in refrigerator for future use (Harborne, 1984).

Gas chromatography/mass spectrometry analysis (GC-MS)

The adapted samples were chosen based on their total jojoba extract and those with high total biochemical active constituents in callus tissues, considered as promising treatments. They were subjected to GC-MS analysis after filtering with 0.22 µm pore size syringe filter.

GC-MS analysis was carried out in College of Agricultural and Food Sciences, King Faisal University, Al-Hassa, Saudi Arabia, using GC-MS apparatuses, under the following conditions: a HP5MS capillary column (Agilent Technologies, Santa Clara, CA) operating at electron impact mode at 70 eV. Pure helium gas with built-in purifier was used at a constant flow rate of 1.0 ml/min employed in a split less mode with injector temperature of 250°C and ion source of 280°C. The stepped temperature program was as follows: initial temperature oven was started at 220°C and held for 5 minutes and followed by a ramp to 300°C at 5°C/min held for another 15 min. A post-run of 5 minutes at 300°C was sufficient for the next sample injection.

Biochemical active compounds identification

Mass analyzer was used in full scan mode scanning from 40 to 550 m/z and mass spectra were taken at 70 eV. For the compound identification, manual spectral matching was ascertained by using the mass spectral library of National Institute Standard and Technology (NIST) version 2.0 and with the aid of Automated Mass Spectral Deconvolution and Identification (AMDIS) software version 2.70 by deconvoluting the chromatography peak at the corresponding retention time (Cheong et al., 2016).

It should be noted that the chromatograms not only belong to saponifiable but also some bioactive compounds in the unsaponifiable fraction in the jojoba callus extracts of each treatment.

Table 1. Composition of nutrient media for in vitro callus induction from jojoba.

<table>
<thead>
<tr>
<th>Media code</th>
<th>Kin (mg l⁻¹)</th>
<th>2,4-D (mg l⁻¹)</th>
<th>0.0</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0</td>
<td>0.9100</td>
<td>0.0000</td>
<td>3.2500</td>
<td>0.9615</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>0.8900</td>
<td>0.0000</td>
<td>1.8960</td>
<td>0.9116</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.0</td>
<td>0.9200</td>
<td>0.0000</td>
<td>4.1927</td>
<td>0.6754</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>2.0</td>
<td>0.8900</td>
<td>0.0000</td>
<td>4.3200</td>
<td>1.1666</td>
<td></td>
</tr>
<tr>
<td>Means</td>
<td></td>
<td>0.9025</td>
<td>0.0000</td>
<td>3.4147</td>
<td>0.9288</td>
<td></td>
</tr>
</tbody>
</table>

1. **Pro** = proliferation; 2. **CP** = callus Induction; 3. **FW** = fresh weight; 4. **DW** = dry weight.

Table 2. Specific effect of Kin on callus induction from nodal segments jojoba.

<table>
<thead>
<tr>
<th>Media code</th>
<th>Kin (mg l⁻¹)</th>
<th>Pro¹ (No)</th>
<th>CP² (No)</th>
<th>FW³ (g)</th>
<th>DW⁴ (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0</td>
<td>0.9100</td>
<td>0.0000</td>
<td>3.2500</td>
<td>0.9615</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>0.8900</td>
<td>0.0000</td>
<td>1.8960</td>
<td>0.9116</td>
</tr>
<tr>
<td>C</td>
<td>1.0</td>
<td>0.9200</td>
<td>0.0000</td>
<td>4.1927</td>
<td>0.6754</td>
</tr>
<tr>
<td>D</td>
<td>2.0</td>
<td>0.8900</td>
<td>0.0000</td>
<td>4.3200</td>
<td>1.1666</td>
</tr>
<tr>
<td>Means</td>
<td></td>
<td>0.9025</td>
<td>0.0000</td>
<td>3.4147</td>
<td>0.9288</td>
</tr>
</tbody>
</table>

¹Symbol of media used in the form of letters A, B, C, ... P. *(media code).*

Statistical analysis

Data were statistically analyzed by using a randomized complete block design (RCBD) (Snedecor and Cochran, 1990). Mean separations were done by using a MSTAT-C computer program v.4 (Duncan, 1955).

