ABOUT JEN

The Journal of Entomology and Nematology (JEN) (ISSN: 2006-9855) is published monthly (one volume per year) by Academic Journals.

Journal of Entomology and Nematology (JEN) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as applications of entomology in solving crimes, taxonomy and control of insects and arachnids, changes in the spectrum of mosquito-borne diseases etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JEN are peer-reviewed.

Contact Us

Editorial Office: jen@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JEN
Submit manuscript online: http://ms.academicjournals.me/
Editor

Prof. Mukesh K. Dhillon
ICRISAT
GT-Biotechnology, ICRISAT, Patancheru 502 324, Andhra Pradesh, India

Dr. Lotfalizadeh Hosseinali
Department of Insect Taxonomy
Iranian Research Institute of Plant Protection
Tehran, P. O. B. 19395-1454, Iran

Prof. Liande Wang
Faculty of Plant Protection,
Fujian Agriculture and Forestry University
Fuzhou, 350002, P.R. China

Dr. Raul Neghina
Victor Babes University of Medicine and Pharmacy
Timisoara, Romania

Prof. Fukai Bao
Kunming Medical University
191 Western Renmin Road, Kunming, Yunnan, PR of China

Dr. Anil Kumar Dubey
Department of Entomology,
National Taiwan University, Sec. 4, Lane 119, Taipei, Taiwan 107

Dr. Mona Ahmed Hussein
National Research Centre, Centre of Excellence for Advanced Sciences, El-Behooth Street, Dokki, Cairo, Egypt

Associate Editors

Dr. Sam Manohar Das
Dept. of PG studies and Research Centre in Zoology,
Scott Christian College (Autonomous),
Nagercoil – 629 003,
Kanyakumari District, India

Dr. Leonardo Gomes
UNESP
Av. 24A, n 1515, Depto de Biologia, IB, Zip Code: 13506-900,
Rio Claro, SP, Brazil.

Dr. J. Stanley
Vivekananda Institute of Hill Agriculture
Indian Council of Agricultural Research, Almora– 263601, Uttarakhand, India

Dr. Ramesh Kumar Jain
Indian Council of Agricultural Research,
Division of Nematology, IARI
New Delhi-110012, India

Dr. Hasan Celal Akgul
Istanbul Plant Quarantine Service, Nematology Laboratory
Halkali Merkez Mahallesi, Halkali Caddesi, No:2, 34140 Halkali, Kucukcekmece-Istanbul
Turkey

Dr. James E. Cilek
Florida A & M University
4000 Frankford Avenue, Panama City, Florida 32405
USA

Dr. Khan Matiyan Rahaman
Bidhan Chandra Krishi Viswavidyalaya
AICRP (Nematode), Directorate of Research,
BCKV, PO. Kalyani, Dist. Nadia, PIN-741235,
West Bengal, India

Manas Sarkar
Defence Research Laboratory
(DRDO, Ministry of Defence, Govt. of India)
Post Box No.2, Tezpur-784001, Assam, India
Mehdi Esfandiari
Department of Plant Protection
College of Agriculture,
Shahid Chamran University of Ahvaz,
Ahvaz, Iran

Prof. Dr. Mahfouz M. M. Abd-Elgawad
Nematology Laboratory
Department of Phytopathology
National Research Center El-Tahrir St., Dokki 12622,
Giza,
Egypt

Matthew S. Lehnert
Department of Entomology, Soils, & Plant Sciences
Clemson University, Clemson,
United States

Wenjing Pang
3318 SE 23rd Avenue
Gainesville, FL 32641
Agronomy and Biotechnological College,
China Agricultural University, Beijing,
China

Dr. G. Shyam Prasad
Directorate of Sorghum Research (DSR),
Rajendranagar, Hyderabad 500030, AP,
INDIA

Dr. Rashid Mumtaz
Date Palm Research
Plant Protection Department
Food & Agricultural Sciences
King Saud University, Riyadh
Kingdom of Saudi Arabia

Editorial Board

Godwin Fuseini
International SOS Ghana,
Newmont Ghana Gold,
Ahafo mine,
Ghana.

