ABOUT AJPP

The African Journal of Pharmacy and Pharmacology (AJPP) is published weekly (one volume per year) by Academic Journals.

African Journal of Pharmacy and Pharmacology (AJPP) is an open access journal that provides rapid publication (weekly) of articles in all areas of Pharmaceutical Science such as Pharmaceutical Microbiology, Pharmaceutical Raw Material Science, Formulations, Molecular modeling, Health sector Reforms, Drug Delivery, Pharmacokinetics and Pharmacodynamics, Pharmacognosy, Social and Administrative Pharmacy, Pharmaceutics and Pharmaceutical Microbiology, Herbal Medicines research, Pharmaceutical Raw Materials development/utilization, Novel drug delivery systems, Polymer/Cosmetic Science, Food/Drug Interaction, Herbal drugs evaluation, Physical Pharmaceutics, Medication management, Cosmetic Science, Pharmaceuticals, Pharmacology, pharmaceutical research etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in AJPP are peer-reviewed.

Contact Us

Editorial Office: ajpp@academicjournals.org

Help Desk: helpdesk@academicjournals.org

Website: http://www.academicjournals.org/journal/AJPP

Submit manuscript online http://ms.academicjournals.me/
Editors

Himanshu Gupta
Department of Pharmacy Practice
University of Toledo
Toledo, OH
USA.

Prof. Zhe-Sheng Chen
College of Pharmacy and Health Sciences
St. John’s University
New York,
USA.

Dr. Huma Ikram
Neurochemistry and Biochemical Neuropharmacology Research Unit,
Department of Biochemistry,
University of Karachi
Karachi-75270
Pakistan

Dr. Shreesh Kumar Ojha
Molecular Cardiovascular Research Program
College of Medicine
Arizona Health Sciences Center
University of Arizona
Arizona,
USA.

Dr. Vitor Engracia Valenti
Departamento de Fonoaudiologia
Faculdade de Filosofia e Ciências,
UNESP
Brazil.

Dr. Caroline Wagner
Universidade Federal do Pampa
Avenida Pedro Anunciação
Brazil.

Dr. Ravi Shankar Shukla
Macromolecule and Vaccine Stabilization Center
Department of Pharmaceutical Chemistry
University of Kansas
USA.

Associate Editors

Dr. B. Ravishankar
SDM Centre for Ayurveda and Allied Sciences,
SDM College of Ayurveda Campus,
Karnataka
India.

Dr. Natchimuthu Karmegam
Department of Botany,
Government Arts College,
Tamil Nadu,
India.

Dr. Manal Moustafa Zaki
Department of Veterinary Hygiene and Management
Faculty of Veterinary Medicine,
Cairo University
Giza,
Egypt.

Prof. George G. Nomikos
Takeda Global Research & Development Center
USA.

Prof. Mahmoud Mohamed El-Mas
Department of Pharmacology,
Faculty of Pharmacy
University of Alexandria,
Alexandria,
Egypt.

Dr. Kiran K. Akula
Electrophysiology & Neuropharmacology Research Unit
Department of Biology & Biochemistry
University of Houston
Houston, TX
USA.
Editorial Board

Prof. Fen Jicai
School of Life Science, Xinjiang University,
China.

Dr. Ana Laura Nicoletti Carvalho
Av. Dr. Arnaldo, 455, São Paulo, SP.
Brazil.

Dr. Ming-hui Zhao
Professor of Medicine
Director of Renal Division, Department of Medicine
Peking University First Hospital
Beijing 100034
PR. China.

Prof. Ji Junjun
Guangdong Cardiovascular Institute, Guangdong General
Hospital, Guangdong Academy of Medical Sciences,
China.

Prof. Yan Zhang
Faculty of Engineering and Applied Science,
Memorial University of Newfoundland,
Canada.

Dr. Naoufel Madani
Medical Intensive Care Unit
University Hospital Ibn Sina, University Mohamed V
Souissi, Rabat,
Morocco.

Dr. Dong Hui
Department of Gynaecology and Obstetrics, the 1st
Hospital, NanFang University,
China.

