ABOUT JMPR

The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals.

The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peer reviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

Contact Us

Editorial Office: jmpr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JMPR
Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Akah Peter Achunike
Editor-in-chief
Department of Pharmacology & Toxicology
University of Nigeria, Nsukka
Nigeria

Associate Editors

Dr. Ugur Cakilcioglu
Elazig Directorate of National Education
Turkey.

Dr. Jianxin Chen
Information Center,
Beijing University of Chinese Medicine,
Beijing, China
100029,
China.

Dr. Hassan Sher
Department of Botany and Microbiology,
College of Science,
King Saud University, Riyadh
Kingdom of Saudi Arabia.

Dr. Jin Tao
Professor and Dong-Wu Scholar,
Department of Neurobiology,
Medical College of Soochow University,
199 Ren-Ai Road, Dushu Lake Campus,
Suzhou Industrial Park,
Suzhou 215123,
P.R.China.

Dr. Pongsak Rattanachaikunsopon
Department of Biological Science,
Faculty of Science,
Ubon Ratchathani University,
Ubon Ratchathani 34190,
Thailand.

Prof. Parveen Bansal
Department of Biochemistry
Postgraduate Institute of Medical Education and Research
Chandigarh
India.

Dr. Ravichandran Veerasamy
AIMST University
Faculty of Pharmacy, AIMST University, Semeling - 08100,
Kedah, Malaysia.

Dr. Sayeed Ahmad
Herbal Medicine Laboratory, Department of Pharmacognosy and Phytochemistry,
Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062, India.

Dr. Cheng Tan
Department of Dermatology, first Affiliated Hospital of Nanjing University of Traditional Chinese Medicine.
155 Hanzhong Road, Nanjing, Jiangsu Province, China. 210029

Dr. Naseem Ahmad
Young Scientist (DST, FAST TRACK Scheme)
Plant Biotechnology Laboratory
Department of Botany
Aligarh Muslim University
Aligarh- 202 002,(UP)
India.

Dr. Isiaka A. Ogunwande
Dept. Of Chemistry,
Lagos State University, Ojo, Lagos,
Nigeria.
Editorial Board

Prof Hatil Hashim EL-Kamali
Omdurman Islamic University, Botany Department, Sudan.

Prof. Dr. Muradiye Nacak
Department of Pharmacology, Faculty of Medicine, Gaziantep University, Turkey.

Dr. Sadiq Azam
Department of Biotechnology, Abdul Wali Khan University Mardan, Pakistan.

Kongyun Wu
Department of Biology and Environment Engineering, Guiyang College, China.

Prof Swati Sen Mandi
Division of plant Biology, Bose Institute, India.

Dr. Ujjwal Kumar De
Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122 Veterinary Medicine, India.

Dr. Arash Kheradmand
Lorestan University, Iran.

Prof Dr Cemşit Karakurt
Pediatrics and Pediatric Cardiology Inonu University Faculty of Medicine, Turkey.

Samuel Adelani Babarinde
Department of Crop and Environmental Protection, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

Dr. Wafaa Ibrahim Rasheed
Professor of Medical Biochemistry National Research Center Cairo, Egypt.
ARTICLE

Gas chromatography mass spectrometry/Fourier transform infrared (GC-MS/FTIR) spectral analyses of Tithonia diversifolia (Hemsl.) A. Gray leaves

Okereke Stanley C., Arunsi Uche O, Nosiri Chidi I and Nwadike Constance
Gas chromatography mass spectrometry/Fourier transform infrared (GC-MS/FTIR) spectral analyses of Tithonia diversifolia (Hemsl.) A. Gray leaves

Okereke Stanley C.1, Arunsi Uche O1*, Nosiri Chidi I1 and Nwadike Constance2

1Department of Biochemistry, Faculty of Biological and Physical Sciences, Abia State University, Uturu, Nigeria. 2Department of Medical Laboratory Science, Imo State University, Owerri, Nigeria.