RESULTS AND DISCUSSION

The interaction effect of hormones and their concentrations on callus induction

Table 2 shows the significant effect of Kin on the extent of response of jojoba nodal segment to in vitro callus formation. These data show that the more Kin was used the more the explant responded to callus formation. Increased use of Kin concentration raises the extent of explants’ response towards proliferation and development and the best results were achieved at the concentration of 2.00 mg l⁻¹. It can be noted that nodal segments
cultured on hormone free medium (control) showed slight response almost as weak as that achieved by those cultured on 0.5 mg l\(^{-1}\) Kin medium. Thus, it can be concluded that Kin has indirect effect on callus formation. While, the interaction effect with 2,4-D auxin shows that it has indirect effect on the development and the proliferation of the explant for callus formation and production. These results are in agreement with those reported by Hamama et al. (2001) and Mohasseeb et al. (2009b).

Results in Table 3 show that 2,4-D auxin has a clear effective role in the proliferation and development of the explant for callus induction, as it can be noted that 2,4-D containing media were better than auxin free control medium (A) for callus induction from the explant. It can be noted also, that increasing 2,4-D auxin concentration in the nutrient medium revises the extent of explant response towards proliferation and development for callus formation and production as the best results were achieved at the concentration of 2.00 mg l\(^{-1}\) 2,4-D. This was confirmed by Gaber et al. (2007).

Despite the direct effect of 2,4-D on directing the explant towards callus induction, its interaction effect with Kin (Table 4) shows the importance of adding cytokinins into the medium to achieve hormonal balance inside the explant. Table 4 shows that there is a significant interaction effect between Kin and 2,4-D, as the increased concentration of both Kin and 2,4-D raises the extent of nodal segments response towards proliferation, development, and callus induction. The data show that the best result for callus formation was achieved from the nutrient medium that contains the highest concentration of both 2,4-D (2.00 mg l\(^{-1}\)) and Kin (2.00 mg l\(^{-1}\)). The present results agreed with that of Abu (2000).

From the above, it can be concluded that hormonal balance between auxins and cytokinins supports the cultured explant for better development and growth than being cultured alone in one of them (Al-Ani et al., 2008; Mohasseeb et al., 2009b).

Using balanced concentrations of auxins and cytokinins leads to achieving the best results and the most optimum growth rate of the explant, especially if the main goal of the research is to produce natural secondary products from the resultant callus. The interaction effect between Kin and 2,4-D, is the best results for phytochemical active constituents formation achieved from callus cultured on

Table 3. Specific effect of 2,4-D on callus induction from nodal segments jojoba.

<table>
<thead>
<tr>
<th>Media code</th>
<th>2,4-D (mg l(^{-1}))</th>
<th>Nodal segments</th>
<th>Pro(^1) (No)</th>
<th>CP(^2) (No)</th>
<th>FW(^3) (g)</th>
<th>DW(^4) (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0</td>
<td>0.9100(^a)</td>
<td>0.0000(^d)</td>
<td>3.2500(^c)</td>
<td>0.9615(^c)</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.5</td>
<td>0.9300(^a)</td>
<td>0.0000(^d)</td>
<td>2.7013(^d)</td>
<td>1.1212(^b)</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1.0</td>
<td>0.8900(^a)</td>
<td>1.0000(^b)</td>
<td>4.2760(^b)</td>
<td>2.0017(^a)</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>2.0</td>
<td>1.0000(^a)</td>
<td>3.0000(^a)</td>
<td>5.2980(^a)</td>
<td>2.1492(^a)</td>
<td></td>
</tr>
<tr>
<td>Means</td>
<td></td>
<td>0.9325</td>
<td>1.0000</td>
<td>3.8813</td>
<td>1.5584</td>
<td></td>
</tr>
</tbody>
</table>

1- Pro = Proliferation; 2- CP = callus induction; 3- FW = fresh weight; 4- DW = dry weight.

Table 4. The interaction effect of 2,4-D, Kin and their concentrations on callus induction from nodal segments jojoba.

