ABOUT AJPP

The African Journal of Pharmacy and Pharmacology (AJPP) is published weekly (one volume per year) by Academic Journals.

African Journal of Pharmacy and Pharmacology (AJPP) is an open access journal that provides rapid publication (weekly) of articles in all areas of Pharmaceutical Science such as Pharmaceutical Microbiology, Pharmaceutical Raw Material Science, Formulations, Molecular modeling, Health sector Reforms, Drug Delivery, Pharmacokinetics and Pharmacodynamics, Pharmacognosy, Social and Administrative Pharmacy, Pharmaceutics and Pharmaceutical Microbiology, Herbal Medicines research, Pharmaceutical Raw Materials development/utilization, Novel drug delivery systems, Polymer/Cosmetic Science, Food/Drug Interaction, Herbal drugs evaluation, Physical Pharmaceutics, Medication management, Cosmetic Science, pharmaceuticals, pharmacology, pharmaceutical research etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in AJPP are peer-reviewed.

Contact Us

Editorial Office: ajpp@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/AJPP
Submit manuscript online http://ms.academicjournals.me/
Editors

Himanshu Gupta
Department of Pharmacy Practice
University of Toledo
Toledo, OH
USA.

Prof. Zhe-Sheng Chen
College of Pharmacy and Health Sciences
St. John’s University
New York,
USA.

Dr. Huma Ikram
Neurochemistry and Biochemical Neuropharmacology Research Unit,
Department of Biochemistry,
University of Karachi
Karachi-75270
Pakistan

Dr. Shreesh Kumar Ojha
Molecular Cardiovascular Research Program
College of Medicine
Arizona Health Sciences Center
University of Arizona
Arizona,
USA.

Dr. Vitor Engracia Valenti
Departamento de Fonoaudiologia
Faculdade de Filosofia e Ciências,
UNESP
Brazil.

Dr. Caroline Wagner
Universidade Federal do Pampa
Avenida Pedro Anunciação
Brazil.

Dr. Ravi Shankar Shukla
Macromolecule and Vaccine Stabilization Center
Department of Pharmaceutical Chemistry
University of Kansas
USA.

Associate Editors

Dr. B. Ravishankar
SDM Centre for Ayurveda and Allied Sciences,
SDM College of Ayurveda Campus,
Karnataka
India.

Dr. Natchimuthu Karmegam
Department of Botany,
Government Arts College,
Tamil Nadu,
India.

Dr. Manal Moustafa Zaki
Department of Veterinary Hygiene and Management
Faculty of Veterinary Medicine,
Cairo University
Giza,
Egypt.

Prof. George G. Nomikos
Takeda Global Research & Development Center
USA.

Prof. Mahmoud Mohamed El-Mas
Department of Pharmacology,
Faculty of Pharmacy
University of Alexandria,
Alexandria,
Egypt.

Dr. Kiran K. Akula
Electrophysiology & Neuropharmacology Research Unit
Department of Biology & Biochemistry
University of Houston
Houston, TX
USA.
Editorial Board

Prof. Fen Jicai
School of life science, Xinjiang University, China.

Dr. Ana Laura Nicoletti Carvalho
Av. Dr. Arnaldo, 455, São Paulo, SP. Brazil.

Dr. Ming-hui Zhao
Professor of Medicine
Director of Renal Division, Department of Medicine
Peking University First Hospital
Beijing 100034 PR. China.

Prof. Ji Junjun
Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, China.

Prof. Yan Zhang
Faculty of Engineering and Applied Science,
Memorial University of Newfoundland, Canada.

Dr. Naoufel Madani
Medical Intensive Care Unit
University hospital Ibn Sina, Univesity Mohamed V Souissi, Rabat, Morocco.

Dr. Dong Hui
Department of Gynaecology and Obstetrics, the 1st hospital, NanFang University, China.

Prof. Ma Hui
School of Medicine, Lanzhou University, China.

Prof. Gu Huijun
School of Medicine, Taizhou university, China.

Dr. Chan Kim Wei
Research Officer
Laboratory of Molecular Biomedicine,
Institute of Bioscience, Universiti Putra, Malaysia.

Dr. Fen Cun
Professor, Department of Pharmacology, Xinjiang University, China.

Dr. Sirajunnisa Razack
Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamilnadu, India.

Prof. Ehab S. EL Desoky
Professor of pharmacology, Faculty of Medicine
Assiut University, Assiut, Egypt.

Dr. Yakisich, J. Sebastian
Assistant Professor, Department of Clinical Neuroscience
PR. China.

Prof. Dr. Andrei N. Tchernitchin
Head, Laboratory of Experimental Endocrinology and Environmental Pathology LEEPA
University of Chile Medical School, Chile.

Dr. Sirajunnisa Razack
Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamilnadu, India.

Dr. Yasar Tatar
Marmara University, Turkey.

Dr Nafisa Hassan Ali
Assistant Professor, Dow institute of medical technology
Dow University of Health Sciences,Chand bbi Road, Karachi, Pakistan.

Dr. Krishnan Namboori P. K.
Computational Chemistry Group, Computational Engineering and Networking,
Amrita Vishwa Vidyapeetham, Amritanagar, Coimbatore-641 112 India.

Prof. Osman Ghani
University of Sargodha, Pakistan.

Dr. Liu Xiaoji
School of Medicine, Shihezi University, China.
ARTICLES

A quality control study of ibuprofen tablets available in the formal and informal market in Harare, Zimbabwe
Gwaziwa N. N., Dzomba P. and Mupa M.

