ABOUT JCECT

Journal of Civil Engineering and Construction Technology (ISSN 2141-2634) is published monthly (one volume per year) by Academic Journals.

Journal of Civil Engineering and Construction Technology (JCECT) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as surveying, environmental engineering, hydrology, soil mechanics, shear moments and forces etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JCECT are peer-reviewed.

Contact Us

Editorial Office: ject@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JCECT
Submit manuscript online http://ms.academicjournals.me/
Editors

Dr. George Besseris
El of Piraeus, Greece
Argyrokastrou 30, Drosia, 14572, Attica Greece

Prof. Xiaocong He
Faculty of Mechanical and Electrical Engineering
Kunming University of Science and Technology
253 Xue Fu Road, Kunming China

Prof. Jean Louis Woukeng Feudjio
Department of Mathematics and Computer Science
University of Dschang, P.O. Box 67 Dschang Cameroon

Dr. P. Rathish Kumar
Department of Civil Engineering,
National Institute of Technology, Warangal 506 004 Andhra Pradesh, India. PhNo India

Prof. Waiel Fathi Abd EL-Wahed
Operations Research & Decision Support Department
Faculty of Computers and Information
El-Menoufia University, Shiben EL-Kom Egypt

Prof. JM Ndambuki
Department of Civil Engineering and Building
Vaal University of Technology
Private Bag X021
Vanderbijlpark 1900 South Africa

Dr. Dipti Ranjan Sahoo
Department of Civil Engineering
Indian Institute of Technology
Hauz Khas, New Delhi-110016, India.

Dr. Messaoud Saidani
Faculty Postgraduate Manager
Faculty of Engineering and Computing
Coventry University
Coventry CV1 5FB, England UK.

Dr. Mohammad Arif Kamal
Department of Architecture
Zakir Hussain College of Engineering Technology
Aligarh Muslim University
Aligarh -202002 INDIA
Editorial Board

Dr. Ling Tung-Chai,
The Hong Kong Polytechnic University,
Department of Civil and Structural Engineering,
Faculty of Construction and Land Use,
HungHom, Kowloon, Hong Kong.

Dr. Miguel A. Benítez,
Project Manager,
Basque Center for Applied Mathematics (BCAM),
Bilbao Technology Park, Building 500,
E-48160 Derio, Basque Country, Spain.

Dr. Shehata Eldabie Abdel Raheem,
Structural Engineering,
Civil Engineering Department,
Faculty of Engineering,
Assiut University, Assiut 71516, Egypt.

Dr. Zhijian Hu,
Department of Road and Bridge Engineering,
School of Communication,
Wuhan University of Science and Technology,
Wuhan, 430063, China.

Dr. Mohd Rasoul Suliman,
Prince Abdullah Bin Ghazi Faculty of Science & Information Technology,
Al-Balqa Applied University, Jordan.

Dr. Paul Scarponcini PE,
Geospatial and Civil Software Standards,
66 Willowleaf Dr., Littleton, CO 80127, USA.

Dr. Rita Yi Man Li,
Hong Kong Shue Yan University
North Point, Hong Kong.

Dr. Alaa Mohamed Rashad,
Building Materials Research and Quality Control Institute,
Housing & Building National Research Center,
87 El-Tahrir St., Dokki, Giza 11511,
P.O.Box: 1770 Cairo, Egypt.

Dr. Alaa Mohamed Rashad Abdel Aziz Mahmoud,
Housing and Building National Research center,
87 El-Tahrir St., Dokki, Giza 11511,
P.O.Box: 1770 Cairo, Egypt.

Dr. Nikos Pnevmatikos,
Greek Ministry of Environment,
Urban Planning and Public Works,
Department of Earthquake Victims and Retrofitting Services, Greece.

Prof. Karima Mahmoud Attia Osman,
6 Zahraa Naser City, Cairo,Egypt.

Dr. Lim Hwee San,
99E-3A-10, I-Regency Condominium, Jalan Bukit Gambir,
11700, Penang, Malaysia.