<table>
<thead>
<tr>
<th>Media code</th>
<th>Treatments (mg l(^{-1}))</th>
<th>Nodal segments</th>
<th>Pro(^1) (No)</th>
<th>CP(^2) (No)</th>
<th>FW(^3) (g)</th>
<th>DW(^4) (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9100(^a)</td>
<td>0.0000(^d)</td>
<td>3.2500(^c)</td>
<td>0.9615(^c)</td>
</tr>
<tr>
<td>F</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6700(^b)</td>
<td>0.6700(^c)</td>
<td>1.9860(^c)</td>
<td>0.9116(^c)</td>
</tr>
<tr>
<td>G</td>
<td>0.5</td>
<td>1.0</td>
<td>0.6700(^b)</td>
<td>2.0000(^b)</td>
<td>1.3580(^d)</td>
<td>0.7203(^d)</td>
</tr>
<tr>
<td>H</td>
<td>2.0</td>
<td>1.0</td>
<td>0.9300(^a)</td>
<td>2.0000(^b)</td>
<td>1.9033(^d)</td>
<td>1.0350(^b)</td>
</tr>
<tr>
<td>J</td>
<td>0.5</td>
<td>0.5</td>
<td>0.7600(^b)</td>
<td>1.0000(^c)</td>
<td>3.1627(^c)</td>
<td>1.2117(^b)</td>
</tr>
<tr>
<td>K</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9000(^a)</td>
<td>1.0000(^c)</td>
<td>2.9073(^d)</td>
<td>1.2025(^b)</td>
</tr>
<tr>
<td>L</td>
<td>2.0</td>
<td>2.0</td>
<td>0.6700(^b)</td>
<td>2.0000(^b)</td>
<td>1.8320(^d)</td>
<td>0.9095(^c)</td>
</tr>
<tr>
<td>N</td>
<td>0.5</td>
<td>0.5</td>
<td>0.9200(^d)</td>
<td>2.0000(^b)</td>
<td>3.3067(^d)</td>
<td>0.9677(^c)</td>
</tr>
<tr>
<td>O</td>
<td>2.0</td>
<td>1.0</td>
<td>0.9000(^a)</td>
<td>2.0000(^b)</td>
<td>2.1953(^d)</td>
<td>1.0959(^b)</td>
</tr>
<tr>
<td>P</td>
<td>2.0</td>
<td>2.0</td>
<td>1.0000(^a)</td>
<td>3.0000(^a)</td>
<td>3.8573(^d)</td>
<td>2.1213(^a)</td>
</tr>
<tr>
<td>Means</td>
<td></td>
<td></td>
<td>0.8330</td>
<td>1.5670</td>
<td>2.5669</td>
<td>1.1137</td>
</tr>
</tbody>
</table>

1- Pro = Proliferation; 2- CP = callus induction; 3- FW = fresh weight; 4- DW = dry weight.
medium (P). The balanced concentration of Kin and 2,4-D used for producing these natural products was 2.00 mg l⁻¹, as it produced triple the quantity produced from the callus cultured on control medium (A).

Phytochemical qualitative analysis by GC-MS

Induction of biochemical active constituents from jojoba callus

Data illustrated in Table 5a and b showed that there are two major functional divisions produced by induction of jojoba callus from different doses of plant growth regulator (PGR) [Kin and 2,4-D]. This can be called phytochemical active constituent.

Data presented in Table 5a revealed that, there is a direct relation between the development of callus and re-induction of phytochemical active constituents, which increase qualitatively by increasing callus development and 2,4-D hormone concentration at 2 mg l⁻¹ for 1-hexadecanol, nonadecatriene, aristolene and tricosene, respectively as compared to free hormone treatment (Abu, 2000).

In addition, there is fluctuation in qualitative measurements in Kin treatment; it decreased under initial limit and then increased with increased concentration of Kin hormone in nonadecatriene and aristolene. There is a remarkable decrease in qualitative measurements of 7-hexadecenal and tricosene as compared to free hormone treatment (Agoramoorthy et al., 2007).

Both Kin and 2,4-D have the same significant effect on induced active constituents as they gave better results than those cultured on hormone free (control) medium (Table 6). It was noticed that increased Kin and 2,4-D concentration leads to increased active constituents induction from the explants at 2.00 mg l⁻¹, especially for 1-hexadecanol, nonadecatriene, aristolene and 7-hexadecal. Also, the same trend of increasing value was observed in 1-hexadecanol constituent by increasing both hormones gradually from 0.5 mg l⁻¹ (2,4-D) and 1.0 mg l⁻¹ (Kin) up to 2.0 mg l⁻¹. On the other hand, the fraction of tricosane was not affected by increasing the concentration of both hormones. This was confirmed by Cheong et al. (2016) and Arya and Khan (2016).