Antibacterial potential of the 80% methanol and chloroform extracts of Clematis hirsuta
Asmamaw Habtamuand Yalemtsehay Mekonnen
A full length research paper titled "A quality control study of ibuprofen tablets available in the formal and informal market in Harare, Zimbabwe" is presented. The authors, Gwaziwa N. N., Dzomba P., and Mupa M., discuss their research on the quality of ibuprofen tablets selected from both formal and informal markets over a six-month period. The study involved fourteen batches of六十 tablets per batch, which were tested for various quality control parameters, including physical appearance, uniformity of mass, disintegration, friability, in vitro dissolution, spectrophotometric, and high performance liquid chromatography (HPLC) profiling. Three out of the fourteen batches failed the uniformity of mass test, with those failing from the informal market. One of these also failed the quantitative chemical assay and dissolution test. Four other ibuprofen batches were from the same manufacturer but had differences in packaging, raising suspicions of counterfeiting. Two more ibuprofen samples were from the same manufacturer but failed the appearance test due to differences in shape, size, and colour. The remaining batches passed all tests. All samples tested contained the stated active pharmaceutical ingredient (API), ibuprofen, but three were reported as substandard for uniformity of weight, chemical assay test, or dissolution test. The article highlights the significance of maintaining the safety of medicinal products and the development of analytical methods and anti-counterfeit technologies to ensure the authenticity of products.
in the market are of good quality and reduce the risk of substandard products may pose to consumers (Arzamastev et al., 2004; Deisingh, 2005; Bansal et al., 2013; Shah et al., 2010). Reports suggest that in a number of developing countries, there is a high incidence of the availability of substandard drugs mainly due to poor monitoring programs (Morris and Stevens, 2006; WHO, 2006; Kelesidis et al., 2007).

According to WHO (2006), poorly manufactured pharmaceutical products may be classified as either substandard or counterfeit. In the same report, the WHO describes substandard products as those that contain the active pharmaceutical ingredient (API) but do not conform to the quality requirements for that product such as incorrect quantities of the API or fails other physical tests such as the weight variation test, friability, hardness, disintegration test, thickness and diameter test. The WHO standards further describe a counterfeit drug as one that is deliberately and fraudulently mislabeled with respect to identity and or source.

In this study, the quality of ibuprofen tablets found in the formal and informal market in the city of Harare, Zimbabwe was reported. The chemical structure of ibuprofen is shown in Figure 1.

MATERIALS AND METHODS

Sampling

Fourteen batches of ibuprofen tablets comprising of sixty tablets per batch were sampled over a period of six months in Harare, Zimbabwe’s largest city. The sampled tablets from the formal and informal market originated from Kenya, India, Cyprus and China. Table 1 summarises the samples obtained.

Chemicals and chemical reagents

Chemicals used for various experiments were of analytical reagent grade unless otherwise stated. Ibuprofen reference standard was obtained from United States Pharmacopoeia (Rockville, USA), Lot Numbers KOJ009. Potassium dihydrogen orthophosphate and sodium hydroxide were purchased from Surechem Products Ltd., RSA and orthophosphoric acid from Minema Ltd., RSA. HPLC grade methanol was purchased from Merck (Pvt) Ltd. Water for HPLC analysis was Millipore purified.

Equipment

A Shimadzu LC-20AD HPLC equipped with a SPD-2AD UV/Vis detector was used for HPLC profiling and quantitative determination of API. A Distek apparatus (USA) was used for dissolution tests and a Shimadzu UV1800 UV/Vis spectrophotometer was used for quantitative determination of API dissolved in the media. For the friability test, an Erweka friabilator (Germany) was used.

Sample characterization methods

Test for uniformity of mass

The method for uniformity of mass determination was adapted from Okunlola et al. (2009). Exactly 20 tablets were weighed individually and relative standard deviations were used to determine the variation in mass.

Friability test

The friability test method was adapted from Ngwaluka et al. (2009). Exactly 20 pills were weighed initially and then placed in a friabilator for 4 min. The final mass was then determined. The friability of the tablets was calculated using equation 1:

\[
F(\%) = \frac{W_2 - W_1}{W_1} \times 100
\]

Where F % is the percentage friability, \(W_1\) is the initial weight and \(W_2\) is the final weight. The friability value of tablets should be less than 1.0%.

Disintegration test

Disintegration test method was adapted from Dewan et al. (2013). Exactly six pills were individually suspended in 800 mL of water, equilibrated to and maintained at 37 ± 0.5°C. The disintegrator operated for 30 min. The time taken for each tablet or capsule to completely disintegrate was recorded.

API determination

An HPLC method adapted from Sunaric et al. (2013) Eraga et al. 2015 was used for the determination of API in the ibuprofen samples. Exactly 20 pills were weighed and ground into a fine powder. A quantity of the powdered tablets containing 200 mg of ibuprofen was weighed into a 100 mL volumetric flask, shaken with about 30 mL of the mobile phase and sonicated for 30 min. The mixture was allowed to cool to room temperature and made up to volume with the mobile phase. This mixture was then centrifuged for 5 min at 2500 rpm. The supernatant liquid was used as the sample solution. The chromatographic conditions were as follows: Mobile phase (methanol: water: orthophosphoric acid (750:247:3), C18 5 µm Luna column: 4.6 mm x 15 cm, flow rate: 1.0 mL/min, injection volume: 10 µL, detection: 264 nm. The percentage released API was calculated using Equation 2.

\[
\text{Content} (\%) = \frac{A_s \times \text{potency} \times \text{sample dilution factor}}{A_i \times \text{specific gravity} \times \text{label claim}} \times 100\%
\]

Where, \(A_s\) is the mean area response of the sample and \(A_i\) is the mean area response of the standard, \(C_{\text{label}}\) is the concentration of standard in µg/mL.