Dr. Jamie Goggins,
Civil Engineering, School of Engineering and Informatics,
National University of Ireland, Galway, Ireland.

Dr. Hossam Mohamed Toma,
King Abdullah Institute for Research and Consulting Studies,
King Saud University, P.O.Box 2454,
Riyadh 11451, Saudi Arabia.

Dr. Depeng Chen,
School of Civil Engineering,
Anhui University of Technology,
59#, Hudong Road, Maanshan, 243002, China.

Dr. Srinivasan Chandrasekaran,
Room No. 207, Dept of Ocean Engineering,
Indian Institute of Technology Madras, Chennai, India.

Prof. Amir Alikhani,
Ministry of Oil, Harbour organization, and minister of Energy Tehran, Iran.

Dr. Memon Rizwan Ali,
Department of Civil Engineering,
Mehran University of Engineering & Technology,
Jamshoro.

Prof. Murat Dicleli,
Department of Engineering Sciences,
Middle East Technical University,
06531 Ankara, Turkey.
Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

The cover letter should include the corresponding author’s full address and telephone/fax numbers and should be in an e-mail message sent to the Editor, with the file, whose name should begin with the first author’s surname, as an attachment.

Article Types
Three types of manuscripts may be submitted:

Regular articles: These should describe new and carefully confirmed findings, and experimental procedures should be given in sufficient detail for others to verify the work. The length of a full paper should be the minimum required to describe and interpret the work clearly.

Short Communications: A Short Communication is suitable for recording the results of complete small investigations or giving details of new models or hypotheses, innovative methods, techniques or apparatus. The style of main sections need not conform to that of full-length papers. Short communications are 2 to 4 printed pages (about 6 to 12 manuscript pages) in length.

Reviews: Submissions of reviews and perspectives covering topics of current interest are welcome and encouraged. Reviews should be concise and no longer than 4-6 printed pages (about 12 to 18 manuscript pages). Reviews are also peer-reviewed.

Review Process
All manuscripts are reviewed by an editor and members of the Editorial Board or qualified outside reviewers. Authors cannot nominate reviewers. Only reviewers randomly selected from our database with specialization in the subject area will be contacted to evaluate the manuscripts. The process will be blind review. Decisions will be made as rapidly as possible, and the journal strives to return reviewers’ comments to authors as fast as possible. The editorial board will re-review manuscripts that are accepted pending revision. It is the goal of the ERR to publish manuscripts within weeks after submission.

Regular articles
All portions of the manuscript must be typed double-spaced and all pages numbered starting from the title page.

The Title should be a brief phrase describing the contents of the paper. The Title Page should include the authors’ full names and affiliations, the name of the corresponding author along with phone, fax and E-mail information. Present addresses of authors should appear as a footnote.

The Abstract should be informative and completely self-explanatory, briefly present the topic, state the scope of the experiments, indicate significant data, and point out major findings and conclusions. The Abstract should be 100 to 200 words in length. Complete sentences, active verbs, and the third person should be used, and the abstract should be written in the past tense. Standard nomenclature should be used and abbreviations should be avoided. No literature should be cited. Following the abstract, about 3 to 10 key words that will provide indexing references should be listed.

A list of non-standard Abbreviations should be added. In general, non-standard abbreviations should be used only when the full term is very long and used often. Each abbreviation should be spelled out and introduced in parentheses the first time it is used in the text. Only recommended SI units should be used. Authors should use the solidus presentation (mg/ml). Standard abbreviations (such as ATP and DNA) need not be defined.

The Introduction should provide a clear statement of the problem, the relevant literature on the subject, and the proposed approach or solution. It should be understandable to colleagues from a broad range of scientific disciplines.

Materials and methods should be complete enough to allow experiments to be reproduced. However, only truly new procedures should be described in detail; previously published procedures should be cited, and important modifications of published procedures should be mentioned briefly. Capitalize trade names and include the manufacturer’s name and address. Subheadings should be used. Methods in general use need not be described in detail.
Results should be presented with clarity and precision. The results should be written in the past tense when describing findings in the authors’ experiments. Previously published findings should be written in the present tense. Results should be explained, but largely without referring to the literature. Discussion, speculation and detailed interpretation of data should not be included in the Results but should be put into the Discussion section.