Prof. Ma Hui
School of Medicine, Lanzhou University,
China.

Prof. Gu Huijun
School of Medicine, Taizhou University,
China.

Dr. Chan Kim Wei
Research Officer
Laboratory of Molecular Biomedicine,
Institute of Bioscience, Universiti Putra,
Malaysia.

Dr. Fen Cun
Professor, Department of Pharmacology, Xinjiang
University,
China.

Dr. Sirajunnisa Razack
Department of Chemical Engineering, Annamalai
University,
Annamalai Nagar, Tamilnadu,
India.

Prof. Ehab S. EL Desoky
Professor of Pharmacology, Faculty of Medicine
Assiut University, Assiut,
Egypt.

Dr. Yakisich, J. Sebastian
Assistant Professor, Department of Clinical Neuroscience
R54
Karolinska University Hospital, Huddinge
141 86 Stockholm ,
Sweden.

Prof. Dr. Andrei N. Tchernitchin
Head, Laboratory of Experimental Endocrinology and
Environmental Pathology LEEPA
University of Chile Medical School,
Chile.

Dr. Sirajunnisa Razack
Department of Chemical Engineering,
Annamalai University, Annamalai Nagar, Tamilnadu,
India.

Dr. Yasar Tatar
Marmara University,
Turkey.

Dr Nafisa Hassan Ali
Assistant Professor, Dow Institute of Medical Technology
Dow University of Health Sciences, Chand bbi Road, Karachi,
Pakistan.

Dr. Krishnan Namboori P. K.
Computational Chemistry Group, Computational
Engineering and Networking,
Amrita Vishwa Vidyapeetham, Amritanagar, Coimbatore-
641 112
India.

Prof. Osman Ghani
University of Sargodha,
Pakistan.

Dr. Liu Xiaoji
School of Medicine, Shihezi University,
China.
In vitro activity of selected Ghanaian medicinal plants against parasites: *Giardia lamblia, Entamoeba histolytica* and *Naegleria fowleri*

Gertrude Kyere-Davies, Christian Agyare, Yaw Duah Boakye, Trpta Bains, Brian M. Suzuki, James H. McKerrow, Conor R. Caffrey and Anjan Debnath
Full Length Research Paper

In vitro activity of selected Ghanaian medicinal plants against parasites: *Giardia lamblia*, *Entamoeba histolytica* and *Naegleria fowleri*

Gertrude Kyere-Davies¹, Christian Agyare¹*, Yaw Duah Boakye¹, Trpta Bains², Brian M. Suzuki², James H. McKerrow², Conor R. Caffrey² and Anjan Debnath²

¹Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
²Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Received 5 May, 2017; Accepted 8 June, 2017

*Corresponding author. E-mail: cagyare.pharm@knust.edu.gh, chrisagyare@yahoo.com. Tel: +233-246369803.

Key words: *Naegleria fowleri*, *Giardia lamblia*, *Entamoeba histolytica*, medicinal plants, geraniin, xylopic acid, *Albizia glaberrima*, *Margaritaria nobilis*, *Maerua angolensis*, *Ulva fasciata*

INTRODUCTION

Plants have been exploited for their medicinal use since 1500 BC (Chopra and Doiphode, 2002). They serve as a

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
source of medicine and are used to treat and prevent several infections, diseases and other ailments. The use of plant medicines is widely accepted in the culture and traditions of indigenous Africans and other nationalities such as India, China and Sri Lanka (Calixto, 2005; Ayyanan and Ignacimuthu, 2011).

There have been several reports on the use of medicinal plants in Ghana for wound infections and other diseases; the use of Erythrophleum ivorense (A. Chev.) in treating wounds (Adu-Amoah et al., 2014) and the use of Myrianthus arboreus and Alchornea cordifolia for treating wounds and other infections in Ghana (Agyare et al., 2014). There have also been reports on the use of Hilleria latifolia as an antinociceptive agent (Woode and Abotsi, 2011). The analgesic and anti-inflammatory activities of Xylopia aethiopica have been reported (Woode et al., 2012) and Phyllanthus muellerianus has been reported to possess anti-inflammatory activities (Boakye et al., 2016).