From results in Table 5a, it can be concluded that there is a direct positive relationship between growth and development of callus and the resultant active constituents enhanced by PGR stress. Therefore, we noticed that these major active constituents are divided into four fractions: 1. Triodecanoic acid, which has the following biological activity: it prevents the effect of bacteria and fungi fat, and has a role in getting rid of harmful pollutants, tolerant to salinity and so is grown on the banks of canals, used to get rid of contaminants (Agoramoorthy et al., 2007), used for the analysis of fat, and stimulates the working of lipase enzyme, which analyzes the cell walls of microbes (Enig, 2004); 2. Methoxyacetic acid with the following acid: it is used against harmful animals like mice (toxic baits), that inhibit fertilization processes and thus prevent the breeding and spread of these dangerous animals (Shannon et al., 1983); 3. Decanoic acid which is used in the manufacture of insect repellents; 4. Octadecanoic acid used for the treatment of bulges (Rampage stomach), aids digestion
Table 5a. Qualitative phytochemical analysis for active constituents from Jojoba (*Simmondsia chinensis* (Link) Schneider) callus under the specific effect of Kin and 2,4-D.

<table>
<thead>
<tr>
<th>Active constituents</th>
<th>Hormone (mg l⁻¹)</th>
<th>Media code</th>
<th>Properties of active constituents</th>
<th>Reference no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Hexadecanol</td>
<td>Kin ++ ++ ++ ++</td>
<td>0.0</td>
<td>- Composite medial enters in the synthesis of other compounds.</td>
<td>Turgumbayeva et al., 2015</td>
</tr>
<tr>
<td></td>
<td>Kin ++ ++ ++ ++</td>
<td>0.5</td>
<td>- Enters the Flavors and smell like simmondsin Composite.</td>
<td>Scrivner et al., 1984</td>
</tr>
<tr>
<td></td>
<td>Kin ++ ++ ++ ++</td>
<td>1.0</td>
<td>- Composite medial enters in the synthesis of other compounds.</td>
<td>Shimomura et al., 1974</td>
</tr>
<tr>
<td></td>
<td>Kin ++ ++ ++ ++</td>
<td>2.0</td>
<td>- Enters the Flavors and smell like simmondsin Composite.</td>
<td></td>
</tr>
<tr>
<td>Nonadecatriene</td>
<td>Kin ++ ++ ++ ++</td>
<td>0.0</td>
<td>- Pheromone attracts male insects (Dynamic combat).</td>
<td>Nilsson, 2009</td>
</tr>
<tr>
<td></td>
<td>Kin ++ ++ ++ ++</td>
<td>0.5</td>
<td>- Pheromone attracts male insects (Dynamic combat).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kin ++ ++ ++ ++</td>
<td>1.0</td>
<td>- Has a smell attractant for predators, where the sheep so they are attractive to the wolves and predators.</td>
<td>Scrivner et al., 1984</td>
</tr>
<tr>
<td></td>
<td>Kin ++ ++ ++ ++</td>
<td>2.0</td>
<td>- Antibiotic bacteria Bacillus, and is used for congestion-Throat (Zour).</td>
<td>Tian-Shung et al., 2004</td>
</tr>
<tr>
<td></td>
<td>Kin ++ ++ ++ ++</td>
<td>3.0</td>
<td>- Anti-inflammatory, and the cradle of the nerves, and pain reliever.</td>
<td>Shimomura et al., 1974</td>
</tr>
<tr>
<td></td>
<td>Kin ++ ++ ++ ++</td>
<td>4.0</td>
<td>- Luminous bacteria.</td>
<td></td>
</tr>
<tr>
<td>Aristolene</td>
<td>Kin +++ + + +</td>
<td>0.0</td>
<td>- The treatment of patients with diabetes, where increases the secretion of insulin in the body (Nutritional supplement).</td>
<td>Turgumbayeva et al., 2015</td>
</tr>
<tr>
<td></td>
<td>Kin +++ + + +</td>
<td>0.5</td>
<td>- The treatment of patients with diabetes, where increases the secretion of insulin in the body (Nutritional supplement).</td>
<td>Scrivner et al., 1984</td>
</tr>
<tr>
<td></td>
<td>Kin +++ + + +</td>
<td>1.0</td>
<td>- There in the liver of sheep and attractive to the wolves, so it can be used in hunting wild animals.</td>
<td>Shimomura et al., 1974</td>
</tr>
<tr>
<td></td>
<td>Kin +++ + + +</td>
<td>2.0</td>
<td>- Luminous Bacteria "Aldehydeless" Dark Mutant.</td>
<td>Ananthakrishnan et al., 1991</td>
</tr>
<tr>
<td>7-Hexadecenal</td>
<td>Kin +++ + + +</td>
<td>0.0</td>
<td>- The treatment of patients with diabetes, where increases the secretion of insulin in the body (Nutritional supplement).</td>
<td>Turgumbayeva et al., 2015</td>
</tr>
<tr>
<td></td>
<td>Kin +++ + + +</td>
<td>0.5</td>
<td>- The treatment of patients with diabetes, where increases the secretion of insulin in the body (Nutritional supplement).</td>
<td>Scrivner et al., 1984</td>
</tr>
<tr>
<td></td>
<td>Kin +++ + + +</td>
<td>1.0</td>
<td>- There in the liver of sheep and attractive to the wolves, so it can be used in hunting wild animals.</td>
<td>Shimomura et al., 1974</td>
</tr>
<tr>
<td></td>
<td>Kin +++ + + +</td>
<td>2.0</td>
<td>- Luminous Bacteria "Aldehydeless" Dark Mutant.</td>
<td>Ananthakrishnan et al., 1991</td>
</tr>
<tr>
<td>Tricosene</td>
<td>Kin +++ + + +</td>
<td>0.0</td>
<td>- Kairomone Effect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kin +++ + + +</td>
<td>0.5</td>
<td>- Kairomone Effect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kin +++ + + +</td>
<td>1.0</td>
<td>- Kairomone Effect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kin +++ + + +</td>
<td>2.0</td>
<td>- Kairomone Effect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kin +++ + + +</td>
<td>3.0</td>
<td>- Kairomone Effect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kin +++ + + +</td>
<td>4.0</td>
<td>- Kairomone Effect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kin +++ + + +</td>
<td>5.0</td>
<td>- Kairomone Effect.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kin +++ + + +</td>
<td>6.0</td>
<td>- Kairomone Effect.</td>
<td></td>
</tr>
</tbody>
</table>