Dissolution test

The dissolution test method was adapted from Kulkarni et al. (2011) and Giri et al. (2013). Exactly 6 tablets per batch were suspended in 900 mL of phosphate buffer solution of pH 7.2 that had been brought to an equilibrium temperature of 37 ± 0.5°C. The dissolution process was monitored over a 90 min period. Aliquots of 10 mL were withdrawn at intervals of 5, 10, 15, 20, 30, 45, 60 and 90 min and filtered through a 0.45 µm filter. 1 mL of the filtrate was pipetted into a 20 mL volumetric flask and made up to volume with the dissolution media. The concentration of API was determined using a UV/Vis spectrophotometer set at 220 nm. The percentage API released was calculated using Equation 3.
Table 1. Samples analysed.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Date of manufacture</th>
<th>Expiry date</th>
<th>Labelled strength (mg)</th>
<th>Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10/2013</td>
<td>09/2017</td>
<td>200</td>
<td>Informal</td>
</tr>
<tr>
<td>B</td>
<td>01/2015</td>
<td>12/2016</td>
<td>200</td>
<td>Informal</td>
</tr>
<tr>
<td>C</td>
<td>10/2013</td>
<td>10/2018</td>
<td>200</td>
<td>Formal</td>
</tr>
<tr>
<td>D</td>
<td>Not given</td>
<td>09/2017</td>
<td>200</td>
<td>Informal</td>
</tr>
<tr>
<td>E</td>
<td>11/2013</td>
<td>10/2017</td>
<td>200</td>
<td>Informal</td>
</tr>
<tr>
<td>F</td>
<td>05/2015</td>
<td>04/2017</td>
<td>200</td>
<td>Informal</td>
</tr>
<tr>
<td>G</td>
<td>07/2015</td>
<td>07/2020</td>
<td>200</td>
<td>Formal</td>
</tr>
<tr>
<td>H</td>
<td>Not given</td>
<td>04/2019</td>
<td>200</td>
<td>Informal</td>
</tr>
<tr>
<td>I</td>
<td>01/2014</td>
<td>12/2016</td>
<td>200</td>
<td>Formal</td>
</tr>
<tr>
<td>J</td>
<td>Not given</td>
<td>02/2017</td>
<td>400</td>
<td>Formal</td>
</tr>
<tr>
<td>K</td>
<td>Not given</td>
<td>11/2016</td>
<td>200</td>
<td>Formal</td>
</tr>
<tr>
<td>L</td>
<td>01/2015</td>
<td>12/2017</td>
<td>400</td>
<td>Formal</td>
</tr>
<tr>
<td>M</td>
<td>05/2015</td>
<td>04/2017</td>
<td>200</td>
<td>Informal</td>
</tr>
<tr>
<td>N</td>
<td>05/2015</td>
<td>04/2017</td>
<td>200</td>
<td>Informal</td>
</tr>
</tbody>
</table>

\[\text{Content (\%)} = \frac{A_u \times C_{\text{std}} \times \text{potency} \times \text{sample dilution factor}}{A_s \times \text{specific gravity} \times \text{label claim}} \times 100\% \tag{3} \]

Where, \(A_u \) is the mean area response of the sample and \(A_s \) is the mean area response of the standard, \(C_{\text{std}} \) is the concentration of standard in µg/mL.

RESULTS AND DISCUSSION

Uniformity of mass

The results for uniformity of mass for selected batches from the informal market are illustrated in Figure 2. From the figure, it can be observed that three batches failed the uniformity of mass test as stated in the British Pharmacopeia (2015). The batches consisted of two from the same manufacturer and were all from the informal market.

It can also be observed that seven out of twenty tablets of batch D failed the first condition of not more than ±5% whilst one of the tablets had a deviation more than ±10%. Three tablets of the tested batch H had variation of more than ±5% whilst one had more than ±10%. Avbunudiogba et al. (2013) suggested that variations in the uniformity of mass within the same batch is a strong indication of poor manufacturing practises that may lead to different dosages on different occasions if the mass of the API differ from tablet to tablet. Batches D and H were from the same manufacturer.

Karmakar and Kibria (2012) described further that high variation in weight may be an indication of corresponding variation in the drug content. Accordingly, higher percentage variations in tablet weight may mean the active pharmaceutical ingredient will differ from one tablet to the next which may be detrimental to a patient who may end up being under dosed and overdosed on different occasions. However, it is also possible that since these ibuprofen tablets are film coated, poor manufacturing practices during the coating process may lead to high inconsistency in the amount of coating applied per tablet. This may lead to large variations in the weight but not necessarily affecting the amount of API available per tablet but probably affect the rate at which the API is released. Eleven out of the tested fourteen batches passed the uniformity of weight test.

Friability

Teklu et al. (2014) reported that friability tests may
indicate the resistance of the tablets to external pressure from manufacturing, storage, handling during shipment and transportation. All batches tested had % friability of less than 0.1%. The results show that all samples passed the friability test set by the WHO (2014). This may be attributed to the film coating that protects the tablet against abrasion.

Disintegration time results

The British Pharmacopoeia (2015) sets limits for disintegration of coated tablets as 30 min. All fourteen batches passed the disintegration test although some samples from certain batches had relatively high disintegration times ranging from 15 min 26 s to 22 min 56 s (Figure 3). Notably, samples from batches A, D, E, H, I and J had disintegration times ranging from 15 min 26 s to 22 min 56 s. Samples from batches A, D, E and H were from the informal market while those from batches I and J were from the formal market.

According to a report by Cardot et al. (2007), disintegration is the break down process of tablet into smaller particles and is the first step towards dissolution.

Figure 2. Uniformity of mass results for selected ibuprofen tablets batches.

Figure 3. Disintegration time results for ibuprofen tablets from fourteen batches.
It can be suggested that the longer the disintegration time, the longer the time taken before the API is absorbed by the body. It may therefore be assumed that the longer the disintegration time, the longer the time taken before the API is dissolved and absorbed by the body (Esimone et al., 2008; Niharika et al. 2013).

It was observed that batches A and E were from the same manufacturer, batches D and H from another manufacturer and so were batches I and J. From these observations, it could be concluded that the relatively high disintegration times observed could be related to the different manufacturing processes. Excipients such as binders and type of coating used play a major role in the rate at which a tablet breaks down into smaller particles and the way the API is released. If the binders have affinity for the API then more time is required before the API is released for absorption.