Entamoeba histolytica and Giardia lamblia are parasitic protozoa that cause gastrointestinal disorders such as diarrhea and dysentery. Metronidazole, the first line drug for the treatment is reported to have unpleasant side-effects such as a metallic taste, headache and dry mouth, and to a lesser extent nausea, glossitis, urticaria, pruritus and dark colored urine. In addition, carcinogenic, teratogenic and embryogenic properties have been documented when metronidazole is administered (Upcroft et al., 1999; Upcroft and Upcroft, 2001).

Naegleria fowleri is a free-living amoeba that causes primary amoebic meningocencephalitis (PAM). PAM is mainly managed with amphotericin B which has a very narrow therapeutic index making it toxic for use. The toxicity and adverse effects associated with the drugs used for the treatment of these parasitic infections underscore the need for newer medicines that are safe and effective for treating infections caused by these parasites. In this light, some Ghanaian medicinal plants were selected and screened against these parasites. The plants investigated were selected due to their antimicrobial and anti-inflammatory properties, and their ethnopharmacological uses in Ghana.

MATERIALS AND METHODS

Plant materials

Plants materials (Table 1) were obtained from the Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana. Xylopia acid and geraniin were isolated from X. aethiopica and Phyllanthus muellerianus, respectively. Marine algae were obtained from the beaches at Prampram, Sakumono, Osu and James Town in the Greater Accra region of Ghana. The plant samples were authenticated by Prof. Alex Asaase of the Department of Botany, University of Ghana, Legon, Ghana. Voucher specimens are kept at the Ghana Herbarium, University of Ghana, Legon, Ghana. The algae samples were authenticated by Mr. Emmanuel Klubi of the Department of Marine Science and Fisheries, University of Ghana, Legon, Ghana (Table 1).

Preparation of plant and algae materials

The extracts were prepared by cold maceration of 300 g of powdered dry plant material in stoppered flasks containing 700 mL of the respective solvent (acetone, ethyl acetate, pet ether and methanol (Sigma-Aldrich, MO, USA) for 1 week at room temperature (28°C). After filtration using Whatmann filter paper No. 1 (Whatmann, London, UK), the solvent was evaporated under reduced pressure in a rotary evaporator at 40°C until a solid mass was obtained. The percentage yield of the various extracts related to the dried powdered plant material was determined (Table 1). The different extracts were tightly sealed in glass vials and stored in the refrigerator at 4°C. Exhaustive successive extraction was performed on Erythrophleum ivorense bark and leaf to obtain acetone, ethyl acetate, pet ether and methanol fractions from the extracts. This was to obtain fractions of different polarities and find the most active fraction. This would also help in activity guided isolation of the active ingredient(s).

Table 1. Medicinal plants investigated for anti-parasitic activity.