- (×) = One portion, (++) = two portion, (++++) = six portion of constituents.
Table 5b. Qualitative phytochemical analysis for active constituents from Jojoba (S. chinensis (Link) Schneider) callus under the specific effect of Kin and 2,4-D.

<table>
<thead>
<tr>
<th>Active constituents</th>
<th>Hormone (mg l(^{-1}))</th>
<th>Media code</th>
<th>Chemical structure</th>
<th>Properties of active constituents</th>
<th>Biological activities</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.0 0.5 1.0 2.0</td>
<td>Chemical structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triodecanoic acid</td>
<td>Kin ++ ++ ++ +++</td>
<td>2,4-D ++ ++ ++ +++</td>
<td>C({13})H({26})O(_2)</td>
<td>Saturated with him the perverse effect of bacteria and fungi fat.</td>
<td>- Saturated with him the perverse effect of bacteria and fungi fat.</td>
<td>Agoramoorthy et al., 2007</td>
</tr>
<tr>
<td>Methoxyacetic acid</td>
<td>Kin ++ ++ ++ +++</td>
<td>2,4-D ++ ++ ++ +++</td>
<td>C({2})H({4})O(_3)</td>
<td>Uses anti vital for harmful animals like mice (toxic baits), where he works on the inhibition of fertilization processes and thus prevent the breeding and spread of these dangerous animals.</td>
<td>- Uses anti vital for harmful animals like mice (toxic baits), where he works on the inhibition of fertilization processes and thus prevent the breeding and spread of these dangerous animals.</td>
<td>Shannon et al., 1983</td>
</tr>
<tr>
<td>Decanoic acid</td>
<td>Kin ++ + + ++</td>
<td>2,4-D ++ ++ ++ ++</td>
<td>C({10})H({20})O(_2)</td>
<td>Used in the manufacture of materials insect repellents.</td>
<td>- Used in the manufacture of materials insect repellents.</td>
<td></td>
</tr>
<tr>
<td>Octadecanoic acid</td>
<td>Kin ++ ++ ++ ++</td>
<td>2,4-D ++ ++ ++ +++</td>
<td>C({10})H({20})O(_2)</td>
<td>Enters in the treatment of bulges (Rampage stomach).</td>
<td>- Enters in the treatment of bulges (Rampage stomach).</td>
<td>Tvrzicka et al., 2011</td>
</tr>
</tbody>
</table>

- (+) = One portion, (++) = two portion, (++++) = six portion of constituents.

and prevents fermentation (Thrombosis), aids clots, does not lead to high cholesterol, and gets rid of (LDL) low molecular weight lipids that cause atherosclerosis (Tvrzicka et al., 2011).