The **Discussion** should interpret the findings in view of the results obtained in this and in past studies on this topic. State the conclusions in a few sentences at the end of the paper. The Results and Discussion sections can include subheadings, and when appropriate, both sections can be combined.

The **Acknowledgments** of people, grants, funds, etc should be brief.

Tables should be kept to a minimum and be designed to be as simple as possible. Tables are to be typed double-spaced throughout, including headings and footnotes. Each table should be on a separate page, numbered consecutively in Arabic numerals and supplied with a heading and a legend. Tables should be self-explanatory without reference to the text. The details of the methods used in the experiments should preferably be described in the legend instead of in the text. The same data should not be presented in both table and graph form or repeated in the text.

Figure legends should be typed in numerical order on a separate sheet. Graphics should be prepared using applications capable of generating high resolution GIF, TIFF, JPEG or Powerpoint before pasting in the Microsoft Word manuscript file. Tables should be prepared in Microsoft Word. Use Arabic numerals to designate figures and upper case letters for their parts (Figure 1). Begin each legend with a title and include sufficient description so that the figure is understandable without reading the text of the manuscript. Information given in legends should not be repeated in the text.

References: In the text, a reference identified by means of an author’s name should be followed by the date of the reference in parentheses. When there are more than two authors, only the first author’s name should be mentioned, followed by ‘et al’. In the event that an author cited has had two or more works published during the same year, the reference, both in the text and in the reference list, should be identified by a lower case letter like ‘a’ and ‘b’ after the date to distinguish the works.

Examples:

Abayomi (2000), Agindotan et al. (2003), (Kelebeni, 1983), (Usman and Smith, 1992), (Chege, 1998; 1987a,b; Tijani, 1993,1995), (Kumasi et al., 2001)

References should be listed at the end of the paper in alphabetical order. Articles in preparation or articles submitted for publication, unpublished observations, personal communications, etc. should not be included in the reference list but should only be mentioned in the article text (e.g., A. Kingori, University of Nairobi, Kenya, personal communication). Journal names are abbreviated according to Chemical Abstracts. Authors are fully responsible for the accuracy of the references.

Examples:

Short Communications

Short Communications are limited to a maximum of two figures and one table. They should present a complete study that is more limited in scope than is found in full-length papers. The items of manuscript preparation listed above apply to Short Communications with the following differences: (1) Abstracts are limited to 100 words; (2) instead of a separate Materials and Methods section, experimental procedures may be incorporated into Figure Legends and Table footnotes; (3) Results and Discussion should be combined into a single section.

Proofs and Reprints: Electronic proofs will be sent (e-mail attachment) to the corresponding author as a PDF file. Page proofs are considered to be the final version of the manuscript. With the exception of typographical or minor clerical errors, no changes will be made in the manuscript at the proof stage.
Fees and Charges: Authors are required to pay a $550 handling fee. Publication of an article in the Journal of Civil Engineering and Construction Technology is not contingent upon the author's ability to pay the charges. Neither is acceptance to pay the handling fee a guarantee that the paper will be accepted for publication. Authors may still request (in advance) that the editorial office waive some of the handling fee under special circumstances.

Copyright: © 2017, Academic Journals.
All rights Reserved. In accessing this journal, you agree that you will access the contents for your own personal use but not for any commercial use. Any use and or copies of this Journal in whole or in part must include the customary bibliographic citation, including author attribution, date and article title.

Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.

Disclaimer of Warranties

In no event shall Academic Journals be liable for any special, incidental, indirect, or consequential damages of any kind arising out of or in connection with the use of the articles or other material derived from the JCECT, whether or not advised of the possibility of damage, and on any theory of liability.

