ABOUT JOMS

Journal of Oceanography and Marine Science (JOMS) is published monthly (one volume per year) by Academic Journals.

Journal of Oceanography and Marine Science (JOMS) is an open access journal that publishes high-quality solicited and unsolicited articles, in English, in all areas of Oceanography and Marine Science. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. All articles published in JOMS are peer-reviewed.

Contact Us

Editorial Office: joms@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JOMS
Submit manuscript online http://ms.academicjournals.me/
Editors

Dr. Ayman Abd El-Moneim El-Gamal
Department Marine Geology
Coastal Research Institute
Egypt.

Dr. Benjamin Mwashote
Earth, Ocean and Atmospheric Science,
Florida State University.
USA.

Dr. Ruby Asmah
Water Research Institute
Ghana.

Prof. Eric O. Odada
Geology Department
University of Nairobi
Kenya.

Dr. Francis K. E. Nunoo
University of Legon,
Ghana.
Growth and exploitation parameters of Ilisha africana, by-catch of the experimental fishing for the study on selectivity of gill nets for Ethmalosa fimbriata, in the Saloum estuary and Joal (Senegal)

Faye A., Diouf M., Sarr A., Ndiaye W., Mbodj A. and Sow D.
Full Length Research Paper

Growth and exploitation parameters of *Ilisha africana*, by-catch of the experimental fishing for the study on selectivity of gill nets for *Ethmalosa fimbriata*, in the Saloum estuary and Joal (Senegal)

Faye A.1*, Diouf M.1, Sarr A.1, Ndiaye W.1, Mbdj A.1 and Sow D.2

1University Institute of Fishing and Aquaculture (IUPA), Cheikh Anta Diop University (UCAD), Dakar, Senegal.
2Ecole Supérieure Polytechnique (ESP), Cheikh Anta Diop University (UCAD), Dakar, Senegal.

Received 6 February, 2017; Accepted 5 April, 2017

Growth and exploitation parameters *Ilisha africana* were determined from the size frequency for the first time in Senegal. The size distribution showed average sizes equal to 19.26 ± 1.70 and 19.75 ± 2.03 cm, respectively in the estuary and at the sea. The values of allometric rates of the length-weight relationship were, respectively equal to 2.88 and 2.93 in the estuary and at the sea indicating a negative allometric growth for this species. Von Bertalanffy growth parameters are estimated to $L_\infty = 24.7$ cm, $K = 0.33$ year$^{-1}$, $t_0 = -0.53$ in the estuary and $L_\infty = 25.5$ cm, $K = 0.34$ year$^{-1}$, $t_0 = -0.51$ at the sea with growth performance index, respectively equal to $\Phi' = 2.30$ and $\Phi' = 2.34$. The values calculated for the total mortality (Z), natural mortality (M) and the fishing mortality (F) were: $Z = 1.08$, $M = 0.93$, and $F = 0.14$ year$^{-1}$ in the estuary while at the sea these mortality rates were estimated respectively at $Z = 1.25$, $M = 0.91$, and $F = 0.33$ year$^{-1}$. The current exploitation rates in the estuary (0.10) and at the sea (0.25) indicated that *I. africana* was under-exploited in Senegal.

Key words: Allometric, mortality, Von Bertalanffy, condition factor.

INTRODUCTION

The small pelagic group consists of all the small fish that spend most or almost all of their adult phase on the surface or in open water. These species are totally free towards the bottom and are independent of the nature of the substrate (Laloë and Samba, 1989; Collignon, 1991). Among these small pelagic, the gender *Ilisha* occupies an important place. Species of the gender *Ilisha* (family Pristigasteridae) have a circumtropical distribution in estuaries and coastal waters, with one species in West Africa (*Ilisha africana*), two species in South America (one ducaquicole and one coastal) and 11 species in tropical Asia (Whitehead, 1985; Zhang et al., 2009).

I. africana is a species of this family (family: Pristigasteridae) and is very abundant in West African waters from Senegal to Angola (King, 1991). It is an estuarine species of marine origin (EM). *I. africana*
spends part of its life cycle in the estuary for feeding or breeding. Reproduction can also occur in the marine area. Its diet consisted of mysids, rubbish, decaped crustaceans and fish eggs (King, 1991; Abowei, 2010). *I. africana* is one of the small pelagic species whose biology is less known until now. The few works in the West African region on its biology were carried out in Nigeria (Marcus, 1982; King, 1991; Stokholm and Isebor, 1993; Fafioye and Oluajo, 2005; Abowei, 2010), Sierra Leone (Showers, 1996; Vakily and Cham, 2003), and Ghana (Yankson and Azumah, 1993); so this species is a representative species in the estuarine and coastal fisheries in West Africa. Because of its relatively low economic value that species did not attract the attention of biologists. Whereas in the future, it could be a target species for the fish flour processing industry.