Active constituents from jojoba (**Simmondsia chinensis** [Link] Schneider)

The physical properties of jojoba oil have high stability and low volatility. Its composition is less affected by temperatures up to 300°C. Jojoba oil contains straight-chained C20 and C22 fatty acids and alcohols and two unsaturated bonds, which make the oil susceptible to many different types of chemical manipulations. Fatty Acids present in jojoba oil according to Busson-Breyssse et al. (1994), is seen in this site https://en.wikipedia.org/wiki/Jojoba_oil. The fatty acids are Lignoceric acid (C24:0), and Nervonic acid (C24:1). The oil can be used as an antifoam agent in antibiotics production and as a treatment for skin disorders. Other proposed uses include candles, plasticizers, detergents, fire retardants, transformer oil, and for the leather industry (Undersander et al., 1990).

Biogenetically, phenolic compounds proceed from two metabolic pathways: the shikimic acid pathway where, mainly, phenylpropanoids are formed and the acetic acid pathway, in which the main products are the simple phenol (Sánchez-Moreno, 2002). Most plants phenolic compounds are synthesized through the phenylpropanoid pathway (Hollman, 2001). The combination of
both pathways leads to the formation of flavonoids, the highest group of phenolic compounds in nature (Sánchez-Moreno, 2002). Additionally, through the biosynthetic pathways to the flavonoids synthesis, among the not well-elucidated condensation and polymerization phases, the condensed tannins or non-hydrolysable tannins and glycosides are formed. Hydrolysable tannins are derivatives of gallic acid or hexahydroxydiphenic acid (Stafford, 1983).

The result of the present study further revealed that jojoba simmondsin content increased quantitatively with the increase in callus from main to the fourth weeks of cultivation. The percentage of browning and necrosis is also in conformity with increase in fatty acids content in old culture. The increase in simmondsin content is normally associated with increase in the enzymes that regulate the synthesis of fatty acids compound, while the intensity of browning is related with the hyperactivity of oxidative enzymes (Cochrane, 1994). This compound has also shown a very strong antibacterial activity against bacteria and was detected only in jojoba oil in the present study. The GC-MS analysis showed the presence of forty-eight compounds in the leaves of B. Cylindrica by comparing their retention times and by interpretation of their mass spectra. The compounds identified and their retention time, molecular formula, and concentration (peak area %) are presented in Table 5a and b.

It should be noted that the obtained chromatograms represent not only the fatty acids and oil but also all the compounds in the extracts of each treatment by gas chromatography-mass spectroscopy (GC-MS) analysis (Table 5a). In this study, various secondary metabolites were detected within jojoba callus. We have described the biological activity of certain metabolites and compared the callus based on the effect of different growth regulators on produced metabolites. Many of the important compounds were produced by jojoba callus. Some of them were not detected in any of the other species, for instance 3-Triodecanoic acid. This compound is a derivative of jojoba oil octane, which has a wide variety of biological activities and has a substantial importance as a structural fragment of a synthetic pharmaceutical compound (Table 5b).

Eventually, it can be concluded that there is a direct proportion between callus growth and active constituents' induction in general as growth and development of cells and tissues contribute greatly to production, of the active constituents from the explant. In addition, auxins play more role than that of cytokinins for callus induction and subsequent active constituents production from the explants.

Conclusion

Some secondary metabolites are involved in the complex interactions between hormones added in tissue culture media and their growth conditions. Thus, analytical methods for the identification of

<table>
<thead>
<tr>
<th>Media code</th>
<th>Treatments (mg l⁻¹)</th>
<th>Phytochemical active constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,4-D</td>
<td>Kin</td>
</tr>
<tr>
<td>A</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>F</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>H</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>J</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>L</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>O</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>P</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

- (++) = one portion, (++) = two portion, (++++) = six portion of constituents.
criteria like mass-spectral factor, the application of this method shows a wide variety of major metabolites in jojoba callus from different explants. According to the trait of the compounds described in this study, we suggest the usage of complementary methods for purification of jojoba callus compounds, due to their application in agriculture as biological control agents of plant pathogens, or in medicine as sources of antimicrobial substances.

Conflict of interests

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors thank Deanship of Scientific Research at King Faisal University, Saudi Arabia, for funding and supporting this research under Grant No.140269.

REFERENCES

Eng M (2004). The Importance of Saturated Fats for Biological Functions. This article appeared in Wise Traditions in Food, Farming and the Healing Arts, the quarterly magazine of the Weston A. Price Foundation. Available at: http://www.westonaprice.org/know-your-fats/the-importance-of-saturated-fats-for-biological-functions/

Journal of Medicinal Plant Research

Related Journals Published by Academic Journals

- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- International Journal of Nursing and Midwifery
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Toxicology and Environmental Health Sciences