HPLC analytical results for API

The results for HPLC analysis are shown in Table 2. It can be concluded that batches except ibuprofen sample H met the standard requirements. Samples from batch H contained 122.84 ± 0.87% of ibuprofen. It can be suggested that there is a high possibility that any patient who uses this sample will be overdosed by more than 12% of the maximum allowed ibuprofen per tablet. This sample happened to be from the informal market.

Dissolution test results

Dissolution of an oral pharmaceutical product is important because it gives an indication of the percentage of the drug that is available for absorption after a specific time. It therefore follows that high dissolution rate means high bioavailability of the drug content. The results for dissolution profiles are illustrated in Figure 4. All batches except batch H passed the dissolution test as more than 85% of the API was released within the stipulated time of 60 min. Although, the average content of API released for sample H is 97.38%, the % RSD of 13.58 means some tablets within the sample had a % API dissolved of below (Q) = 85%. The results show that samples from batch H were substandard as they failed the dissolution test.

From the dissolution profiles in Figure 4, samples from batches C, I and L had the highest dissolution efficiencies at T_{15}. These three products were obtained from retail pharmacies. Samples from batches A, B and D only had dissolution efficiencies comparable to those of samples from batches C, I and L after 30 min and these happened to be from the informal market.

The above results may show the risks of purchasing a pharmaceutical product from an informal market. Since most of the people who purchase these products use them for the relief of pain and inflammation, the longer it takes for the drug to be bioavailable, the higher the chances of an overdose. A different drug may be ingested to relieve pain when the other one is still in the system leading to improper drug interactions.

A pharmaceutical product of oral dosage form normally contains a drug substance known as the active pharmaceutical ingredient (API) and its excipients. The proportion between the excipients, the type of excipients (grade) and the manufacturing process may affect the bulk properties and absorption properties of the product. This gives each product a general dissolution pattern as illustrated in the Figure 4. Although, the same API-ibuprofen was analysed, differences in the manufacturing process, type and proportions were used for different brands leading to different dissolution profiles with the

Table 2. Results for HPLC analyses.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Replicate 1</th>
<th>Replicate 2</th>
<th>Replicate 3</th>
<th>Average</th>
<th>RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>105.47%</td>
<td>104.62%</td>
<td>103.91%</td>
<td>104.66%</td>
<td>0.74%</td>
</tr>
<tr>
<td>B</td>
<td>100.33%</td>
<td>101.03%</td>
<td>99.57%</td>
<td>100.31%</td>
<td>0.73%</td>
</tr>
<tr>
<td>C</td>
<td>101.68%</td>
<td>101.89%</td>
<td>101.45%</td>
<td>101.67%</td>
<td>0.22%</td>
</tr>
<tr>
<td>D</td>
<td>104.86%</td>
<td>103.77%</td>
<td>103.21%</td>
<td>103.95%</td>
<td>0.81%</td>
</tr>
<tr>
<td>E</td>
<td>99.97%</td>
<td>98.23%</td>
<td>99.71%</td>
<td>99.30%</td>
<td>0.95%</td>
</tr>
<tr>
<td>F</td>
<td>96.63%</td>
<td>96.05%</td>
<td>97.11%</td>
<td>96.60%</td>
<td>0.55%</td>
</tr>
<tr>
<td>G</td>
<td>100.71%</td>
<td>102.39%</td>
<td>101.20%</td>
<td>101.43%</td>
<td>0.85%</td>
</tr>
<tr>
<td>H</td>
<td>123.67%</td>
<td>121.63%</td>
<td>123.22%</td>
<td>122.84%</td>
<td>0.87%</td>
</tr>
<tr>
<td>I</td>
<td>100.65%</td>
<td>100.67%</td>
<td>101.76%</td>
<td>101.03%</td>
<td>0.63%</td>
</tr>
<tr>
<td>J</td>
<td>101.06%</td>
<td>99.10%</td>
<td>100.12%</td>
<td>100.09%</td>
<td>0.98%</td>
</tr>
<tr>
<td>K</td>
<td>97.27%</td>
<td>96.69%</td>
<td>96.43%</td>
<td>96.80%</td>
<td>0.45%</td>
</tr>
<tr>
<td>L</td>
<td>98.93%</td>
<td>100.34%</td>
<td>99.23%</td>
<td>99.50%</td>
<td>0.75%</td>
</tr>
<tr>
<td>M</td>
<td>96.90%</td>
<td>96.24%</td>
<td>97.24%</td>
<td>96.79%</td>
<td>0.53%</td>
</tr>
<tr>
<td>N</td>
<td>95.28%</td>
<td>96.09%</td>
<td>97.23%</td>
<td>96.20%</td>
<td>1.02%</td>
</tr>
</tbody>
</table>
efficiencies increasing in the order \(D < A < B < K < I < L < C \) at \(T_5 \). It can also be observed from the results that samples of batches of the retail pharmacies generally had dissolution efficiencies consistent with regulatory requirements as compared to those in the informal market.

Batch to batch consistency

If a manufacturer is using a validated manufacturing process, results from one batch to the next are expected to be comparable such as those illustrated in Figure 5a and c showing results of samples from a retail pharmacy. More than 85% of the API had been released in 15 min for both batches. Similar profiles were also observed (Figure 5d) for the samples from batches D and H from the same manufacturer. Although, very low dissolution efficiencies were noted at \(T_{15} \), the dissolution profiles are similar in the rate at which the API is released.

The same however cannot be said for samples from batches B, F, M and N as illustrated in Figure 5b. Four different batches from the same manufacturer were analysed. Three of these batches (F, M and N) were manufactured in the same month according to the labels, and gave similar results but these three results differed from the results of the batch (Sample B) that had been produced earlier (Table 1).

