ABOUT JTEHS

The Journal of Toxicology and Environmental Health Sciences (JTEHS) is published monthly (one volume per year) by Academic Journals.

The Journal of Toxicology and Environmental Health Sciences (JTEHS) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as toxic genomics, enzyme inhibition, drug overdose, Children’s Environmental Exposure Research Study etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JTEHS are peer-reviewed.

Contact Us

Editorial Office: jtehs@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JTEHS
Submit manuscript online http://ms.academicjournals.me/
Editors

Dr. Hazem Mohammed Ebraheem Shaheen
Department of Pharmacology, Faculty of Veterinary Medicine, Damanhur University, Behera – Dalangat – Elbostan, Egypt

Dr. Jianbo Xiao
College of Life & Environment Science, Shanghai Normal University 100 Guilin Rd, Shanghai 200234, PR China

Dr. Adriana Maria Neghina
Victor Babes University of Medicine and Pharmacy Biochemistry Department
2 Eftimie Murgu Square
RO - 300041, Timisoara
Romania

Dr. Rouabhi Rachid
Biology Department
University of Tebessa 12000. Algeria.

Prof. YongXun Pang
Endemic center, Harbin Medical University 157 BaoJian Road, NanGang District, Harbin, P. R. China

Dr. M.Mahadeva Swamy
Mysore – 570 006, Karnataka, India

Dr. Shashank Shah
"40/29 Bhonde Colony, 14 Shwe Off Karve Road, Erandwane, Pune, Maharashtra, India

Dr. Necati Celik
Karadeniz Technical University, Dept. of Phys. 61080 Trabzon, Turkey

Prof. Yangfeng Wu
"Suite B1302, No 6, Zhichunlu Rd., Haidian District, Beijing, 100088, China

Dr. Ashim Kumar Biswas
Department of Livestock Products Technology, COVS, Ludhiana- 141004 (Punjab) India

Dr. Ilia Yarmoshenko
Institute of Industrial Ecology of Ural Branch of Russian Academy of Sciences 620219 S. Kovalevskoy Str., 20, Ekaterinburg, Russia

Dr. Şifa Türkoğlu
Cumhuriyet University, Faculty of Art and Science, Department of Biology, Sivas, Turkey

Dr. Juan Antonio Riesco Miranda
Pneumology Department. San Pedro Alcantara Hospital Cáceres, Spain

Dr. Norazmir Md Nor
Department of Nutrition & Dietetics Faculty of Health Sciences MARA University of Technology Puncak Alam Campus42300 Puncak Alam Selangor, Malaysia

Dr. Helal Ragab Moussa
Bahmey, Al-bagour, Menoufia, Egypt

Prof. Dr. Mamdouh Moawad Ali
33 El-Tahrir Street, Dokki 12622, Cairo, Egypt

Reza Hosseinzadeh
Shahid Beheshty Ave., Urmia University, Jahad-E-Daneshgahi, P. O. Box No. 165, Urmia, Iran

Moustafa Hossein El-Naggar
Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, KSA

Hasan TÜRKEZ
Division of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
Modification of biochemical and haematological parameters during 90-days subchronic toxicity assessment of *Carissa edulis* in Wistar rats

Osseni Razack, Adanle Etienne, Adjagba Marius, Bonaventure Awede, Hountohotégbè Tatiana, Bigot André, Raphaël Darboux and Anatole Lalèyè
Full Length Research Paper

Modification of biochemical and haematological parameters during 90-days subchronic toxicity assessment of *Carissa edulis* in Wistar rats

Osseni Razack ¹,²*, Adanle Etienne¹, Adjagba Marius², Bonaventure Awede¹, Hountohotègbè Tatiana⁴, Bigot André³, Raphaël Darboux² and Anatole Lalèyè²

Laboratory of Physiology/ Laboratory of Human Biology/ Laboratory of Immunology01BP: 188 Cotonou, Benin.

Received 5 January, 2017; Accepted 26 January, 2017

A 90-days subchronic toxicity assay was evaluated on the aqueous extract of *Carissa edulis* leaves. Wistar rats were fed daily with oral doses of 125, 31.25 and 7.87 mg/kg of *C. edulis* leaves extracts. Toxic effects were assessed using physiological observation, body weight, relative organ weights, feed consumption, biochemical, haematological and histopathological parameters. Many changes of biological values were observed among treated rats versus controls. Although, alterations in biochemical parameters including aspartate amino transferase were observed, in the middle of treatment (day 45), the values were physiologically normalized at the end of the study. Changes were observed also among renal function parameters including increased levels of creatinine, urea and ions disorders. These results were related by the histopathological examinations. The haematological analysis showed an increase in erythrocytes count, haemoglobin, haematocrit (polyerythrocythemia) associated with an increase of MGV level (macrocytosis). These observations suggest that the long-term uses of *Carissa edulis* could alter some functions of the organism, especially the hepatic, renal and haematopoietic functions. Further specific toxicity studies must be investigated on the plant.