<table>
<thead>
<tr>
<th>Botanical name</th>
<th>Family</th>
<th>Solvent</th>
<th>Part</th>
<th>Yield (%w/w)</th>
<th>Voucher specimen number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Margaritaria nobilis</td>
<td>Phyllanthaceae</td>
<td>Ethanol</td>
<td>Bark</td>
<td>10.19</td>
<td>KNUST/HM1/2015/S 001</td>
</tr>
<tr>
<td>Erythrophleum ivorense</td>
<td>Euphorbiaceae</td>
<td>70%v/v methanol</td>
<td>Bark</td>
<td>15.54</td>
<td>AA 45</td>
</tr>
<tr>
<td>Erythrophleum ivorense</td>
<td>Euphorbiaceae</td>
<td>70%v/v methanol</td>
<td>Leaves</td>
<td>9.76</td>
<td>AA 45</td>
</tr>
<tr>
<td>Maerua angolensis</td>
<td>Capparaceae</td>
<td>Ethanol</td>
<td>Bark</td>
<td>11.56</td>
<td>KNUST/FP/12/051</td>
</tr>
<tr>
<td>Hilleria latifolia</td>
<td>Phylotaccaceae</td>
<td>Methanol</td>
<td>Leaves</td>
<td>17.49</td>
<td>AA 63</td>
</tr>
<tr>
<td>Laportea ovalifolia</td>
<td>Urticaceae</td>
<td>Methanol</td>
<td>Leaves</td>
<td>11.29</td>
<td>AA 71</td>
</tr>
<tr>
<td>Albizia glabrerrima</td>
<td>Leguminosea</td>
<td>Ethanol</td>
<td>Bark</td>
<td>7.36</td>
<td>KNUST/HM1/2015/S 004</td>
</tr>
<tr>
<td>Phyllanthus muellerianus</td>
<td>Euphorbiaceae</td>
<td>Aqueous</td>
<td>Leaves</td>
<td>14.1</td>
<td>AA 102</td>
</tr>
<tr>
<td>Ulva fasciata</td>
<td>Ulvaceae</td>
<td>Chloroform/methanol</td>
<td>Whole alga</td>
<td>19.7</td>
<td></td>
</tr>
<tr>
<td>Sargassum vulgare</td>
<td>Sargssaceae</td>
<td>Chloroform/methanol</td>
<td>Whole alga</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>Hydropuntia dentata</td>
<td>Gracilariaceae</td>
<td>Chloroform/methanol</td>
<td>Whole alga</td>
<td>11.8</td>
<td></td>
</tr>
</tbody>
</table>
Source of compounds

Geraniin (96% w/w HPLC grade) was kindly provided by Prof. Dr. Andreas Hensel, Institute of Pharmaceutical Biology and Phytochemistry, University of Muenster, Muenster, Germany and had been isolated from the aqueous extract of the aerial parts of *P. muellerianus* and it was found to be the major compound (4.3% w/w, related to the dried plant material) (Agaye et al., 2011). Xylopic acid (95% w/w) was obtained from Prof. Dr. David Obiri Danso, Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, KNUST, Kumasi, Ghana. Xylopic acid (1.47% w/w, related to plant extract) was isolated from the fruits of *X. aethiopica* (Woode et al., 2012).

Test parasites

N. fowleri strain KUL, *E. histolytica* strain HM1:IMSS and *G. lamblia* WB strain used in all the experiments were maintained at the Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, USA (CDIPD, SSPPS, UCSD, USA). *E. histolytica* was maintained in TYI-S-33 medium (Diamond et al., 1978) supplemented with penicillin (100 U/mL), streptomycin (100 μg/mL) and 10% heat inactivated adult bovine serum (Sigma-Aldrich, MO, USA). *G. lamblia* trophozoites were cultured in TYI-S-33 modified medium supplemented with penicillin (100 U/mL), streptomycin (100 μg/mL) and 10% v/v heattreated fetal bovine serum. *N. fowleri* was maintained axenically in Nelson’s culture medium supplemented with 10% heat inactivated FBS and 1x penicillin (100 U/mL), streptomycin (100 μg/mL) in vented flasks.

Percentage inhibition = \[
\frac{\text{Mean of maximum signal reference control} - \text{Experimental value}}{\text{Mean of maximum signal reference control} - \text{Mean of minimum signal reference}} \times 100
\]

RESULTS AND DISCUSSION

For *E. histolytica*, only xylopic acid and geraniin were active with IC50 values of 4.80 (13.30 μM) and 34.71 μg/mL (36.44 μM), respectively (Table 2). Metronidazole, the positive control had an IC50 of 1.287 μM. All other extracts and fractions exhibited activity more than 100 μg/mL.

Extrants of *A. glaberrima*, *M. nobilis*, *M. angolensis*, *U. fasciata*, ethyl acetate fraction of the extract of *E. ivorense* bark and xylopic acid had IC50 values of 15.91, 44.25, 20.00, 35.86, 13.76 and 11.45 μg/mL, respectively, against *G. lamblia* (Table 2). The IC50 of the control metronidazole was 10.47 μM.