In Senegal, there are no study on growth and reproductive biology of *I. africana* until then while it is relatively abundant in Senegalese waters. It is landed in relatively large quantities in the south of Senegal. The works of Simier et al. (2004) in the Sine Saloum estuary showed that *I. africana* is the most important small pelagic in terms of abundance after *Sardinella maderensis* and *Ethmalosa fimbriata*.

This work aims to provide knowledge about some aspects of the growth of *I. africana* in Senegal.

MATERIALS AND METHODS

Study area

The study was conducted in estuarine waters of the Saloum Delta (13° 35’ and 14° 10’ north and 16° 50’ and 17° 00’) and in coastal marine waters of Joal (14°13’30” and 14° 09’ 30” North and longitude 16° 52’ 30” and 16° 47’ 00”). These sites are both located at the south of Senegal. The Saloum estuary belongs to the category of inverse estuaries (Barusseau et al., 1985; Pages and Citeau, 1990; Diouf, 1996). This estuary is no longer receiving freshwater inflow. The estuary is characterized by a predominance of sea water due to the low slope, a positive gradient of salinity upstream-downstream and considerable losses by evaporation (Albaret and Diouf, 1994). Sine-Saloum presents upstream a hyperhaline situation with extreme salinity values that reach (sometimes exceed) four times those of the sea (Gning et al., 2008). The locality of Joal is characterized by sea water omnipresence with its Atlantic coastline that stretches over more than 10 km (Anonymous, 2010).

Sampling strategy

The samples were collected on a quarterly basis from September 2014 to June 2016 during the experimental fisheries for studying the selectivity of gill-nets for *E. fimbriata*. A gill-net with 28, 30, 32, 36, 40 and 46 mm side mesh was used. After each fishing haul, data on total length (L) in mm and body weight (W) in g were recorded for each individuals of *I. africana*.

Size structure

It is the length frequencies distribution. The measurements of the total length performed on specimens allowed to draw the size structure of *I. africana*. Length frequency data were grouped into 1 cm class intervals. The Student’s t-test at α = 0.05 significance level was used to verify difference between mean lengths of *I. africana* in the estuary and at the sea.

Length-weight relationship

For many of the fish species, the weight (W) is related to the size (L) by a non-linear relationship:

\[W = a \times L^b \]

(1)

where W is the total weight in g; L is the total length in cm; a is the coefficient related to the density and proportion of fish; b is the allometric rate. Knowledge of this relationship finds applications in fisheries biology and in the assessment of fish stocks (Kochzius, 1997). Length-weight relationships allow conversion of growth-in-length into growth-in-weight in stock assessment models of biomass from length frequency distributions, and estimation of fish condition (Petrakis and Stergiou, 1995; Morato et al., 2001; Furuya et al., 2014). Length-weight relationship is of great importance in fishery assessments (Garcia et al., 1989; Haimovic and Velasco, 2000). In order to verify if the b value was significantly different from the isometric (b = 3), the Student’s t-test with a confidence level of ±95% (α = 0.05) was employed.

Linear growth

The Von Bertalanffy model is the most commonly used for modeling fish growth with the following equation:

\[L_t = L_\infty \times \left[1 - e^{-k(t-t_0)} \right] \]

(2)

where \(L_t \) is the predicted length at age \(t \), \(L_\infty \) is the asymptotic length that an average fish would achieve if it continued to live and grow, \(K \) is the Von Bertalanffy curvature parameter and \(t_0 \) is the length at age zero. The ELEFAN in R software was used to estimate \(L_\infty \) and \(K \) of the Von Bertalanffy equation. It is a recently updated Electronic LENgth Frequency ANalysis method (Pauly and Greenberg, 2013). \(t_0 \) was estimated by using Pauly’s empirical equation (Pauly, 1979):

\[\log (t_0) = -0.3922 - 0.275 \times \log (L_\infty) - 1.038 \times K \]

(3)

The present results on the linear growth were compared with other studies by using the growth performance index (\(\Phi' \)) (Pauly and Munro, 1984):

\[\Phi' = \log (k) + 2 \log (L_\infty) \]

(4)

The Student’s t-test was used to confirm if the growth performance indexes (\(\Phi' \)) obtained for estuarine and marine individuals were significantly different or not.