Key words: *Carissa edulis*, polyerthrocythemia, subchronic toxicity, Wistar rats.

INTRODUCTION

About 85% of the populations of developing countries continue using traditional resources in health care (Cunningham, 1993; Sheng-Ji, 2001). The main goal of ethnopharmacology is to identify novel compounds derived from plants and animals for use in indigenous medical systems. This knowledge can be used in the development of new pharmaceuticals. Most of the literature in ethnopharmacology describes medicinal plants used by people who have lived in the same. Ethnopharmacologists seek ways to improve

*Corresponding author. E-mail: abdourazackosseni@ymail.com. Tel: +229 96 51 00 75.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
the traditional medicine systems of the people whom they study by testing indigenous medicines for efficacy and toxicity (Farnsworth, 1988). Through this kind of work, they have contributed to the discovery of many important plant-derived drugs. Carissa edulis (CE) is a medicinal plant widely used for the treatment of many diseases. C. edulis parts are used in ethnomedicine for a wide variety of illnesses, such as epilepsy, headaches, chest complaints, gonorrea, syphilis, rheumatism, rabies and often used as a diuretic (Ya’u et al., 2008; Nedi et al., 2004). Other folkloric uses of C. edulis include fever, sickle cell anemia and hernia (Ibrahim et al., 2007). The plant is distributed in tropical Africa (Botswana, Cameroon and Benin) and Asia (Cambodge, Japan and Myanmar).

Despite all these pharmacological studies based on traditional uses of the plant, few toxicological data were available on the leaves of the plant. Preliminaries toxicity investigations were carried out on the plant (Hajara et al., 2015; Ngulde et al., 2013). This first survey aims to provide the 90-days subchronic toxicity profile of C. edulis in Wistar rat.

MATERIALS AND METHODS

Preparation of extract

Fresh leaves of C. edulis (CE) were harvested at Abomey-Calavi a city close to Cotonou (South of Benin). A voucher specimen was authenticated at the National Herbal Center of Benin (No. AA6482/HNB). The leaves were cleaned and dried at the laboratory temperature between 16-18°C during three weeks. The dried leaves were pulverized and the powder was stored at room temperature until use. From the dried powder of C. edulis, 150 g were measured and extracted at 80°C with 500 ml of distilled water for 30 min. The decoction was filtered and then poured into an evaporating dish (RE-300) to evaporate the water over a water-bath at a temperature of 80°C. After evaporation of the filtered extract, a brown dried extract was obtained and stored in refrigerator at 4°C.

Animals and design of 90 days subchronic oral toxicity test

Wistar albino rats weighing 180 ± 20 g were used. They were maintained under standard environmental conditions (22 to 25°C, 12 h dark/light cycle, frequent air change) and had free access to tap water and food. They were separated by gender and housed five per cage. The subchronic toxicity test was carried out based on OECD 408 directive adopted in 1998 (OECD, 1998) with little modifications. Rats were preliminarily acclimatized during five days in the laboratory. The test consists of a repeated administration of the leaves aqueous extract of C. edulis to three groups of 10 rats (5 males and 5 females). The treatment is based on a daily oral gavage of 125 mg/kg 31.25 and 7.87 mg/kg, respectively during 90 days. The control lot (5 males and 5 females) received distilled water. Individually, animals were clinically monitored quietly before the first exposure. Observations were focused on changes in the skin and fur, eyes, mucus, respiratory system, central nervous systems as well as somatomotor activity and behavioural patterns. From the 60th day of exposure, rats’ observation was more particularly focused on their sensorial and auditive stimuli reactions. Body weight, as well as food consumption, was recorded every week. At the 44th day, rats were starved overnight (12 h) but with free access to tap water; retro-orbital blood and urine samples were collected on the 45th day for biological analysis. At the end, they were starved again overnight (12 h) but with free access to tap water. Then, they were anaesthetized with thiopental by intraperitoneal injection and blood samples were collected into tubes with or without EDTA for biochemical and haematological determinations. Rats were euthanized by a lethal dose of thiopental then liver and kidney of three rats per group were removed for histological examinations. Urine samples were analysed for glucosuria, proteinuria, ketonuria and haematuria using urinary reactive strips. Biochemical parameters including serum concentrations of glucose, total cholesterol, urea, creatinine, total proteins, potassium, chloride, sodium, alanine aminotransferase (ALAT) and aspartate aminotransferase (ASAT) were performed using an automatic analyzer (MTN-658F) with specific kits. Haematological analyses were performed on blood using an automated haematology analyzer (Sysmex K x 21). These parameters included erythrocyte haematocrit (HCT), haemoglobin (Hb), mean corpuscular haemoglobin concentration (MCHC), leukocytes, mean corpuscular volume differential (MCV), mean corpuscular haemoglobin (MCH) and platelet count (PLT).