Dr. Waqas Wakil
Department of Agriculture Entomology,
University of Agriculture, Faisalabad,
Pakistan

Gilberto Santos Andrade
Universidade Federal de Viçosa
Avenida Peter Henry Rolfs, s/n Campus Universitário
36570-000
Viçosa - MG - Brazil

Ricardo Botero Trujillo
Calle 117 D # 58-50 apto. 515
Pontificia Universidad Javeriana, Bogotá,
Colombia

Dr. D. N. Kambrekar
Regional Agricultural Research Station,
UAS Campus, PB. No. 18,
Bijapur-586 101 Karnataka, INDIA

Dr. P. Pretheep Kumar
Department of Forest Biology
Forest College & Research Institute
Tamil Nadu Agricultural University
Mettupalayam – 641 301
Tamil Nadu, INDIA

Dr. Raman Chandrasekar
College of Agriculture Entomology
S-225, Agriculture Science Center
University of Kentucky
Lexington, KY 40546-0091
USA.

Dr. Rajesh Kumar
Central Muga Eri Research and Training Institute
Lahotipara, Jorhat 785700, Assam,
India
Prof. Ding Yang
Department of Entomology, China Agricultural University, 2 yuanmingyuan West Road, Haidian, Beijing 100193, China

Dr. Harsimran Gill
University of Florida
970 Natural Area Drive, PO Box 110620, Gainesville, Florida - 32611

Dr. Mehdi Gheibi
Department of Plant Protection, College of Agriculture, Shiraz Islamic Azad University, Shiraz, Iran

Dr. Nidhi KakKar
University College, Kurukshetra University, Kurukshetra, Haryana, India

Dr. Marianna I. Zhukovskaya
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences 44 Thorez Ave, 194223, Saint-Petersburg, Russia

Gaurav Goyal
University of Florida
282#14 Corry village, Gainesville, Fl. 32603, USA

Gilberto Santos Andrade
Universidade Federal de Viçosa
Avenida Peter Henry Rolfs, s/n Campus Universitario
36570-000 Vicosa - MG - Brazil

Joshi Yadav Prasad
Gyanashwor Kathmandu, Nepal
G P O Box: 8375 EPC: 5519, Kathmandu, Nepal India

Baoli Qiu
Department of Entomology, South China Agricultural University No 463, Wuxian Road, Tianhe, Guangzhou, PR China 510640

T. RamaSubramanian
Central Research Institute for Jute and Allied Fibres (Indian Council of Agricultural Research) Barrackpore, Kolkata – 700 120, India

Leonardo Gomes

Hasan Celal Akgul
Istanbul Plant Quarantine Service, Nematology Laboratory Halkali Merkez Mahallesi, Halkali Caddesi, No:2, 34140 Halkali, Kucukcekmece-Istanbul/Turkey

J. Stanley
Vivekananda Institute of Hill Agriculture Indian Council of Agricultural Research, Almora–263601, Uttarakhand, India

Atef Sayed Abdel-Razek
National Research Centre, Dept. of Plant Protection El-Tahrir Street, Dokki, Cairo, Egypt
ARTICLE

The electron microscopic examination of fungal distortions in the adult red flour beetle, *Tribolium castaneum* H. (Coleoptera: Tenebrionidae)

Bosly A. Hanan
The electron microscopic examination of fungal distortions in the adult red flour beetle, *Tribolium castaneum* H. (Coleoptera: Tenebrionidae)

Bosly A. Hanan

Biology Department, Faculty of Science, Jazan University, Jazan, Saudia Arabia.

Received 27 February, 2017; Accepted 18 April, 2017

The red flour beetle (*Tribolium castaneum*) is one of the main pests infecting cereals and causes damage to stored grains. Many pests, including beetles, are susceptible to infection by naturally occurring insect-pathogenic fungi (entomopathogenic fungi). In the present study, wheat flour collected from the local markets in the Jazan region of Saudi Arabia and dead bodies of *T. castaneum* adults were separated. The fungi associated with these insect dead bodies were identified. The result concluded that the most dominant fungi were *Beauveria bassiana* (61.67%) and *Verticillium lecanii* (38.33%). Fungi showed different stages of infection, such as adhesion, spore germination and mycelium colonization in the insect cadavers, as illustrated by scanning electron microscopy (SEM). The deformations, mycelium extortion and colonization, decomposition and erosion of the cuticle occurring in the different parts of the insects' cadavers were recorded by SEM. The results showed the presence of entomopathogenic fungi *B. bassiana* or *V. lecanii* on *T. castaneum*, as well as the susceptibility of *T. castaneum* adults to these fungi.

Key words: Stored wheat flour; *Tribolium castaneum*, *Beauveria bassiana*, *Verticillium lecanii*; scanning electron microscopy (SEM).