Received 13 April, 2017; Accepted 15 May, 2017

Medicinal plants and its products remain the best therapeutic agents for the management of diseases and infections that affect the health of man. Owing to the recorded ethnomedicinal potentials of Tithonia diversifolia (Hemsl.) A. Gray, this study was aimed at investigating the gas chromatography combined with mass spectrometry (GC-MS) and Fourier transform infrared (FT-IR) spectral analyses of methanolic extract of leaves of T. diversifolia (Hemsl.) A. Gray using standard analytical methods. Results of the GC-MS spectral analysis of methanolic leaf extract of T. diversifolia (Hemsl.) A. Gray showed the existence of the following twenty nine (29) bioactive compounds: Ethylene oxide (2.04%), 1-Butanamine, 3-methyl- (0.71%), N-(3-Methylbutyl) acetamide (3.11%), Cyclopentane, 2-n-octyl- (3.33%), Cyclobutanol (0.73%), dl-Phenylephrine (1.53%), Phenylephrine (1.69%), Hexadecanoic acid, methyl ester (2.31%), 1,3-Cyclohexanediol (2.08%), Amphetamine (1.69%), n-Hexadecanoic acid (17.53%), 8-[N-Aziridylethylamino]-2,6-dimethylcyclohexene-2 (0.85%), Benzenemethanol, .alpha.-[(methylamino)methyl]-(0.58%), folic acid (1.32%), acetic acid, hydroxy[(1-oxo-2-propenyl)amino]- (1.11%), cis-Vaccenic acid (19.20%), Octadecanoic acid (7.67%), acetic acid, [(aminocarbonyl)amino]oxo-(0.85%), cis-11-Eicosenoic acid (4.50%), 4-Fluorohistamine (2.20%), 2,3-Dimethoxyamphetamine (0.74%), Benzeneethanamine, 2-fluoro-beta., 5-dihydroxy-N-methyl- (2.62%), 2-Propenamide, N-(1-cyclohexylethyl)- (1.73%), Erucic acid (5.82%), Acetamide, 2,2,2-trichloro- (0.85%), 2-Methoxy-N-methylthylethylamine (2.45%), acetic acid, chloro-, pentyl ester (4.97%), p-Hydroxynorephedrine (1.61%) and Metaraminol (1.28%); with Cis-vaccenic acid, n-Hexadecanoic acid and Octadecanoic acid as the most predominant bioactive compounds residents in the plant whereas that of Fourier transform infrared (FT-IR) showed the existence of alcohols, phenols, aldehydes, ketones, alkanes and primary amines. Based on these findings, it is opined that the methanolic extract of leaves of T. diversifolia (Hemsl.) A. Gray could be relied upon in traditional medicine for the management of certain infections and diseases that plague man especially those that dwell in rural areas.

Key words: Fourier transform infrared (FTIR), gas chromatography mass spectrometry (GC-MS), bioactive compounds, methanol extract, functional group, Tithonia diversifolia (Hemsl.) A. Gray.

INTRODUCTION

Medicinal plants and its products have been known over the years as effective ingredients for the management of diseases. The essentiality of these plants is due to bioaccumulation of chemical substances (Sofowora,
These substances generally referred to as phytochemicals, have been known to target biochemical pathways (Okereke et al., 2017). Other advantages of herbal products over synthetic drugs include affordability, bioaccumulation, higher safety margin, efficacy and quality (Ezekwesili et al., 2014). The concentrations of these phytochemicals in medicinal plants are affected by certain climatic factors and the time of harvest (Cetin et al., 2010). Currently, there is high dependence on the intake of traditional medicine. According to the report of the World Health Organization in 2008, about 80% of the world’s population relies solely on herbal preparations for their primary health care (Derwich et al., 2009). These and others reasons suggested over the years have made herbal products better therapeutic agents over synthetic drugs in the treatment and management of diseases.