This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications does not imply endorsement of that product or publication. While every effort is made by Academic Journals to see that no inaccurate or misleading data, opinion or statements appear in this publication, they wish to make it clear that the data and opinions appearing in the articles and advertisements herein are the responsibility of the contributor or advertiser concerned. Academic Journals makes no warranty of any kind, either express or implied, regarding the quality, accuracy, availability, or validity of the data or information in this publication or of any other publication to which it may be linked.
Performance of self-compacting concrete made with hydraulic lime as filler
Nathalie S. Mawo, Richard O. Onchiri and Stanley M. Shitote
Performance of self-compacting concrete made with hydraulic lime as filler

Nathalie S. Mawo¹*, Richard O. Onchiri² and Stanley M. Shitote³

¹Pan African University, Institute for Basic Sciences, Technology and Innovation, Kenya.
²Department of Building and Civil Engineering, Technical University of Mombasa, Kenya.
³Department of Civil and Structural Engineering, Moi University, Kenya.

Concrete is a very popular artificial material on earth and it is one of the most used construction material in building technology. Self-Compacting Concrete (SCC) is a highly workable concrete designed such that it is able to be placed in any formwork without external compaction or vibration. It consolidates and fills voids by the help of its self-weight even in the presence of very dense reinforcement. This paper presents the design of a self-consolidating concrete mix with lime as filler which can be used in day to day normal concrete applications. Twenty-six mixes were prepared with different packing factors for aggregates, cement and lime contents and superplasticizer dosage to get optimum proportions for SCC. Traditional Vibrated Concrete (TVC) mixes of normal strength were also designed. Workability tests were carried out on both concrete types which included testing the flow characteristics of SCC and the slump for TVC. Compressive and tensile strength tests were carried out on cubes and cylinders made from both mixes. Results from the experiment showed that the amount of cement normally required to make the SCC was replaced by lime by about 30% to obtain a normal strength of about 30 MPa. It was also observed that the tensile strength of SCC was slightly higher than that of TVC.

Key words: Self-compacting concrete, hydraulic lime, compressive strength, split tensile strength.

INTRODUCTION

Concrete is the second most utilized substance in the world after water and is the most widely used construction material with an annual global production of about 10 billion tonnes. It is preferred in most structures because of its unique properties such as durability and high compressive strength. Traditional vibrated concrete is most commonly used but it has limitations such as difficulty to place in areas of congested reinforcement, complex formwork and lack of compacting assurance as the vibrator may not reach all the areas of the formwork. Vibration is what pushes the concrete to confinement. It gets rid of entrapped air in concrete after it has been placed. The presence of this air increases permeability and hence jeopardizes concrete durability. The air voids also reduce contact between concrete and reinforcement and hence reduce bond and strength expected. The high
flow ability, passing ability and stability of self-compacting concrete gets rid of these inconveniences and enhances productivity in construction.

Traditional self-compacting concrete requires huge amounts of binder content in order to achieve these characteristics and also exerts high lateral pressure on formwork. It is also prone to creep, shrinkage and cracking due to a high heat of hydration (Ghezal and Assaf, 2014). Partially replacing cement with a filler such as hydraulic lime reduces the heat of hydration and also the material cost of the SCC. Research has been carried on Process and Application of Self-Compacting Concrete (Zekong and Mao, 2015; Yasser et al., 2015).

Self-compacting concrete dates back to the late 1980s when the Japan construction industry experienced a decline in the availability of skilled labour and problems of defective workmanship in concrete structures. Hence, proper construction on site could not be ensured (Ouchi et al., 1996). Prof Hitoshi Okamura immediately started research to develop self-compacting concrete in 1986 at the University of Tokyo (Ozawa et al., 1989). The first prototype of Self-Compacting Concrete (SCC) was produced in 1988, using locally available materials in the Japanese market (Okamura and Ouchi, 2003).

Self-compacting concrete is made with mineral and chemical admixtures and additives which are responsible for its characteristic properties which include its filling ability, passing ability and resistance to segregation. The yield stress is the amount of stress needed to start or maintain flow while the plastic viscosity is its resistance to flow once the yield stress has been exceeded. The yield stress must be near zero to ensure that the SCC can flow and consolidate under its own weight. The plastic viscosity also should not be too low, as it could result to poor stability (Koehler and Fowler, 2007). The low yield strength is achieved using an adequate amount of superplasticizer.