Statistical analysis

The results shown are expressed as means ± standard error of mean (S.E.M.). Body weights and food consumption values were compared by Student’s t test while biological parameters data were analyzed by one-way ANOVA followed by Dunnett post hoc with Graph Pad Prism Version 6. Results were considered significant for a p-value less than 5% (p < 0.05).

RESULTS

Aqueous extraction was carried out from 150 g of powder of the leaves of C. edulis. The extraction yield was 16.55%.

Animal general behavior, food consumption body and relative organ weight

At the end of this study, no death was observed due to the leaves aqueous extract of C. edulis. No significant clinically relevant changes were observed in general behavior. The only effect on treated animals was self-scratching just after gavage. The body weights have progressively increased during the treatment in the different rats groups particularly in the control group (Figure 1). As shown in Figure 2, administration of C. edulis aqueous extract did not significantly affect food consumption. However, food intake increased during the treatment period in all groups. But no significant differences were observed between treated and control group throughout the test neither with the body weights nor with food consumption. Otherwise, administration of Carissa edulis extract decreased significantly organ relative weight when compared to control groups (Table 1).
Figure 1. Evolution of rats’ body weight during the test.

Biochemical parameters

On day 45, significant differences were observed in the biochemical parameters. Indeed, urea, creatinine, transaminases, cholesterol, potassium and chloride values were increased while glucose level decreased dose dependent manner (Table 2). Only the transaminases (ASAT) values were worrisome. On day 90, the biochemical parameters values showed that *C. edulis* extract intake induced a significant decrease of transaminases (ASAT and ALAT) and glucose plasma levels at the dose of 125 mg/kg and chloride dose dependent manner. In the other hand, significant increase was observed with urea, creatinine, sodium, potassium and proteins levels (Table 3).

Urine parameters

Qualitative analysis revealed no presence of red blood cells, glucose and ketone bodies in the urine samples. However, proteinuria was observed in all the groups (treated and control).

Histopathology

The histopathological photography showed abnormalities in livers as well as the kidneys of treated rats at high doses. Pyknotic nuclei were seen in livers, whereas the renal cortex showed a thickening of glomerular interstitium.

Haematological parameters

Table 4 shows, a polycythaemia on day 45 at 31.25 mg/kg associated with a slight hyperchromicmacrocytosis at 7.81 mg/kg. On day 90, changes in haematological parameters still showed a tendency to a polycythaemia (dose dependant increases of erythrocytes haemoglobin, haematocrit values) but not significantly and a slight macrocytosis (Table 5).

DISCUSSION

C. edulis is a medicinal plant used to treat many diseases including hypertension. Pharmacological screening and toxicological studies assessment are considered as a crucial step before use of drugs. This 90-days subchronic toxicity test is a continuity of the toxicological studies on leaves aqueous extract of the plant (Osseni et al., 2016) since hypertension is a long duration treatment disease.
After 90 days of treatment, no death was recorded in either the control or treated groups. The animals did not show any changes in general behavior. The body and relative organ weights of the rats treated with the extracts of *C. edulis* are given respectively in Figure 1 and Table 1. There were no significant differences in the body weight between control and treated animals of both sexes. The relative organ weights analysis showed a significant reduction of liver and kidneys weights treated with the extract in all groups compared to control. One could, therefore conclude that the extract is toxic to the two organs but further investigations are required to certify the hypothesis. No macroscopic changes (colour or appearance) were observed. This decline in the relative organs weight suggests that long period uses of *C. edulis* extract could induce an atrophy of the organs and therefore alter their functions. A decrease in food consumption could be considered as a negative effect of the plant extracts on the rats’ development caused by alteration of glucids, lipids and proteins metabolism (Ezeonwumelu et al., 2011). Generally, the reductions in body weight gain and internal organ weights are simple and sensitive indices of toxicity after exposure to toxic substances (Raza et al., 2002; Teo et al., 2002). The toxic effect is manifested by significant changes in the color, appearance and relative organ weight (Amresh et al., 2008).