Over the years, a lot of methods have been adopted to screen phytoconstituents present in medicinal plants. Some of these methods (Trease and Evans, 2002; Harbone, 2008) do not give information on the molecular structures, weights, formula, functional groups and biological activities of the plants. This limitation has led to the introduction of high throughput techniques of gas chromatography combined with mass spectrometry (GS-MS) and Fourier transform infrared (FT-IR). GC-MS and FT-IR are analytical and high throughput techniques which determine the different bioactive compounds and functional groups respectively present in biological samples. They are very sensitive and reliable when compared to preliminary phytochemical screening methods.

A pile of information has been published elucidating the bioactivity of medicinal plants used by indigenous people of Nigeria to manage diseases and infections. *T. diversifolia* (Hemls.) A. Gray happens to be one of such plants selected for possible phytochemical screening in this study. The plant, commonly known as Mexican Sunflower or the Tree Marigold, belongs to the Family Asteraceae and Order Asterales. It is locally known as Jogbo or Agale among the Yorubas and Izondiri in some eastern parts of Nigeria. In traditional medicine, the extracts of the various parts of the plant have been reported to exhibit anticancer, anti-bacterial, anti-proliferation and antidiabetic effects (Victor et al. 2004; Miura et al., 2005; Oyewole et al., 2008). Several folkloric claims on *T. diversifolia* have been established over the years, however, it is paramount to highlight the bioactive compounds responsible for these observations. Therefore, the thrust of this study was to isolate, identify and characterize possible bioactive compounds residents in the methanolic leaf extract of *T. diversifolia* (Hemsl.) A. Gray using high throughput techniques of GC-MS and FT-IR.

MATERIALS AND METHODS

Plant collection, identification and processing

T. diversifolia (Hemsl.) A. Gray leaves were harvested within the vicinity of Abia State University, Uturu, Isiukwuata Local Government Area of Abia State Nigeria. Uturu is located at the northern region of Abia State. The leaves of the plant were taken to the Department of Plant Science and Biotechnology (PSB) of the University for proper identification by an experienced botanist. Upon identification, the leaves were sorted to eliminate dirt, dust and other extraneous materials. They were washed in distilled water and then allowed to air dried. Upon drying, the leaves were pulverized into fine powder and kept in a polythene bag at room temperature prior to use.

Extraction of plant sample

Exactly two grams (2.0 g) of the pulverized leaf sample of *T. diversifolia* (Hemsl.) A. Gray was dispensed in fifty milliliter (50.0 ml) of methanol with gentle stirring for 72 h. The sample was kept in the dark for 72 h with intermittent shaking. After extraction, the solution was filtered through Whatmann No. 1 filter paper. The extract was concentrated with a rotary evaporator till dry powder was obtained, transferred to glass vials and kept at 4°C before use. The final residue produced was then subjected to GC-MS analysis (Kalimuthu and Prabakaran, 2013) and FT-IR analysis (Krishnaveni and Saranya, 2016).

Gas chromatography-mass spectrometry analysis (GC-MS)

The methanol extract of *T. diversifolia* (Hemsl.) A. Gray leaves were analyzed through GC-MS for the identification of different compounds. The GC-MS analysis was carried out by using Clarus 500 (Perkin – Elmer) Gas chromatograph equipped and coupled to a mass detector Turbo mass gold (Perkin – Elmer) spectrometer with an Elite – 5MS (5% Diphenyl / 95% Dimethyl poly siloxane, 30 m × 0.25 mm × 0.25 μm df) of capillary column. The oven was set to an initial temperature 110°C for 2 min, further increased up to 200°C at the rate of 10°C/min. Finally temperature was raised up to 280°C, at the rate of 5°C/min for 9 min. Helium gas (99.999%) was used as the carrier gas at constant flow rate of 1 ml/min. An aliquot of 2 μl of sample was injected into the column with the injector temperature at 250°C (Split ratio of 10:1). The electron ionization system with ionizing energy of 70 eV was used. Mass spectral scan range was set at 45 to 450 m/z.