INTRODUCTION

Tribolium castaneum Herbst 1797 (Coleoptera: Tenebrionidae), is a cosmopolitan and serious pest of cereal grains and their products. This insect is unable to feed on the intact grains but causes considerable loss of flour weight, which is a significant economic problem (Shafique et al., 2006; Ali et al., 2009; Almaši and Poslončec, 2014). A positive correlation was observed between the intensity of infestation and damaged proteins and fats of wheat; however, a negative correlation was found with carbohydrates (Wakil et al., 2003). In addition, the correlation between the intensity of infestation and agroclimatic conditions such the conditions in Jazan region in Saudi Arabia has also been previously mentioned (Bosly and Kawanna, 2014). Entomopathogenic fungi are...
considered to be important mortality factors for insects and were identified based on the fungal growth observed on insect cadavers. They have also been proposed as biological control agents of insects (Vega et al., 2009; Wakil et al., 2014; Lacey et al., 2015). The fungal growth depends on the climatic conditions that favor insect infestation (Rezazadeh et al., 2013). A study in Babylon province on wheat flour samples revealed the presence of Aspergillus, Penicillium, Fusarium, Cladosporium, Alternaria, Mucor, Rhizoctonia, Trichoderma, Rhizopus, Nigrospora, Bipolaris, Macrophomina, in the decreasing order of frequency. The study revealed a positive correlation between moisture content and molds (Al-Defiery and Merjan, 2015). A previous study on wheat flour samples from Jazan region market found live adult, larvae, cast skin of T. castaneum and isolated four Aspergillus species from the stored wheat flour and from the different live insect stages; the isolated species prevalence being A. flavus, A. niveus, A. terreus and A. niger (Bosly and Kawanna, 2014). Also, (Wakil et al., 2014) isolated from the T. castaneum cadavers were Aspergillus sp., Fusarium sp., Alternaria sp., Rhizopus sp., Penicillium sp. and Mucor sp. Few studies have investigated the modes of infection and the histopathology of fungi in selected insects of economic importance (Toledo et al., 2010; Wakil et al., 2014).

Scanning electron microscopy (SEM)

Ten insect samples exhibiting different degrees of deformation and obvious surface fungal growth were chosen. The candidate insects were fixed by immersion in 4% glutaraldehyde (GA) with a 0.2 M pH 7.2 sodium-cacodylate (CAC) buffer for 6 h. Specimens were then fixed in 1% osmium tetroxide (OsO4) in a 0.1 M pH 7.2 sodium-cacodylate (Na(CH3)2AsO3·3H2O) buffer for one hour. Fixation and dehydration were performed in plastic Eppendorf tubes. After fixation, specimens were dehydrated in 30, 50, 70, 90 and 100% acetone series. The insects were finally washed three times in a 100% acetone solution. The critical point drying using CO2 followed and the last stage of preparation was the gold-palladium coating for 120 s (Güerri et al., 2010). The examination and photography were performed through a Joel Scanning Electron Microscope (JSM-T 330 A) equipped with image recording and processing system (Sem Afore).

RESULTS AND DISCUSSION

Results showed the percentage of spreading of the fungi over the Tribolium castaneum cadaver surface was 61.67% with B. bassiana and 38.33% with V. lecanii (Table 1). Micrographs of SEM (Figures 1 and 2) revealed spreading of the fungi over the cadaver surface in a manner of adherence of the fungal conidia to the insect cuticle followed by germination and penetration through the cuticle. Entomopathogenic fungi, like most fungal pathogens of plants and vertebrates, infect insects

<table>
<thead>
<tr>
<th>Replicate</th>
<th>B. bassiana infected T. castaneum/R</th>
<th>% B. bassiana</th>
<th>V. lecanii infected T. castaneum/R</th>
<th>% V. lecanii</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>20/30</td>
<td>66.67</td>
<td>10/30</td>
<td>33.33</td>
</tr>
<tr>
<td>R2</td>
<td>17/30</td>
<td>56.67</td>
<td>13/30</td>
<td>43.33</td>
</tr>
<tr>
<td>R3</td>
<td>18/30</td>
<td>60.00</td>
<td>12/30</td>
<td>40.00</td>
</tr>
<tr>
<td>R4</td>
<td>19/30</td>
<td>63.33</td>
<td>11/30</td>
<td>36.67</td>
</tr>
<tr>
<td>Total</td>
<td>74/120</td>
<td>61.67</td>
<td>46/120</td>
<td>38.33</td>
</tr>
</tbody>
</table>

The data represent the number and percentage of insects’ dead bodies in each replicate (R) (n=30) evidenced fungal growth by either B. bassiana or V. lecanii.
Figure 1. Scanning electron micrographs representing *Verticillium lecanii* adhesion, colonization and penetration on the cuticle of *T. castaneum* at different magnifications (A and B-35x, C-750x and D-1500x).