As one of the biochemical parameters analyzed, transaminases (ASAT, ALAT) are normally found in the cytoplasm and mitochondria of many cells, primarily in cardiac muscle, liver and skeletal muscle. Its concentration is much lower, however, in the kidney, pancreas and erythrocytes (Costa-Silva et al., 2008). Therefore, an increase in the serum levels of ALAT, ASAT, indicates hepatic toxicity. These changes occur in the blood when the hepatic cellular permeability is changed or when necrosis and cellular injury occur.

In this study, biochemical analysis of the treated and control rats showed that there were significant differences in the levels of transaminases especially at the middle of
ult evokes the mechanism action of N. Nevertheless, the end of the study (day 90), sodium, potassium or erythrocytes parameters are normalized transient because at day 90, there is a real kidney failure. Urea, creatinine and potassium levels at day 45, however, had already notified that different extracts of Carissa edulis (potassium) have shown a significant increase in urine, creatinine and potassium levels at day 45 and this suspect a real kidney failure. But this failure seems transient because at day 90, the values of these parameters are normalized. All these data indicate that the aqueous extract of Carissa edulis, induced damage to the liver and kidneys. This point was further confirmed by histopathological analysis and microscopic examination on these organs (Figures 3 and 4).

Haematological studies easily reveal anomalies in body metabolic processes, and the blood profile usually provides vital information (Yakubu et al., 2007) on the response of the body to injury, deprivation and/or stress. Moreover, this analysis is relevant in risk assessment since changes in the hematopoietic system have predictive value for toxicity in humans when data are transferred from animal studies (Olson et al., 2000). In this study, the main effect revealed by administration of aqueous extract of Carissa edulis was the tendency to polycythemia (increase in erythrocytes count, haemoglobin and haematocrit level) associated with a slight macrocytosis (Tables 4 and 5). No significant changes were noted in the other parameters between treated and the control rats groups. These effects could be explained by the presence in the extract substances

Table 3. Biochemical parameters on day 90.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>7.81 mg/kg</th>
<th>31.25 mg/kg</th>
<th>125 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (g/L)</td>
<td>1.32±0.23</td>
<td>1.08±0.09</td>
<td>1.28±0.21</td>
<td>0.70±0.16**</td>
</tr>
<tr>
<td>Urea (g/L)</td>
<td>0.58±0.05</td>
<td>0.37±0.01*</td>
<td>0.65±0.10</td>
<td>0.81±0.01*</td>
</tr>
<tr>
<td>Creatinine (mg/L)</td>
<td>7.48±0.66</td>
<td>9±1.49</td>
<td>12.33±1.15*</td>
<td>14±2.64</td>
</tr>
<tr>
<td>ASAT (UI/L)</td>
<td>127.66±39.07</td>
<td>133.33±15.27</td>
<td>83.33±9.45</td>
<td>5.66±3.78*</td>
</tr>
<tr>
<td>ALAT (UI/L)</td>
<td>72.33±14.15</td>
<td>106.33±8.50</td>
<td>121±29.82</td>
<td>7.66±2.89*</td>
</tr>
<tr>
<td>Total Cholesterol (g/L)</td>
<td>0.69±0.05</td>
<td>0.8±0.09</td>
<td>0.81±0.13</td>
<td>0.91±0.23</td>
</tr>
<tr>
<td>Sodium (mEq/L)</td>
<td>136±2.00</td>
<td>142±2.00</td>
<td>145±1.00*</td>
<td>127.33±2.08</td>
</tr>
<tr>
<td>Potassium (mEq/L)</td>
<td>4.71±0.23</td>
<td>5.47±0.81</td>
<td>5.12±1.6*</td>
<td>3.76±0.87</td>
</tr>
<tr>
<td>Chloride (mEq/L)</td>
<td>108±2.00</td>
<td>103.67±2.52*</td>
<td>87.67±1.15</td>
<td>95.67±0.58*</td>
</tr>
<tr>
<td>Proteins (g/L)</td>
<td>68.33±1.15</td>
<td>67.33±0.58</td>
<td>83±7.21</td>
<td>76±1.00*</td>
</tr>
</tbody>
</table>

Values represent means ± SEM. ASAT: aspartate amino-transferase. ALAT: alanine amino transferase. * p<0.05: Significantly different from the control group.