Fourier transform infrared (FT-IR) analysis (FT-IR)

The sample was ground in a mortar to reduce the average particle size to 1 to 2 microns. Exactly 0.1 mg of finely pulverized sample was mixed with ground KBr. This mixture was then placed onto the face of a KBr plate with the second window on top. With a gentle circular and back-and-forth rubbing motion of the two windows, the
Identification of components

Interpretation of mass spectrum obtained from GC-MS was conducted using the database of National Institute Standard and Technology (NIST) having more than 82,000 patterns. The spectrum of the unknown component was compared with the spectra of the known components stored in the NIST library. The name, molecular weight, molecular formula and structure of the components of the test materials were ascertained.

Identification of functional groups

The FTIR spectrum was used to identify the functional groups of the active components present in plant sample based on the peaks values in the region of IR radiation. When the plant extract was passed into FTIR, the functional groups of the components were separated based on its peaks ratio.

RESULTS

A total of twenty nine (29) compounds were identified from the methanolic leaf extract of T. diversifolia (Hemsl.) A. Gray. The identification of the phytochemical compounds was confirmed based on the peak area; retention time and molecular formula were presented in Figure 1 and Table 1. The GC-MS analysis of methanol leaf extract of T. diversifolia (Hemsl.) A. Gray showed the presence of the following phytochemicals: Ethylene oxide (2.04%), 1-Butanamine, 3-methyl- (0.71%), N-(3-Methylbutyl)acetamide (3.11%), Cyclopentane, 2-n-octyl- (3.33%), Cyclobutanol (0.73%), dl-Phenylephrine (1.53%), Phenylephrine (1.69%), Hexadecanoic acid, methyl ester (2.31%), 1,3-Cyclohexanediol (2.08%), Amphetamine (1.69%), n-Hexadecanoic acid (17.53%), 8-[N-Aziridylethylamino]-2,6-dimethyloctene-2 (0.85%), Benzenemethanol, _alpha_-(methylamino)methyl]- (0.58%), Folic Acid (1.32%), Acetic acid, hydroxy[(1-oxo-2-propenyl)amino]- (1.11%), cis-Vaccenic acid (19.20%), Octadecanoic acid (7.67%), acetic acid, [(aminocarbonyl)amino]oxo- (0.85%), cis-11-Eicosenoic acid (4.50%), 4-Fluorohistamine (2.20%), 2,3-Dimethoxyamphetamine
stretching of aldehydes and ketones, the band at 1321.32 cm\(^{-1}\) shows C=O stretching of alcohols and phenols present in the extract. The bands at 1673.18 and 1717.84 cm\(^{-1}\) showed C=O of ketones. Within the areas at 1238.07 to 1243.14 cm\(^{-1}\) showed O-C stretching of carboxylic acids and their derivatives and the band at 1018.92 cm\(^{-1}\) showed C-O stretching of alcohols and phenols.

DISCUSSION

In the present work, exactly twenty-nine (29) compounds were isolated from the methanolic leaf extract of *Tithonia diversifolia* (Hemsl.) A. Gray. The identified compounds according to Duke are ethnobotanical and phytochemistry database (1998) possesses many biological properties. Among the identified bioactive compounds, n-Hexadecanoic acid has been reported to possess antioxidant, antiinflammatory, and hypolipidemic, hypoglycemic, antihypertensive, antiatherosclerotic, antiplaque, antiplatelet, anti-inflammatory, anti-allergic, and anti-hyperglycemic activities. Hexadecanoic acid, methyl ester, a derivative of palmitic acid has been found to have antioxidant, hypocholesterolemic, nematicide, pesticide, lubricant, anti-inflammatory, and hypocholesterolemic activities and hemolytic 5-alpha reductase inhibitors.
Figure 2. FTIR spectrum of methanolic extract of leaves of *T. diversifolia* (Hemsl.) A. Gray.