Table 1. Mix proportion for traditional vibrated concrete.

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>340</td>
</tr>
<tr>
<td>Sand</td>
<td>655</td>
</tr>
<tr>
<td>Coarse Aggregate</td>
<td>1170</td>
</tr>
<tr>
<td>Water</td>
<td>190</td>
</tr>
<tr>
<td>W/P</td>
<td>0.55</td>
</tr>
</tbody>
</table>

MATERIALS and METHODS

The following materials were used in this research.

Cement

The cement used in this experimental work is Rhino Power plus 42.5 Ordinary Portland cement having a specific gravity of 3.15.

Fine aggregate

Locally available Meru sand passed through the 4.75 mm sieve was used as fine aggregate. After testing, it was shown to have a specific gravity of 2.7, a fineness modulus of 2.55, a water absorption capacity of 0.1% and moisture content of 0.75%. The loose and rodded bulk density values are 1375 and 1649 kg/m³, respectively.

Coarse aggregate

The coarse aggregate used in this experimental work were crushed stones from Mlolongo with a maximum size of 20 mm, specific gravity of 2.6, fineness modulus of 2.7, a water absorption capacity of 2.43% and moisture content of 5.6%. The loose and rodded bulk density values are 1309 and 1415 kg/m³, respectively.

Hydraulic lime

Hydraulic lime used which was in powder form was procured from ARM Cement Limited known as ‘Rhino Lime”. It had a specific gravity of 2.4.

Superplasticizer

Two polycarboxylate ether based superplasticisers were used in this experiment: SikaViscocrete 3088 and SikaViscocrete 10. V3088 is a brownish liquid while V10 is a clear liquid. Both have a specific gravity of 1.06.

Water

Clean potable water was used for mixing.

Mix proportion for traditional vibrated concrete

The normal concrete mix (Table 1) was designed according to the Building Research Establishment (BRE) concrete mix design method for a concrete strength of 30 MPa at 28 days. Trial mixes and adjustments were carried out until the required strength and workability was obtained.

Mix proportion for self-compacting concrete

The modified method (Su et al., 2001) was used for the SCC mix design. In this method, the packing factor is first assumed and then the voids between the aggregates are filled with a binding paste consisting of cement and hydraulic lime to get the desired workability, flow properties and strength. The following steps in the (Su et al., 2001) method were then used to calculate the material proportions. Trial mixes were carried out to adjust the optimum packing factor, the optimum superplasticizer dosage, water/powder ratio and cement content required to get a characteristic compressive strength of 30MPa and the required workability.

The initial mix design was carried out at a PF of 1.17, a coarse
aggregate content of 27.8% by volume of concrete and a fine aggregate content of 44.30% by volume of mortar in concrete. The water/powder ratio was 0.38 with a V3088 superplasticizer content of 1.8%.

In order to achieve the required slump and a homogenous mix, the coarse aggregate content was decreased to 25% by volume of concrete. Fine aggregate content was increased to 45% and then kept constant. The superplasticizer content decreased from 1.8% of powder content to 0.9%. The water-powder ratio was varied from 0.38 to 0.49 until an acceptable slump flow was achieved but the desired strength was not obtained. Mix proportions for various trial mixes are shown in Table 3.

In order to obtain the desired strength of 30 MPa, the cement content was increased to 350 kg/m³. Superplasticizer dosage was also varied between 1 and 1.4% with a change in superplasticizer from V3088 to V10.