Table 4. Haematological parameters on day 45.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>7.81 mg/kg</th>
<th>31.25 mg/kg</th>
<th>125 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythrocytes (T/L)</td>
<td>7.3±0.48</td>
<td>6.92±0.59</td>
<td>8.67±0.60**</td>
<td>7.71±0.29</td>
</tr>
<tr>
<td>Haemoglobin (g/dL)</td>
<td>12.47±1.15</td>
<td>13.13±1.30</td>
<td>15.03±0.47*</td>
<td>13.63±0.64</td>
</tr>
<tr>
<td>Haematocrit (%)</td>
<td>43.67±4.51</td>
<td>47.67±3.51</td>
<td>50.33±2.08*</td>
<td>45.33±3.05</td>
</tr>
<tr>
<td>MGV (fl)</td>
<td>59.67±3.05</td>
<td>69±1.73*</td>
<td>58±2.00</td>
<td>59±2.00</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>17±1.00</td>
<td>18.67±0.58*</td>
<td>17.33±0.58</td>
<td>18±00</td>
</tr>
<tr>
<td>MCHC (%)</td>
<td>29±2.00</td>
<td>27.67±0.58</td>
<td>30±00</td>
<td>30±1.00</td>
</tr>
<tr>
<td>Leukocytes (G/L)</td>
<td>11.67±2.89</td>
<td>6.23±1.30*</td>
<td>14.73±5.52</td>
<td>9.5±4.29</td>
</tr>
<tr>
<td>neutrophiles (G/L)</td>
<td>1.39±1.21</td>
<td>0.8±0.09*</td>
<td>1.61±0.49</td>
<td>1.96±0.26</td>
</tr>
<tr>
<td>Eosinophiles (G/L)</td>
<td>0±00</td>
<td>0±00</td>
<td>0±00</td>
<td>0±00</td>
</tr>
<tr>
<td>Lymphocytes (G/L)</td>
<td>9.78±1.54</td>
<td>5.39±1.38*</td>
<td>12.98±5.05</td>
<td>7.46±4.57</td>
</tr>
<tr>
<td>Monocytes (G/L)</td>
<td>0±00</td>
<td>0.04±0.07</td>
<td>0.14±0.24</td>
<td>0.07±0.08</td>
</tr>
<tr>
<td>Platelets (10^11/L)</td>
<td>712.33±244.68</td>
<td>885.33±18.58</td>
<td>919.67±111.13</td>
<td>826.33±347.92</td>
</tr>
</tbody>
</table>

The levels of creatinine, urea, sodium, potassium or chloride, are good indicators of kidney function (Marcelo et al., 2002). The biochemical analysis revealed a tendency to hypercreatininemia and hyperuremia. A hyperkalemia associated with a hyponatremia was also observed. This result evokes the mechanism action of potassium-exclusion diuretic. Moreover, Nedi et al., (2004), had already notified that different extracts of Carissa edulis increased diuresis. Rats treated with the lower dose (7.85 mg/kg), have shown a significant increase in urea, creatinine and potassium levels at day 45 and this suspect a real kidney failure. But this failure seems transient because at day 90, the end of the study (day 90), sodium, potassium or erythrocytes parameters are normalized. Throughout this survey, the glucose level was reduced dose-dependent manner (Table 2 and 3) and this reinforces the antidiabetic use of Carissa edulis.
Table 5. Haematological parameters on day 90.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>7.81 mg/kg</th>
<th>31.25 mg/kg</th>
<th>125 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythrocytes (T/L)</td>
<td>7.15±0.63</td>
<td>7.4±0.48</td>
<td>7.74±0.52</td>
<td>7.71±0.62</td>
</tr>
<tr>
<td>Haemoglobin (g/dL)</td>
<td>12.4±0.87</td>
<td>13.63±0.76*</td>
<td>13.97±0.66*</td>
<td>13.4±0.87</td>
</tr>
<tr>
<td>Haematocryt (%)</td>
<td>41±3.46</td>
<td>48.67±3.78*</td>
<td>47.33±3.21*</td>
<td>46.33±3.21*</td>
</tr>
<tr>
<td>MGV (fl)</td>
<td>57.33±0.57</td>
<td>66±2.64*</td>
<td>60.67±1.53*</td>
<td>60.33±0.58*</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>17.33±0.57</td>
<td>18.67±0.58</td>
<td>18.33±0.58</td>
<td>17.33±0.58</td>
</tr>
<tr>
<td>MCHC (%)</td>
<td>30.33±0.57</td>
<td>28±1.00</td>
<td>29.67±0.58</td>
<td>29±1.00</td>
</tr>
<tr>
<td>Leukocytes (G/L)</td>
<td>9.53±1.56</td>
<td>7.73±3.79</td>
<td>8.87±1.25</td>
<td>7.73±4.46</td>
</tr>
<tr>
<td>Neutrophiles (G/L)</td>
<td>0.67±1.19</td>
<td>2.71±1.76</td>
<td>1.02±0.74*</td>
<td>0.87±0.54*</td>
</tr>
<tr>
<td>Eosinophiles (G/L)</td>
<td>0±00</td>
<td>0.04±0.07</td>
<td>0±00</td>
<td>0±00</td>
</tr>
<tr>
<td>Lymphocytes (G/L)</td>
<td>8.37±1.81</td>
<td>4.86±2.13*</td>
<td>7.77±0.53</td>
<td>6.47±4.15</td>
</tr>
<tr>
<td>Monocytes (G/L)</td>
<td>0.49±0.28</td>
<td>0.12±0.06*</td>
<td>0.07±0.12*</td>
<td>0.18±0.07*</td>
</tr>
<tr>
<td>Platelets (10^3/µL)</td>
<td>794±139.82</td>
<td>607.33±133.09</td>
<td>739.33±9.71</td>
<td>833.67±62.53</td>
</tr>
</tbody>
</table>