Figure 2. Scanning electron micrographs of *T. castaneum* showing decomposition and deformation of a large portion of head and thorax. The decomposed parts covered with masses of mycelium and spores of *B. bassiana* demonstrated at different magnifications (A-35X, B-100X, C-100X and D150X).
through the external cuticle. Fungi spread throughout the insect obtaining nutrients, leading to the death of the host by physiological starvation 3 to 7 days after infection. Fungi species initially produce rounded protoplasts to avoid detection by insect hemocytes and fungi circulate within the insect hemolymph and produce toxin. Hyphomycete of fungi circulate within the insect hemolymph and the toxin production is carried out by blastospores. After the death of the insect host, the fungus appears from the dead host, and sporulation occurs on the outside of the cadaver (Samson et al., 2013). The main events in the initial stages of fungal infection begin with the attachment of conidia to the insect cuticle and expression of a variety of hydrolytic enzymes such as proteases, chitinases, and lipases, and other factors, promote germination and growth of the fungus across the surface of the host, and subsequent hyphae penetration of cuticular layers. This is because, during the lipolytic activity, free fatty acids are released, thus contributing to host adhesion. Lipids are primarily the first barriers in epicuticle acting against pathogenic microbes, thus reinforcing the importance of these enzymes in penetration and, hence, infection (Wakefield, 2006; Xiao et al., 2012; Zheng et al., 2012; Wakil et al., 2014; Gao et al., 2015). This is because the insect cuticle's outermost layer (epicuticle) is a hydrophobic barrier rich in lipids that is followed by the procuticle containing chitin and sclerotized protein, which is divided into the exo-, meso-, and endo-cuticular layers. The procuticle, followed by the epidermis, surrounds the internal structures of the insect. Hence, the climatic suitability from temperature and moisture, as previously mentioned, is required for the fungal growth as the fungus generates heat and moisture as it grows (Fandohan et al., 2003). The authors of the previous study (Bosly and El-Banna, 2015) isolated nine fungal species belonging to eight fungal genera from the surface of dead bodies of *T. castaneum* separated from stored wheat flour collected from Jazan market. The results indicated that *B. bassiana* and *V. lecanii* were the most dominant fungi among those isolated from *T. castaneum* cadavers followed by *Sporothrix* spp., *Hirsutella versicolor*, *Ganulomanus* sp., *Modern Rhizoctonia solani* and *Moellerella* sp., *Aspergillus fumigatus* and *A. flavus*. That showed decomposition, deformation and superficial fungal growth. *Beauveria bassiana* was recorded to be the most dominant fungi among those isolated from the dead red flour beetles of wheat flour samples collected from Jazan (18 out of 62, that is, 28.1%) (Bosly and El-Banna, 2015). Figure 2 showed decomposition and deformation of a large portion of the head and thorax of the insect, and these parts were covered with masses of mycelium and spores of *B. bassiana*. Figure 3 showed severe infection of the insect’s broken leg covered with heavy masses of the branched fungi forming a net covering the infected spacemen. *B. bassiana* is a popular registered mycoinsecticide that has a target list of 700 host insect species. It is ubiquitous in distribution and is pathogenic to a wide spectrum of arthropods. Its host range spans most orders of class Insecta (Schapovaloff et al., 2014). The present study is in line with a previous study (Hasun et al., 2013) as the treatment with *B. bassiana* isolation (second concentrations 35×10⁸ spore/ml) developed higher rates of loss in adults of *T. castaneum* insect by 41.5%. A previous study (Wright and Ramos, 2002) found that *B. bassiana* affected a wide variety of insect groups (beetles, caterpillars, trips, aphids, etc.). Another study recorded the highest concentrations (1×10⁸ conidia/ml) of *B. bassiana* suspension in laboratory conditions causing 100% mortality after 9 days (Zamani et al., 2013). *Beauveria bassiana* was ranked at the top of entomopathogenic fungi widely distributed in the *T. castaneum* cadavers and the highest recorded percentage mortality at 7-days post inoculation of the recovered *B. bassiana* isolates from insect cadavers quantified against larvae of *T. castaneum* (Wakil et al., 2014). *B. bassiana* is produced as a commercial product causing high mortality of adults *T. castaneum* (Khashaveh et al., 2010).