Condition factor

The coefficient of condition has usually been represented by the letter K when the fish is measured and weighed in the metric system. The value of K is calculated from the weight and length, and can be used to estimate changes in nutritional condition. The formula most often used is:

\[K = (W/L^2) \times 100 \]

(5)

where W is the body weight in g, L is the total length in cm. In this study, the condition factor was calculated based on the warm
Exploitation parameters

A stock of a species undergoes an evolution characterized by gains (inputs) and losses (outputs). Gains are represented by the annual recruitment and fish growth while losses are due to total mortality (Z). Total mortality (Z) is the sum of fishing mortality (F) generated by the various fishing operations and a natural mortality (M) which expresses mortality from any cause other than fishing (Bouaziz, 2007).

Total mortality was estimated from length-converted catch curves by the method of the curve catches modified from age-structured catch curves with the ELEFAN in R software (Pauly and Greenberg, 2013). The different methods of estimating total mortality, which use linearized catch curve according to the size classes, were derived from the catch curve method based on ages (Ricker, 1980).

For estimation of natural mortality, several methods can be used. In the present work, the method of Pauly (1980, 1984a), which is recommended for pelagic fish was used. Pauly (1980) links natural mortality and growth parameters (L∞ and K), and the annual average temperature of the environment (T°) by the formula:

\[
\ln(M) = -0.0066 - 0.279 \ln(L_{\infty}) + 0.6543 \ln(K) + 0.4634 \ln(T)
\]

where M is natural mortality; L∞ is the asymptotic length that an average fish would achieve if it continued to live and grow, K is the Von Bertalanffy curvature parameter; T is annual average temperature of the environment (T°) by the formula:

\[
F = Z - M
\]

Exploitation rate (E), which represents the proportion of deaths due to fishing, was given by the following equation (Pauly, 1985):

\[
E = F/(F + M) = F/Z
\]

where E is the exploitation rate, F is the fishing mortality, M is the natural mortality and Z is the total mortality.

This rate indicates whether a stock is overfished or not depending on whether its value is greater or less than 0.5 (optimal value of E (E_{opt}) is close to 0.5).

Statistical analysis

Statistical processing and graphics were performed with Microsoft Office Excel 2010, ELEFAN in R and R softwares. The Student’s t-test was used to verify the significance of the results at α = 0.05 significance level.

RESULTS

Size structure

A total of 519 specimens were used in this study of which 190 sampled in the estuary and 329 at the sea. The length frequencies distribution of I. Africana is as shown in Figure 1. Size classes varied between 12 and 24 cm for individuals caught at the sea and 15 and 23 cm for those caught in the estuary, with mean lengths, respectively equal to 19.75 ± 2.03 and 19.26 ± 1.70 cm.

The comparison of average length of I. africana captured in the estuary and at the sea indicated that there was no significant difference between them (p>0.05). However, the length frequencies distribution showed that smaller and larger individuals were met in the sea.

Length-weight relationship

The length-weight relationships for I. africana in the estuary and at the sea were (Figure 2). The results obtained highlighted allometric coefficients (b) significantly less than 3 (p<0.05) reflecting a negative allometric growth (Table 1). The allometric coefficient (b) of I. africana was slightly greater for specimens caught at the sea. However, there was no significant difference (p>0.05) in allometric coefficient coefficients (b) for both areas.

Linear growth

The size frequency analysis was used to estimate L∞ and K parameters by ELEFAN in R software. The parameters (L∞, K) for individuals sampled at the sea and estuary are reported in Table 2. From the couple value (K and L∞), t0 and (Φ') were deducted and the growth equations of Von Bertalanffy were established (Table 2). It appears from the analysis of the results that the linear growth of I. africana was slightly faster for individuals from the sea.

Comparison of growth performance indexes between estuaries (Φ = 2.30) and marine (Φ = 2.34) specimens indicated that there was no significant difference (p>0.05) in linear growth.

From Von Bertalanffy growth equations, linear growth curves for I. africana were established (Figure 3). These curves have both the same look of growth. However, analysis of these curves indicated growth of I. africana was slightly faster at the sea. This slight difference was manifested in the first year of their life and remained in favor of marine individuals.