Values represent means ± SEM. MGV: Mean globular volume, MCH: mean concentration haemoglobin, MCHC: mean corpuscular haemoglobin concentration, *p<0.05: Significantly different from the control group.

Figure 3. Livers histopathology of rats treated with C. edulis extract. Liver of control rat (T) (HE 400 x), with a hepatic lobule showing hepatocytes disposed radially around the centrolobular vein (V); treated rats at 125 mg/kg (A); 31.25 mg/kg (B) et 7.81 mg/kg (C) b/w (HE x 400). (A) and (B) shows hyperchromatic nucleus of cells around the centrolobular vein while (C) is a normal hepatic lobule.

Figure 4. Kidneys histopathology of rats treated with C. edulis extract. Kidney of control rat (HE 400x). Cortex of kidney showing a normal glomerulus with tubules in the urinary chamber. A and B showed a thickening of the glomerular interstitium.

which are able to stimulate erythropoiesis. These observations confirm the results obtained by Koffuor (Koffuor et al., 2012); who showed that the ethanol extract of the root bark of C. edulis corrected anemia in rats pretreated with phenylhydrazine. This effect could also be due to the diuretic effect of C. edulis since the diuretic effect could cause a hemoconcentration due to polycythemia. The standard toxicity studies are very useful to understand the effects of a substance on the immune system (International Conference on Harmonisation, 2006). Any malfunction of the immune system both quality and quantity could be manifested by changes in hematological type of leukocytosis or leucopenia, lymphopenia or lymphocytosis; an increase in the incidence of infection but also by the occurrence of tumors. A slight reduction was noted in the values of
leukocytes, neutrophils, lymphocytes and monocytes. In view of the above, it could be stated that the extract is toxic to immune cells. The histological pictures showed abnormalities both in livers and kidneys treated with high doses (31.25 and 125 mg/kg) of the extract. The modifications include hyperchromatic or pyknotic nuclei of the hepatocytes around the centrilobular vein (Figure 3) and a thickening of the glomerular interstitium (Figure 4). These changes suggest a beginning of necrotization of hepatic cells and the hyalinization of glomerular interstitium which relates glomerular nephritis since proteinuria test was positive.

Conclusion

This subchronic toxicity study was necessary for the safety assessment of *C. edulis*. However, in this study, alterations in biochemical parameters such as transaminases were highlighted in exposed animals. Fortunately, they were transitory because after 45 days of exposure, the values were normalized at the end of the study. However, some parameters remain altered among the renal function parameters as well as haematological ones. Further organo-specific analyses would be required to provide evidential support for the safety uses of this plant.

Conflict of Interests

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

This project was supported by the University of Abomey-Calavi. The authors acknowledge Dr ISSIFOU Saadou for his great contribution this manuscript revision.

REFERENCES