From Figure 4, it can be noted that samples from batch D had the lowest dissolution efficiency at \(T_{15} \). This strongly correlates with disintegration profiles in Figure 3 that shows batches D and H from the same manufacturer having relatively the highest disintegration time.

This was not the case with samples from batches B, F, M and N in Figure 5b. The results deviate from the strong correlation suggested by Esimone et al. (2008). Samples from batch B had the least disintegration time of the four batches but it did not release the API as efficiently as the other three batches. This may raise concern to a regulator when presented with these results as samples from batch B had a different packaging as compared to the other three batches. The two packaging used shows variation in the way the batch number and date of expiry were printed. Samples from batch B had the batch details embossed on the blister pack whereas details for samples from batches F, M and N were stamped.

Visual appearances

There was also a difference in the font used to label the brand name with ibuprofen sample B having small letters throughout, whereas the other three batches had capital letters at the beginning and at the end of the product name, for example one sample being branded as ‘sample-ab’, whereas the other three samples were labeled as ‘Sample-AB’. The dimensions of the blister packs used also differed with ibuprofen samples from batch B being 9.5 x 3.7 cm, while the other three batches had 8.8 x 3.7 cm. It is possible for a manufacturer to change packaging for the same product in the same year but it also has an effect of introducing room for counterfeiting as there are chances that it will look like the original. Differences of this nature gives room for counterfeits as a fake product may be marketed so this sample was suspected to be a counterfeit where the branding may be falsified.

Ibuprofen samples from batches D and H also differed in appearance although they were manufactured under the same brand name. Shape, size and colour of the tablets differed as samples from batch H were smaller in diameter and more intense in colour. This raises suspicion of counterfeiting as samples from batch H failed the assay and dissolution tests that followed. Both
samples were different batches from the informal market. All batches from both informal and formal market did not contain a leaflet or package insert to explain dosage, medicine content, adverse effects, medicine action and how the medicine should be taken. This observation has serious health effects as not all patients ask for this information before use of medication and there is no guarantee on how accurate the information may be disseminated from supplier to end user.

HPLC profiling

Figure 6a to e shows variation in the HPLC profiles. Only one peak appeared in the ibuprofen standard profiles (Figures 6a), whereas profiles for ibuprofen samples from batches A, B, E, F, K, M and N had more than a single peak. All these samples except samples from batch K were from the informal market. Samples from batches B, F, M and N were samples from the same manufacturer and samples from batches A and E were from another manufacturer. Although, samples from batch K was from a formal market, it was not sold in the original packaging and therefore did not contain the brand name of the product, date of manufacture and country of origin for the product. The two peaks that were detected in these samples could have been excipients that are soluble in the mobile phase, impurities (either intentional such as undeclared APIs) or degradation products.

Conclusion

From the results obtained in this research, it can be concluded that out of the fourteen batches, three failed the uniformity of weight test and these were from the informal market. One out of these three that failed the uniformity of weight test also failed the quantitative chemical assay test and the dissolution test. Four other ibuprofen batches were from the same manufacturer but had differences in the packaging used therefore raising suspicion of the possibility of counterfeiting. Two more ibuprofen samples were from the same manufacturer but the appearance of these samples differed in shape, size and colour and therefore failed the appearance test. The other batches passed all the tests done. All the samples tested contained the stated API ibuprofen. However, the other three samples were reported as substandard as they failed to meet the WHO (2015) set standards for either uniformity of weight, chemical assay test or
dissolution test.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Cardot M, Beyssac E, Aleri M (2007). *In vitro-in vivo* correlation:

Antibacterial potential of the 80% methanol and chloroform extracts of *Clematis hirsuta*

Asmamaw Habtamu\(^1\) and Yalemtsehay Mekonnen\(^2\)

\(^1\)Department of Biology, Debre Markos University, Ethiopia.
\(^2\)Microbial, Cellular and Molecular Biology Department, Addis Ababa, University, Ethiopia.

Received 27 January 2016; Accepted 11 October, 2016

The leaves and roots of *Clematis hirsuta* Perr and Guill is traditionally applied to heal respiratory tract and for the treatment of various animal diseases in different regions of Ethiopia. The objective of this work is to evaluate the antibacterial activities of *C. hirsuta*. The leaves were collected and air dried in shade at room temperature, made into powder and was soaked in 80% methanol and chloroforms (1 g: 10 ml). The powder was placed in a shaker for 72 h at room temperature. The extract was prepared in 3% Tween 80 for antibacterial test. The antibacterial activities and the minimum inhibitory concentration (MIC) test were determined by paper disk diffusion and agar dilution methods respectively. The 80% methanol and chloroform extract of the leaves of *C. hirsuta* showed significantly higher inhibition zone than the negative control on some pathogenic bacteria (*Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Shigela boydii* and *Salmonella thyphi*), but the extracts had significantly lower inhibition zone than the standard drugs (chloramphenicol and ampicilin). The chloroform crude extract of the leaves *C. hirsuta* showed the best inhibition zone (12.33±0.50) on *P. aeruginosa* at 200 mg/ml concentration. The chloroform extract of *C. hirsuta* had the lowest MIC and minimum bactericidal concentration (MBC) at 3.125 and 6.25 mg/ml on *P. aeruginosa*, respectively. The 80% methanol *C. hirsuta* leaf extract was not toxic at 500, 1000 and 2000 mg/kg body weight to albino mice.

Keywords: Inhibition zone, acute toxicity, minimum inhibitory concentration, minimum bactericidal concentration.