Condition factor

Box plots were used to represent the seasonal variation of the condition factor for I. africana at the sea (Kseason hot = 0.69 ± 0.06, Kseason cold = 0.07 ± 0.70) and in the estuary (Kseason hot = 0.71 ± 0.06; cold Kseason = 0.72 ± 0.05) (Figure 4). There were no significant differences (p>0.05) in condition factor between the two seasons in both areas (estuary and sea). However, the condition factor of I. africana was slightly better during the cold season in both areas.
Exploitation parameters

In the estuary, total mortality (Z), natural mortality (M) and fishing mortality were equal to 1.08, 0.93, and 0.14 year\(^{-1}\) at an annual average temperature of 29.5°C while at the sea, these mortality rates respectively were estimated at 1.25, 0.91 and 0.33 year\(^{-1}\) at annual average temperature of 27.4°C. The exploitation rates (E) were equal to 0.10 and 0.25 for estuarine and marine individuals, respectively.

DISCUSSION

Size structure

The sizes of fish caught vary between 12 and 24 cm for individuals sampled at the sea and 15 and 23 cm for those collected in the estuary. The smaller and larger size classes were encountered at the sea. This result could be related to environmental factors such as salinity. Indeed the Saloum estuary is an inverse estuary with salinity rates which reach four times those of the sea (Gning et al., 2008). Juveniles of *I. africana* would struggle to bear excessive salinity. This is in accordance with the results of Blaber et al. (1998) in the Sarawak estuaries in Malaysia. The juveniles of *Ilisha filiger*, *Ilisha pristigastroides*, *Ilisha elongata* and *Ilisha megaloptera* were recorded in low salinities (1 to 5) in the upper reaches of estuaries. The larger sizes encountered at the sea suggest that the reproduction could occur in marine waters. According to Vakily and Cham (2003), larger individuals were usually found in deeper water. The size ranges found in this study were similar to those of King (1996) (11.3 to 21.1 cm) in Qua Iboe estuary in Nigeria. However, other authors have sampled much smaller sizes for *I. africana*. It was the case of Vakily and Cham (2003) in Sierra Leone who worked on sizes which...
Figure 2. Length-weight relationships for *I. africana* in estuary and at sea.

Table 1. Parameters of length-weight relationship for *I. Africana*.

<table>
<thead>
<tr>
<th>Sites</th>
<th>Parameter</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Estuary</td>
<td>0.009</td>
<td>2.88</td>
</tr>
<tr>
<td>Sea</td>
<td>0.008</td>
<td>2.93</td>
</tr>
</tbody>
</table>

Table 2. Linear growth parameters of Von Bertalanffy for *I. Africana*.

<table>
<thead>
<tr>
<th>Areas</th>
<th>Parameter</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L∞ (cm)</td>
<td>K (year⁻¹)</td>
</tr>
<tr>
<td>Estuary</td>
<td>24.7</td>
<td>0.33</td>
</tr>
<tr>
<td>Sea</td>
<td>25.5</td>
<td>0.34</td>
</tr>
</tbody>
</table>
ranged between 6.5 and 19.1 cm. The difference in the size ranges could be due to the types of fishing gear used to catch this species or the origin of the samples (commercial fishing or experimental fishing).

Length-weight relationship

The allometric rate (b) values were respectively equal to 2.88 and 2.93 in the estuary and at the sea. This indicated a negative allometric growth for *I. africana* with an allometric rate slightly higher at the sea. The allometric rates (b) calculated for *I. africana* in this study were similar to those reported by Marcus (1982), King (1996), Fafioye Oluajo (2005) and Abowei (2010) in Nigeria. However, they were smaller than those reported by Vakily and Cham (2003) (Table 3). Changes in (b) values is subject to the shape and the adipose of the species and this is also dependent on others factors such as sex, spawning frequency, season (Olapade and Tarawallie, 2014, Bolarinwa, 2016). The slight difference in the allometric rate between the estuarian and marine individuals could be due to a higher trophic capacity at the sea or to an increased competition in the estuary. According to Bacha et al. (2010), variation of certain parameters such as the availability of food can affect fish growth.
Table 3. Parameters of length-weight relationship for *I. africana* from various regions.