Table 2. FTIR analysis of methanolic extract of leaves of *T. diversifolia* (Hemsl.) A. Gray.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Wave number (cm⁻¹)</th>
<th>Functional group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1018.92</td>
<td>C-O (Alcohols and phenols)</td>
</tr>
<tr>
<td>2</td>
<td>1243.43</td>
<td>O-C (carboxylic acids/derivatives)</td>
</tr>
<tr>
<td>3</td>
<td>1321.32</td>
<td>A-CH₃ bending (Aldehydes and ketones)</td>
</tr>
<tr>
<td>4</td>
<td>1404.11</td>
<td>CH₂ and CH₃ deformation (alkanes)</td>
</tr>
<tr>
<td>5</td>
<td>1598.62</td>
<td>N-H (¹° Amines)</td>
</tr>
<tr>
<td>6</td>
<td>2850.16</td>
<td>CH₃, CH₂ and CH bands (Alkanes)</td>
</tr>
<tr>
<td>7</td>
<td>1918.51</td>
<td>CH₃, CH₂ and CH (2 or 3 bands) Alkanes</td>
</tr>
<tr>
<td>8</td>
<td>3283.33</td>
<td>O-H (H-bonded) (Alcohols and phenols)</td>
</tr>
</tbody>
</table>

Chandrasekaran et al. (2011) reported that hexadecanoic acid methyl ester has antibacterial and antifungal properties.

Ethylene oxide is used in healthcare industry for sterilization because of its non-damaging effects for delicate instruments and devices that require sterilization.
and for wide range of material compatibility. Ethylene oxide is used as a medical sterilant. Harris et al. (1998) observed that ethylene oxide is used as an accelerator of maturation of tobacco leaves and fungicides. Bhattacharya et al. (2014) isolated cis-vaccenic acid from the ethanolic extract of *M. oleifera* leaf. Available data has shown that cis-vaccenic acid has hypolipidaemic and antihypertensive activities.

Octadecanoic acid has antibacterial, soap lubricant and cosmetic potentials. These biochemicals could be responsible for the *in-vivo* activities of the extract of *T. diversifolia* against the proliferation of microorganisms as evidenced in the study of Ogundare (2007), Ayewole et al. (2008) and Anthony et al. (2015). Phenylephrine is marketed as an alternative for the decongestant pseudephedrine and clinical trials have shown that phenylephrine, taken orally at the recommended dose, is effective in relieving allergy (Horak et al., 2008). Amphetamine possesses the following recorded pharmaceutical targets weight reduction cognitive enhancers, improvement of brain development and nerve growth (Heal et al., 2013).

The FT-IR analysis is an effective analytical technique for the identification of the functional groups resident in biological sample. The existence of the following functional groups: Alcohols, phenols, aldehydes, ketones, alkanes and primary amines could be responsible for the already established ethnomedicinal properties of *T. diversifolia* (Hemsl.) A. Gray.

Conclusion

The methanolic leaf extract of *T. diversifolia* (Hemsl.) A. Gray has been suggested to be a reservoir of bioactive constituents, which could be used in the treatment of various diseases in future. However, isolation, identification and characterization of individual compounds and their biological activities need to be further unveiled. Based on the current findings, it was therefore concluded that the leaves of *T. diversifolia* (Hemsl.) A. Gray contains bioactive compounds relevant to traditional and clinical medicinal practitioners and as such should be further screened.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

Our gratitude goes to the Laboratory Technician Mr. C.N. Asomugha of the Department of Biochemistry, Faculty of Biological and Physical Sciences, Abia State University, Uturu, Nigeria and Sir Chukwuduru Chieme for their analytical support during the course of this study.

REFERENCES

Journal of Medicinal Plant Research

Related Journals Published by Academic Journals

- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- International Journal of Nursing and Midwifery
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Toxicology and Environmental Health Sciences