Tests on fresh concrete

For the traditional vibrated concrete in its fresh state, the slump test was carried out for each batch in order to assess the workability of the concrete. For self-compacting concrete, the following tests in its fresh state were carried out as per EFNARC standards. Slump flow and T50 tests aimed at assessing the flowability and fresh state were carried out as per EFNARC standards. Visual Stability Index (VSI) tests were also carried out on all mixes. It is based on if bleed water is observed at the edges of the spreading concrete and if a mix with an acceptable slump was obtained. Visual Stability Rating Criteria is presented in Plate 1 shows examples of VSI ranging from highly stable homogenous mixes to immediately disqualify most of the mix proportions. Plate 1 shows examples of VSI ranging from highly stable homogenous mixes to unacceptable mixes. Visual Stability Rating Criteria is presented in Plate 1 shows examples of VSI ranging from highly stable homogenous mixes to unacceptable mixes. Visual Stability Rating Criteria is presented in Table 4.

When a homogenous stable mix with an acceptable slump was...
obtained, the following tests for self-compatibility were carried out to determine the self-compacting characteristics of the fresh concrete mix: the L-box, J-ring, V-funnel and segregation resistance tests. Tests for strength parameters were carried out on cube and cylinder specimens of standard sizes. Three specimens for each mix were tested and the average value was used. The optimal mix proportion for SCC obtained is shown in Table 5.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No evidence of segregation in the slump flow, no bleeding around the edges or aggregate piled at the centre</td>
</tr>
<tr>
<td>1</td>
<td>No aggregate pile at the centre of the slump flow but presence of slight bleed and surface bubbles</td>
</tr>
<tr>
<td>2</td>
<td>Slight aggregate pile at the centre and highly noticeable bleeding</td>
</tr>
<tr>
<td>3</td>
<td>Evidence of large aggregate pile and lots of bleeding</td>
</tr>
</tbody>
</table>

Table 5. Mix proportion for self-compacting concrete.

<table>
<thead>
<tr>
<th>Cement (kg/m³)</th>
<th>Sand (kg/m³)</th>
<th>Coarse Agg. (kg/m³)</th>
<th>H Lime (kg/m³)</th>
<th>Water (kg/m³)</th>
<th>SP (kg/m³)</th>
<th>W/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>878</td>
<td>630</td>
<td>200</td>
<td>260</td>
<td>6.5</td>
<td>0.50</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

Workability and compressive strengths

Compressive strength tests were carried out on all SCC mixes and are presented in Table 6. Acceptance criteria for SCC recommended by EFNARC (2002) are presented in Table 7. For the T50 cm test, EFNARC specifications recommend a range of 2 to 5 s while other literature recommend 2 to 10 s. However, T50 is a secondary flow test. A higher T50 value indicates a more viscous mix which is better for concrete in applications with dense reinforcement while a lower T50 value may be appropriate for concrete in applications with less obstruction.

Split tensile strength

Split tensile strength tests were carried out on 150 mm ×300 mm cylinders for the traditional concrete mix and its comparable mix 26. The cylinders were tested for 7, 14 and 28 day strengths. Split tensile strength for both TVC and SCC increased with age but it is noted that split tensile strength of SCC is more than TVC at all the ages (Table 8).

Conclusion

The slump flow tests, J ring test, V-funnel test and L-box test results were found to be satisfactory showing that the passing ability, filling ability and segregation resistance of
Table 6. Slump flow, visual stability index and compressive strengths.

<table>
<thead>
<tr>
<th>Mix ID</th>
<th>Slump flow (mm)</th>
<th>Visual stability index</th>
<th>Compressive strengths (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 days</td>
</tr>
<tr>
<td>11</td>
<td>737.5</td>
<td>2</td>
<td>14.9</td>
</tr>
<tr>
<td>12</td>
<td>700.0</td>
<td>2</td>
<td>14.4</td>
</tr>
<tr>
<td>13</td>
<td>725.0</td>
<td>2</td>
<td>16.0</td>
</tr>
<tr>
<td>14</td>
<td>550.0</td>
<td>1</td>
<td>15.5</td>
</tr>
<tr>
<td>15</td>
<td>525.0</td>
<td>2</td>
<td>16.3</td>
</tr>
<tr>
<td>16</td>
<td>500.0</td>
<td>2</td>
<td>17.5</td>
</tr>
<tr>
<td>17</td>
<td>700.0</td>
<td>2</td>
<td>17.5</td>
</tr>
<tr>
<td>18</td>
<td>675.0</td>
<td>2</td>
<td>25.9</td>
</tr>
<tr>
<td>19</td>
<td>600.0</td>
<td>1</td>
<td>18.4</td>
</tr>
<tr>
<td>20</td>
<td>575.0</td>
<td>1</td>
<td>17.5</td>
</tr>
<tr>
<td>21</td>
<td>550.0</td>
<td>2</td>
<td>23.5</td>
</tr>
<tr>
<td>22</td>
<td>550.0</td>
<td>2</td>
<td>26.2</td>
</tr>
<tr>
<td>23</td>
<td>650.0</td>
<td>1</td>
<td>19.2</td>
</tr>
<tr>
<td>24</td>
<td>650.0</td>
<td>1</td>
<td>18.9</td>
</tr>
<tr>
<td>25</td>
<td>700.0</td>
<td>1</td>
<td>21.7</td>
</tr>
<tr>
<td>26</td>
<td>700.0</td>
<td>0</td>
<td>23.9</td>
</tr>
</tbody>
</table>