INTRODUCTION

Medicinal plants are used in spiritual therapies, manual techniques and applied to treat, diagnose or prevent illness (WHO, 2013). In Ethiopia, more than 80% of the people use traditional medicines to apply them in various types of infections and disorders (Bekele, 2007). It is reported about 200,000 natural products are known, but most of drugs are isolated from higher plants and microorganisms (Rama and Mero, 2007). However, traditional practitioners in Ethiopia use the plants without scientific dose optimization. It has reported that different parts of the plant are used traditionally to treat different types of infections (Ogbulie et al., 2007). *Clematis hirsuta* belongs to family Ranunculaceae. It is perennial woody climber and measures up to 1 to 4 m long. It bears oppositely arranged compound leaves. Flower is borne in panicules with white or yellow color. Clematis species are known to have secondary metabolites including glycoside ranunculin, saponins, tritrepenoid, alkaloids and...
cynogenetic glycosides (Tresse and Evans, 1996). Thus the Clematis species are used as medicinal plants. Mainly C. hirsuta are used in folk medicine worldwide especially in Asia as anti-inflammatory, analgesics and anti-rheumatics (Al-Taweel et al., 2007). The petroleum ether and butanol extracts of C. hirsuta revealed the presence of sterols and triterpenes and has anti-inflammatory on rat model (Abdel-Kader et al., 2008). In the other studies, the methanolic and ethanolic extracts of the related species (C. ispahanica and C. orientalis) shows antibacterial activity (Raeli et al., 2013).

In Ethiopia, C. hirsuta with local name “Azo abebe” is used in folk medicine as analgesics and anti-rheumatics. Roots of C. hirsuta and Sida schimperiana (Malvaceae) are crushed, powdered and mixed with water for oral and nasal administration to treat blackleg and C. hirsuta accounts 36.73% of all medicinal plant considered in the study for the treatment of various animal ailments in Bale Districts (Yineger et al., 2007). C. hirsuta is also used to heal respiratory tract problem and cataract in Meinit ethnic group, southern part of Ethiopia (Giday et al., 2009). Thus, the study aimed at evaluating the antibacterial activities of the 80% methanol and chloroform extracts of leaves of on C. hirsuta some pathogenic bacteria.

MATERIALS AND METHODS

Methanol (Reagent chemical Services Ltd., United Kingdom), chloroform (Merck KGaA, 64271, Darmstadt, Germany), nutrient agar (Oxoid LTD., Bisingstoke, Hampshire, England), Muller-Hinton agar (Oxoid LTD., Bisingstoke, Hampshire, England), barium chloride sulfuric acid (SDFCL Fine Chemical Ltd., Mumbai, India), Tween-80 (Uni-Chem Chemical Reagents), sodium chloride (Nik Cheemical, India), ampicillin (Oxoid Ltd., United Kingdom), chloramphenicol (Oxoid Ltd., United Kingdom), barium chloride (BDH Chemicals Ltd. Poole, England) were used.

Preparation of solvent extraction

The fresh leaves of C. hirsuta were washed three times with tap water and once with sterile distilled water. After wash, the plant materials were air dried in shade at room temperature (25 to 30°C) for two weeks until it became completely dry. Following the drying process, about 0.3 kg leaves was powdered and sieved through a fine mesh (Canadian Series sieves with 5×10^{-4} opening) and stored in dry bottle at temperature for further use as described in Subbarayan et al. (2010). About 0.05 kg of powder of C. hirsuta was soaked into 0.5 L of chloroform and 0.5 l 80% methanol in separate flasks. The mixtures in the erlenmeyer flask were placed on a platform shaker of 120 rpm for 72 h at room temperature (Mohana et al., 2009). Then, the solutions were filtered by Whatman no. 1 filter papers and the solvent extract was concentrated separately under reduced pressure using rotary flash evaporator at 45°C. After complete evaporation of the solvent each the extract was weighed and in dissolved in 3% Tween-80 for biological assay.

Anti bacterial susceptibility test determination of leaf extracts of C. hirsuta

S. aureus, E. coli, P. aeruginosa, S. boydii and S. thyphi were taken from Microbiology Department, Ethiopian Public Health Institute (EPHI), Addis Ababa. The standard bacteria were screened for susceptibility at different doses (50, 100 and 200 mg/ml) of C. hirsuta extracts and standard antibiotics ampicillin (30 μg/disk) and chloramphenicol (30 μg/disk). Bacterial broth culture was prepared at a density of 10^8 cells ml^{-1} which approximately equals to 0.5 McFarland standards. The test microorganisms were uniformly swabbed on the Mueller Hinton Agar (MHA) using the cotton swab. The paper disc diffusion technique was applied to determine the antimicrobial activities of the tested plant extracts. Sterile paper discs (6 mm in diameter) immersed in stock solutions containing 50, 100 and 200 mg/ml prepared in 3% Tween-80 of plant extracts and allowed to dry for 15 min to allow it to diffuse and paper disks were placed on uniformly swabbed agar plate using sterile forceps. The plates were then incubated for 24 h at 37°C and diameters of the inhibition zones were recorded. All tests were carried out in triplicates.

Minimum inhibitory concentration (MIC) determination by agar dilution method

Minimum inhibitory concentration (MIC) was determined by agar dilution methods as described by European society of clinical microbial and infectious diseases (ESCMID, 2000). Nineteen millimeter of molten Mueller Hinton agar (MHA) and 1 ml of extracts from each plant at different concentration (50, 25, 12.5, 6.75 and 3.125 mg/ml) were mixed thoroughly and poured on Petri dish. Petri dishes then were allowed to dry to avoid drops of mixture. The bacterial suspensions in 0.85% saline contains about 1.5×10^8 cells ml^{-1} colony forming unit (CFU) which were standardized with 0.5 Macfarland. 1 μl of bacterial suspension (approximately 1×10^4 CFU) was inoculated on plate having Muller Hinton agar and extracts as described above. After drying the inoculums spot, the plates were incubated at 37°C 24 h. The MIC was determined by observing the growth bacteria with our naked eyes.