Scanning electron micrographs represented in Figures 4 and 5 shows *T. castaneum* infection with *V. lecanii* in the form of adhesion and colonization on the legs with remarkable haloes around the spores and cleavage of the cuticle as well as hyphae penetration of the inner lining of the insect’s mouth and complex eye. In Figure 6, *V. lecanii* colonization in the abdomen and the insect’s body appear as a mass of mycelium with a few spores with cleavage of the cuticle and the presence of the fungal growth inside the body. The strain of *V. lecanii* was screened in a study (Hasan et al., 2013) and proved to be an efficient producer of protein and polysaccharide degrading enzymes (amylase, protease, and lipase). It was found to be an outstanding source of enzyme secretion and can be rationally utilized towards the production of improved mycopesticides. Humidity and temperature are the most important climatic factors that influence the growth of *V. lecanii* (Schuler, 1991). The fungus was first observed in Ceylon (Sri Lanka) in 1861 on diseased *Lecanium coffeae*. It was subsequently found by Zimmermann on *Lecanium viride* on coffee plants in Java (Indonesia) and briefly described by him under the name *Cephalosporium lecanii* in a short paper in 1898 (Petch, 1925). The fungus *V. lecanii* infects invertebrate hosts through the external cuticle in three phases as entomopathogenic fungi - adhesion, germination of the fungal spores on the host cuticle, penetration of the insect integument by a germ tube, and development of the fungus inside the insect body, resulting in the death of the infected host. Under optimum humidity conditions, the dead host is covered by the fungal spores and hyphae, as shown in Figures 2 and 3 (AALAVO, 2015). Currently, formulations of *L. lecanii* are
Figure 3. Scanning electron micrographs representing severe infection of broken legs of *T. castaneum* covered with a heavy mass of *B. bassiana* growth, forming a net covering the infected specimen at different magnifications (A-350, BandC-750, E-1500x).

Figure 4. Scanning electron micrographs representing *V. lecanii* fungal adhesion and colonization on the legs (tumor) of *T. castaneum* showing remarkable haloes around the spores and cleavage of the cuticle at different magnifications (A-35x, B-200x, C-350x and D-750x).
Figure 5. Scanning electron micrographs representing *V. lecanii* hyphae penetrating the inner lining of the mouth of *T. castaneum* and showing attached fungal spores in the insect’s eye complex (A-35x, B-350x, C & D-200x).

Figure 6. Scanning electron micrographs illustrating *V. lecanii* colonization in the abdomen and one side of the insect body appear as mass of mycelium with only a few spores (A-35x, B-100x, C & D-150x), and cleavage of the cuticle and the presence of the fungal growth inside the body (E-350x).
commercialized under the name of Mycotal® Vertalec® by the Dutch-based company, Koppert BV (Deacon, 2006). The results from a previous study to control the rust red beetle (T. castaneum) confirmed that treatment with the commercial Mycotal from the fungus L. muscarium in the concentration of 1×10³ spore/ml showed higher rates of loss in adult insects by 38.5% (Hussein et al., 2013). The previously published work of the author isolated 17 isolates of V. lecanii out of a total of 62 (26.6%) and recorded as the second most dominant fungi among those isolated from red flour beetle of wheat flour samples collected from Jazan (Bosly and El-Banna, 2015).

Conclusion

Insects and fungi interact in various ways. The deformations, mycelium extortion and colonization, decomposition and erosion of the cuticle occurring in different parts of the insects' cadavers were recorded by scanning electron microscopy. The study showed the presence of B. bassiana and V. lecanii on T. castaneum, their susceptibility to fungal infections.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGMENT

The author would like to acknowledge the Faculty of Agriculture Cairo University Research Park (EM -Lab -FARP) for the identification of isolated fungi and the electron microscopy scanning.

FUNDING

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

REFERENCES

Journal of Entomology and Nematology

Related Journals Published by Academic Journals

- Biotechnology and Molecular Biology Reviews
- African Journal of Microbiology Research
- African Journal of Biochemistry Research
- African Journal of Environmental Science and Technology
- African Journal of Food Science
- African Journal of Plant Science
- Journal of Bioinformatics and Sequence Analysis
- International Journal of Biodiversity and Conservation