Statistical data

- Mean: 19.2, 24.2, 28.2
- Variance: 14.0, 12.4, 17.2
- Standard deviation: 3.7, 3.5, 4.1

Table 7. Acceptance criteria for SCC recommended by EFNARC and the values obtained from self-compatibility tests.

<table>
<thead>
<tr>
<th>Property</th>
<th>Units</th>
<th>Range</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slump flow diameter</td>
<td>mm</td>
<td>500-800</td>
<td>700</td>
</tr>
<tr>
<td>T50 cm</td>
<td>s</td>
<td>2-5</td>
<td>7</td>
</tr>
<tr>
<td>L-box Passing ratio</td>
<td>h₀/h₁</td>
<td>≥0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>J ring Blocking step, Bj</td>
<td>mm</td>
<td>0 - 10</td>
<td>6.75</td>
</tr>
<tr>
<td>J ring Slump flow Sj</td>
<td>mm</td>
<td>500 - 800</td>
<td>675</td>
</tr>
<tr>
<td>Jring T50 cm j</td>
<td>s</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>V funnel tv</td>
<td>s</td>
<td>6 - 15</td>
<td>13</td>
</tr>
<tr>
<td>Segregation resistance Sieved portion</td>
<td>%</td>
<td>5 - 15</td>
<td>2.57</td>
</tr>
</tbody>
</table>

Table 8. Split tensile strength for both TVC and SCC.

<table>
<thead>
<tr>
<th>Variable</th>
<th>7 days (MPa)</th>
<th>14 days (MPa)</th>
<th>28 days (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TVC</td>
<td>2.550</td>
<td>2.764</td>
<td>2.872</td>
</tr>
<tr>
<td>SCC</td>
<td>2.641</td>
<td>2.978</td>
<td>3.125</td>
</tr>
</tbody>
</table>

Statistical data

- Mean: 2.60, 2.87, 3.00
- Variance: 0.00, 0.01, 0.02
- Standard deviation: 0.05, 0.11, 0.13
the SCC mix are well within the limits. A good SCC mix for normal strength concrete can be developed for normal day to day concrete applications using hydraulic lime as filler. By using the OPC 42 grade, normal strength SCC of about 30 MPa at 28-days was obtained, keeping the cement content at 350 kg/m³ and the filler content at 200 kg/m³. This is a confirmation that the mixture proportions satisfy the performance requirements for fresh concrete as well as the initially established performance requirement for hardened concrete. SCC mixes can be developed without the use of viscosity modifying agents as done in this study.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

European Federation for Specialist Construction Chemicals and Concrete System (2002). Specification and Guidelines for Self Compacting Concrete. EFNARC.

Journal of Civil Engineering and Construction Technology

Related Journals Published by Academic Journals

- International Journal of Computer Engineering Research
- Journal of Electrical and Electronics Engineering Research
- Journal of Engineering and Computer Innovations
- Journal of Petroleum and Gas Engineering
- Journal of Engineering and Technology Research
- Journal of Civil Engineering and Construction Technology