Minimum bactericidal concentration (MBC) determination

Some portions of tests were taken from the (MIC) test plate and were sub-cultured on solid nutrient agar by making streaks on the surface of the agar. The plates were incubated at 37°C for 24 h and the MBCs were determined after 24 h. Plates that did not show growth were considered to be the MBC for the extract.

Oral acute and sub-acute toxicity tests

Oral acute and sub acute toxicity tests were done according to OECD guideline (2001). The Swiss albino mice which were obtained from Ethiopian public health institute (EPHI) and reared in animal house in department of biology, college of natural science, Addis Ababa University were used. The mice were starved for 3 h before the experiment began with only water allowed and 1 to 2 h...
Table 1. Percentage extract yield from the leaves of chloroform C. hirsuta extracts.

<table>
<thead>
<tr>
<th>Solvents/plant extract</th>
<th>Dry powder (g)</th>
<th>Solvent (ml)</th>
<th>Ratio (w/v)</th>
<th>Yield (g)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% Methanol/ C. hirsuta</td>
<td>50</td>
<td>500</td>
<td>1:10</td>
<td>7.88</td>
<td>15.75</td>
</tr>
<tr>
<td>Chloroform/ C. hirsuta</td>
<td>50</td>
<td>500</td>
<td>1:10</td>
<td>4.94</td>
<td>9.9</td>
</tr>
</tbody>
</table>

Table 2. The bacterial inhibition zone of leaves extract of C. hirsuta on some bacteria (mg/ ml).

<table>
<thead>
<tr>
<th>Extract/solvent</th>
<th>Dose (mg/ml)</th>
<th>Mean inhibition ±SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. coli</td>
<td>P. aeruginosa</td>
</tr>
<tr>
<td>C.h/Me</td>
<td>50</td>
<td>a$^{6.67±0.01}$d</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>a$^{7.5±0.05}$d</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>a$^{9.3±0.12}$d</td>
</tr>
<tr>
<td>C.h/Ch</td>
<td>50</td>
<td>a$^{7.04±0.04}$d</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>a$^{8.5±0.05}$d</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>a$^{10.7±0.14}$d</td>
</tr>
<tr>
<td>A</td>
<td>30 µg</td>
<td>12.5±0.29d</td>
</tr>
<tr>
<td>C</td>
<td>30 µg</td>
<td>12.5±0.29d</td>
</tr>
</tbody>
</table>

C.h = Clematis hirsuta; Me = 80% methganol; Ch = chloroform; A = ampicilin; C = chloroaphinicol; T80 = Tween 80; a = A inhibition; b = C inhibition; C = chloroamphnicol; = is significantly higher than; = is significantly lower than; = T80 inhibition.

After the extracts were given. Female Swiss albino mice, 5 in each group were administered orally with 500, 1000 and 2000 mg/kg body weight from each extract which was dissolved in 3% Tween 80 within 0.2 ml for test and 0.2 ml 3% Tween were administered as control. For acute toxicity studies; gross physical changes within 24 body and weight measured for 14 days. At end of the experiment the experimental mice were anesthesia with chloroform and discarded.

Data analysis

Data was analyzed by using window software; IBM SPSS, version 20. The results were presented as the Mean±Standard Error of the Mean (Mean±SEM) and statistical significance was considered as a 95% confidence interval (P<0.05). For toxicity test and bacterial sensitivity test was compared by using one way ANOVA and followed by Tukey’s test.

RESULTS

The crude extract percentage yield

The highest and minimum yield of the C. hirsuta extract obtained from 80% methanol and a chloroform 15.75 and 9.9%, respectively as shown in Table 1.

The bacterial inhibitions of chloroform and 80% methanol extract of C. hirsuta are presented as shown in Table 2. The highest inhibition zone (12.33±0.05 mm) was recorded on P. aeruginosa at the concentration (200 mg/ml) whereas; the lowest inhibition zone (6.37±0.17 mm) was recorded from methanol extract at the concentration (50 mg/ml) on S. aureus.

The minimum inhibitory concentration (MIC) of leaves of C. hirsuta was determined on five tested bacteria at concentration range of 50 to 1.56 mg/ml as shown in Table 3.

The minimum bactericidal concentration is presented in Table 4. Most bacteria showed their MBC at 6.25 and 12.5 mg/ml.

Acute toxicity test of 80% methanol C. hirsuta leaf extract on albino mice

Since 80% methanol C. hirsuta leaf extract the highest yield and supposed to dissolve all metabolites dissolved by chloroform; only 80% methanol C. hirsuta leaf extract was used to determine oral acute toxicity.

The methanol extracts of the leaves of C. hirsuta was administered orally with a single dose of 500, 1000 and 2000 mg/kg body weight to mice.

There were no physical signs such as depression, decrease in feeding activities and hair erection after 80% crude extract administration of C. hirsuta. Similarly, there was no mortality in the 14 days follow up after crude extract administration. The weight of the mice increases significantly in each group from day 0 to day 7 and 14 in both extract and water administered mice as shown in
DISCUSSION

Clematis species are known to have different pharmaceutical compounds including glycosides, saponins, alkaloids, xanthones and anthocyanidins (DaCheng et al., 2013). Anthocyanins is type of flavonoids which can be used as antioxidant activity as hydrogen donating free radical scavengers, anti-inflammatory properties and maintain a healthy heart and urinary tract (Rice-Evans et al., 1996, Prior and Cao, 2000). Researches revealed that alkaloids have pharmacological applied as anesthetics and CNS stimulants (Madziga et al., 2010). Saponin is known to have antiplasmoidal activities (Traore et al., 2000). In this research, the crude chloroform extract of the leaves of C. hirsuta showed the highest inhibition zone (12.33±0.50 mm) on P. aeruginosa at the concentration (200 mg/ml) and followed by S. typhi (11.60±0.12 mm), E. coli (10.7±0.14 mm), S. boydii (10.34±0.13 mm) and S. aureus (10.26±0.16 mm), respectively by agar disk diffusion methods. On the other hand, the methanol extract of C. hirsuta leaf at the concentration of 200 mg/ml had 8.00±0.29, 9.3±0.12, 8.5±0.50, 9.00±0.06 and 7.90±0.05 mm inhibition on S. aureus E. coli P. aeruginosa S. boydii and S. typhi, respectively. Thus, the chloroform extracts of the leaves had significantly higher inhibition zone than the 80% methanol at the same concentration (200 mg/ml). On the other hand, researches in Iran revealed the antimicrobial activities of C. orientalis on S. aureus E. coli P. aeruginosa S. boydii and S. typhi, respectively. As concentration increases from 50 to 200 mg/ml in both extracts, bacterial inhibition zone increased. From this, it is suggested that the plant extracts had dose dependent antibacterial activities.