<table>
<thead>
<tr>
<th>Country</th>
<th>Parameter</th>
<th>Locality</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigeria</td>
<td>a = -</td>
<td>b = 2.79</td>
<td>-</td>
</tr>
<tr>
<td>Nigeria</td>
<td>a = 0.008</td>
<td>b = 2.99</td>
<td>Qua Iboe estuary</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>a = 0.004</td>
<td>b = 2.94</td>
<td>Goderich village</td>
</tr>
<tr>
<td>Nigeria</td>
<td>a = 0.013</td>
<td>b = 2.79</td>
<td>Epe Lagoon, 2001-03</td>
</tr>
<tr>
<td>Nigeria</td>
<td>a = 0.060</td>
<td>b = 2.72</td>
<td>Nkoro River</td>
</tr>
<tr>
<td>Senegal</td>
<td>a = 0.009</td>
<td>b = 2.88</td>
<td>Estuary</td>
</tr>
<tr>
<td></td>
<td>a = 0.008</td>
<td>b = 2.93</td>
<td>Sea</td>
</tr>
</tbody>
</table>

Table 4. Parameters of Linear growth of *I. africana* from various regions.

<table>
<thead>
<tr>
<th>Country</th>
<th>Type of length</th>
<th>Parameter</th>
<th>Locality</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigeria</td>
<td>LT</td>
<td>L∞ (cm)</td>
<td>22</td>
<td>East of Niger Delta</td>
</tr>
<tr>
<td>Nigeria</td>
<td>LT</td>
<td>K an⁻¹</td>
<td>2.33</td>
<td>Sea</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>LT</td>
<td>Φ'</td>
<td>3.05</td>
<td>Goderich village</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>LF</td>
<td>Φ'</td>
<td>2.90</td>
<td>Sierra Leone Shelf</td>
</tr>
<tr>
<td>Senegal</td>
<td>LT</td>
<td>Φ'</td>
<td>2.30</td>
<td>Estuary</td>
</tr>
<tr>
<td></td>
<td>LT</td>
<td>Φ'</td>
<td>2.34</td>
<td>Sea</td>
</tr>
</tbody>
</table>

Linear growth

The condition factor (CF) is an individual variable that considers the relationship between the length and weight of the fish. This is a general indicator of "overweight" state for assessing the overall health of the individual. Easily measurable, it is commonly used because it integrates several processes at different levels of individual organization (Sanchez et al., 2007).

When confronted different parameter sets is not recommended to compare them one by one (Sparre and Venema, 1996). This is why, some authors recommend the comparison of growth performance indices (Φ') by combining several parameters of the Von Bertalanffy equation (Pauly and Munro, 1984; Chauvet, 1988; Chakroun-Marzouk and Ktari, 2003). The growth performance index (Φ') which has very similar values within neighboring taxa, proves the best overall growth performance index in that it has a minimum variance (Chakroun-Marzouk and Ktari, 2003). Growth performance indices found in this study in the estuary (Φ' = 2.30) and at sea (Φ' = 2.34) were lower than those found by Showers (1996), King (1997), Stockholm and Isebor (1992), and Vakily and Cham (2003), in Nigeria and Sierra Leone (Table 4). This indicates that the linear growth *I. africana* is quicker in these areas. These differences may also be due to the specific nature and ecological particularities of study areas. Indeed, Gulland and Rosenberg (1992) suggested that linear growth may vary from one water body to another, because environmental factors such as the productivity of the areas, the availability of food may vary.

The slightly slower growth for estuarine individuals might be in the estuary hypersaline. Indeed the major energy allocation to osmoregulation causes a decrease in growth in the estuary of the Saloum (Panfili et al., 2006). Certain factors such as increased salinity may also induce a reduction in the growth of some estuarine species (Panfili et al., 2004; Stierhoff et al., 2009).

Condition facteur

Seasonal variations of the condition factor are relatively low with a slight decrease in the hot season. This could be explained by several factors, including the abundance of food during the cold season when the waters are more productive with the phenomenon of upwelling. Another factor leading to the decline in the condition factor in the hot season is reproduction. During warmer months, *I. africana* should undergo a loss of energy related to the development of sexual products and sexual maturation of the gonads; which leads to a decrease in condition factor. According Gayanilo and Pauly (1997), condition factor can be affected by factors such as gender and sexual maturity. The results of King (1991) on reproductive *I. africana*
The authors have not declared any conflict of interests.

Journal of Oceanography and Marine Science

Related Journals Published by Academic Journals

- Journal of Internet and Information Systems
- Journal of Geology and Mining Research
- International Journal of Physical Sciences
- Journal of Environmental Chemistry and Ecotoxicology
- Journal of Petroleum Technology and Alternative Fuels