The extract of *A. glaberrima* and xylopic acid exhibited IC50 of 38.70 and 16.06 μg/mL (44.55 μM), respectively, against *N. fowleri* (Table 2). The IC50 of the reference drug amphotericin B was 0.2 μM. The IC50 of the extracts and fractions were calculated using the mean and standard deviations of the percentage inhibition. The IC50 signifies the amount or concentration of the extracts and fractions that kills 50% of the parasites. The lower the IC50, the more active the said extract or fraction and vice versa.

Several studies have been carried out over the years and it has been proven that plants and their isolates can be a source of anti-parasitic agents. Barbosa et al. (2007) also reported that epicatechin, a flavonoid isolated from the *Geranium mexicanum* exhibited potent activity against *G. lamblia* more than metronidazole which is widely used as the main therapy. From our results, it was observed that xylopic acid exhibited anti-parasitic activity against all the three parasites at concentrations of less than 50 μg/mL. All the parasites tested cause inflammatory conditions and xylopic acid has been shown to possess anti-inflammatory properties (Obiri et al., 2014). Terpenes are well known to be active against protozoan parasites (Phillipson and Wright, 1991). This could be the reason for the activity exhibited by xylopic acid. McGaw et al. (2000) reported that plant extracts and compounds containing tannins and alkaloids possess activity against diarrhea-causing parasites such as *G. lamblia* and *E. histolytica*.

U. fasciata and *A. glaberrima* (Jato, 2015), *E. ivorense* (Adu-Amoah et al., 2014) and *M. nobilis* (Mothana et al., 2009) contain alkaloids and tannins. These bioactive constituents could have been responsible for the activity exhibited by these extracts and fractions. For all these activities observed, it could be attributed to the nature of phytochemical constituents present in the extracts and fractions. Geraniin is known to have anti-inflammatory activity (Boakye et al., 2016) and this could be the reason.
for its activity against *E. histolytica*, which causes inflammatory conditions such as amoebic colitis (Stanley, 2003). Xylopic acid could be said to be more active against *E. histolytica* than *G. lamblia* and *N. fowleri* since the IC₅₀ values for the parasites increased in that order. Ethyl acetate fraction of bark extract of *E. ivorense* exhibited activity against *G. lamblia*, whereas the fractions from the leaf had no activity. The extracts from *A. glaberrima*, *M. nobilis*, *M. angolensis*, the bark of *E. ivorense* and *U. fasciata* exhibited some activity against at least one of the parasites and therefore could be said to possess anti-parasitic activity. The extracts from the plants: *H. latifolia*, *L. ovalifolia*, *P. muellerianus*, and the algae *H. dentata* and *S. vulgar*, exhibited no activity against any of the parasites. Geraniin, which is an isolate from the aqueous leaf extract of *P. muellerianus*, exhibited activity against *E. histolytica*. It is possible that in the aqueous extract, the amount of the geraniin was not enough to elicit an anti-parasitic effect.

Conclusion

Xylopic acid was active against *E. histolytica*, *G. lamblia* and *N. fowleri*. *A. glaberrima* exhibited activity against *N. fowleri* and *G. lamblia*. The ethyl acetate fraction of the methanol bark of *E. ivorense*, extracts of *M. angolensis*, *M. nobilis* and *U. fasciata* exhibited activity against *G. lamblia*.

ACKNOWLEDGEMENTS

The authors are grateful to the World Intellectual Property Organization - Re: Search (WIPO-Re:Search) for the fellowship to GKD, and to Thomas Bombelles, Head of Global Health in the Global Challenges Division of WIPO for his strong support for this project.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interest.

REFERENCES

Ellagitannins from Phyllanthus muellerianus (Kuntze) Exell.: Geraniin and furosin stimulate cellular activity, differentiation and collagen synthesis of human skin keratinocytes and dermal fibroblasts. Phytomedicine 18:617-624.

African Journal of Pharmacy and Pharmacology

Related Journals Published by Academic Journals

- Journal of Medicinal Plant Research
- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- International Journal of Nursing and Midwifery
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Toxicology and Environmental Health Sciences

academicJournals