C. hirsuta leaves also showed a pronounced antifungal activity against the three dermatophytes tested on T. rubrum, M. canis, and E. floccosum and yeast C. albicans at the concentration of greater to equal 46.9 mg/ml (Cos et al., 2002). The inhibition zone of the standards drug chloroamphenicol (30 μg) was interpreted in such a

Table 4. Determination of minimum bactericidal concentration (MBC).

<table>
<thead>
<tr>
<th>Bacterial spp.</th>
<th>Extract</th>
<th>Concentration in mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.5625</td>
</tr>
<tr>
<td>E. coli</td>
<td>C. hirsuta<sup>a</sup></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>C. hirsuta<sup>b</sup></td>
<td>+</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>C. hirsuta<sup>a</sup></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>C. hirsuta<sup>b</sup></td>
<td>+</td>
</tr>
<tr>
<td>S. aureus</td>
<td>C. hirsuta<sup>a</sup></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>C. hirsuta<sup>b</sup></td>
<td>+</td>
</tr>
<tr>
<td>S. boydii</td>
<td>C. hirsuta<sup>a</sup></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>C. hirsuta<sup>b</sup></td>
<td>+</td>
</tr>
<tr>
<td>S. typhi</td>
<td>C. hirsuta<sup>a</sup></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>C. hirsuta<sup>b</sup></td>
<td>+</td>
</tr>
</tbody>
</table>

^a 80% methanol; ^b chloroform; +, growth of bacteria; -, no growth; *, minimum inhibitory concentration.

Table 5. Acute toxicity test of 80% methanol C. hirsuta leaf extract against body weight.

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose (mg/kg)</th>
<th>Solvent/extract</th>
<th>Pre (D0)</th>
<th>Post (D7)</th>
<th>Post (D14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>NC</td>
<td>Water</td>
<td>25.97±0.29</td>
<td>34.77±0.17</td>
<td>36.5±0.19</td>
</tr>
<tr>
<td>b</td>
<td>1000</td>
<td>Me/ C.h</td>
<td>25.52±0.15</td>
<td>34.6±0.25</td>
<td>35.36±0.16</td>
</tr>
<tr>
<td>c</td>
<td>2000</td>
<td>Me/ C.h</td>
<td>25.80±0.20</td>
<td>34.62±0.49</td>
<td>35.33±0.14</td>
</tr>
</tbody>
</table>

NC = negative control; Me = 80% methanol; C.h = Clematis hirsuta. a = weight of mice before extract administration; b = weight of mice at 7 days extract administration; c = weight of mice at 14 days extract administration; w1 = weight of mice before water administration; w2 = weight of mice at 7 days water administration; w3 = weight of mice at 14 days of water administration; * = significantly higher weight than; # = significantly lower weight than.
way that its bacterial inhibition resistant (≤12 mm), intermediate (13-17 mm) and sensitive (≥18 mm) as described in Bauer et al. (1966). Based on these criteria, the chloroamphenicol inhibition on S. boydii (23.66±0.33 mm) and S. typhi (26.83±0.6 mm) in this research was more sensitive. In the contrary, the ampicillin inhibition on S. aureus E. coli P. aeruginosa was 18.4±0.29, 12.5±0.29 and 15.33±0.33, respectively. The chloroform extract of C. hirsuta on P. aeruginosa showed the minimum inhibition concentration and minimum bacterial concentration at 3.125 and 6.25, respectively.

C. hirsuta is used to heal respiratory tract problem and cataract in Meinit ethnic group (Giday et al., 2009). This research agreed with traditional healers in that the two plant extracts inhibit the growth of bacteria such as P. aeruginosa infecting and affecting the skin. The 80% methanol leaf of C. hirsuta in this research (2000 mg/kg) on mice did not reveal any sign symptom and mortality. This result is agreeable to Bhosale et al. (2010). The weight of the mice was also considered as a parameter in the determination of acute toxicity at 500, 1000 and 2000 mm/kg. For this, OECD guideline (2001) was used as a reference for testing the extracts. The weight of mice before treatment significantly increased in both extract and water administered mice at all concentrations on days 7 and 14. This data showed the extracts at or lower 2000 mg/kg are not toxic to mice.

Conclusion

C. hirsuta is one of the major herbal plants used in Ethiopia. Both 80% methanol and chloroform extracts of the leaf of C. hirsuta showed antibacterial properties on some pathogenic bacteria (E. coli, P. aeruginosa, S. aureus, S. boydii and S. typhi) at 50, 100 and 200 mg/ml. Furthermore, the 80% methanol extracts of C. hirsuta leaf was not toxic to albino mice at or less than 2000 mg/kg body weight. Thus, this plant is supposed to have antimicrobial properties therefore, further isolation and compound identification is recommended for biological studies.

CONFLICTING INTEREST

The authors declare that they have no conflict of interest.

ACKNOWLEDGEMENTS

The authors are pleased to acknowledge the Department of Microbial, Cellular and Molecular Biology, Addis Ababa University and Debre Markos University for facilitating laboratory work.

REFERENCES

