ABOUT AJBR

African Journal of Biochemistry Research (AJBR) provides rapid publication (monthly) of articles in all areas of Biochemistry such as Nutritional biochemistry, Analytical biochemistry, Clinical Biochemistry, Human and Plant Genetics, Molecular and Cell Biology, Enzymology, Toxicology, Plant Biochemistry, Biochemistry Education etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles are peer-reviewed.

Contact Us

Editorial Office: ajbr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/AJBR
Submit manuscript online http://ms.academicjournals.me/
Editor

Prof. Johnson Lin
School of Biochemistry, Genetics, Microbiology and Plant Pathology
University of KwaZulu-Natal (Westville)
Private Bag X 54001, Durban
Republic of South Africa

Associate Editors

Gregory Lloyd Blatch
Dept Biochemistry Microbiology & Biotechnology
Rhodes University Grahamstown 6140
South Africa

Dr. Serap Yalin
Mersin University,
Faculty of Pharmacy,
Department of Biochemistry,
YenisehirKampusu,
Mezitli 33161
Mersin/Turkey

Dr. Om Prakash Gupta
Directorate of Wheat Research (ICAR)
Post Box-158, A grasainMarg, Karnal-132001, Haryana, India
Editorial Board

Dr. Desouky A.M. Abd-El-Haleem
Biological Sciences Department,
College of Arts and Sciences,
Qatar University, Doha,
Qatar

Dr. S.K. Trigun
Biochemistry and Molecular Biology Section,
Banaras Hindu University
Varanasi-221005,
India

Dr. Imed Gallouzi
McGill University,
Biochemistry Department,
3655 Promenade Sir William Osler
Montreal, Quebec, H3G 1Y6,
Canada

Dr. Ashraf A Khalil
Protein Technology Lab, Mubarak City for Science, New
Borg Elarab,
Alexandria,
Egypt.

Dr. Stanley Mukanganyama
Department of Biochemistry,
University of Zimbabwe, Box MP 167,
Mount Pleasant, Harare,
Zimbabwe

Prof. Salah A. Sheweita
Taibah University, Faculty of Medicine, Department of
Biochemistry, PO Box 30001, Madinah,
Saudi Arabia

Dr. Oluwafemi O Oguntibeju
Department of Clinical Biochemistry,
School of Medicine,
Spartan Health Sciences University,
P.O. Box 324, Vieux Fort, St Lucia,
West Indies

Dr. Robert L. Brown
USDA ARS,
Southern Regional Research Center
1100 Robert E. Lee Blvd.,
New Orleans, LA 70124

Dr. Edward EtshoLa
Biomedical Engineering Center
Davis Heart and Lung Research Institute
Ohio State University
473 W. 12th Avenue
Columbus, OH 43210

G. Suresh Kumar
Senior Scientist and Head
Biophysical Chemistry Laboratory
Indian Institute of Chemical Biology
Council of Scientific and Industrial Research
Jadavpur,
Kolkata 700 032,
India

Xu Lu
Department of Biochemistry and Molecular Biology
Colorado State University
Fort Collins,
CO 80523-1870
USA

Mohammed A.A Sarhan
Dept. Biological Sciences
Faculty of Science
King Khalid University
Saudi Arabia

Mehrdad Behmanesh
Department Of Genetics
School Of Science
P.O.Box 114-175 Tehran Iran
Iran

Hans Verhagen
P.o Box 1 3720 Ba Bilthoven
The Netherlands
Netherlands

P.K.Sumodan
Post Graduate Department Of Zoology
Government College Madappally India
India

Baleseng Moseki
University Of Botswana
Botswana
Bhaskar C. Behera
Agharkar Research Institute
Plant Science Division
India
India

Luiz Claudio Miletti
Universidade Do Estado De Santa Catarina
Brasil

Oladipo Gabriel Sunday
University Of Port Harcourt
Port Harcourt-Nigeria
Nigeria

Basiouny Ahmed El-Gamal
Biochemistry Department
Faculty Of Science
Alexandria University
Egypt

AminigoEbiokpo Rebecca
University Of Port Harcourt
Port Harcourt-Nigeria
Nigeria

JiaZeng
Department Of Bioengineering
Central South University
Changsha Hunan 410083 P.R.China
China

Adenike Kuku
ObafemiAwolowo University
Department Of Biochemistry
Nigeria

Elsayed Hafez
Genetic Engineering and Biotechnology Research Institute
Egypt

Gabriella Castoria
Via L. De Crecchio 7 -80138 Naples
Department Of General Pathology
Italy

SalwaSeddik Abdel-Latif
21 Elbatal Ahmed Abdel Aziz
Elmohandesien Giza
Egypt

Erasto Vitus Mbugi
Muhimbili University
Biochemistry Department
School Of Medicine
India

Mohamed Rholam
Université Paris7 - Denis-Diderot
France

Hooi Ling Foo
Universiti Putra Malaysia
Malaysia

JayanthRao
Biochemistry And Nutrition
Cftri Mysore
India

Maznah Ismail
Universiti Putra
Malaysia

Svetlana Lutsenko
Oregon Health & Science University
USA

Gabriel Ugwem
Rivers State University Of Science And Technology
P.M.B. 5080 Port Harcourt
Nigeria

HariChhatpar
Dept. Of Microbiology & Biotechnology Centre
Faculty Of Science
M.S.University Of Baroda
Vadodara 390 002
Baroda India

MahiuddinAlamgir
The University Of New South Wales
Sydney Nsw-2052
Australia

Sheeja Samuel Edwin
B.R Nahata College of Pharmacy & Research Centre
India

William Cho
Room 1305 13/F Block R Department of Clinical Oncology
Queen Elizabeth Hospital
30 Gascoigne Road
Kowloon
Hong Kong
Ass. Prof. Tzong-Jih Cheng
Department of Bio-Industrial Mechatronics
National Taiwan University
Taiwan

Dr. Zuyong Xia
Department of Radiology,
1201 Welch Rd, Room P089, Stanford, CA 94301
USA

Dr. Pratap Kumar Das
institute of Chemical Biology
India

Dr. Vasudeo Pandharinath Zambare
Advanced Enzyme Technologies Ltd
India

Dr. A M Mujumdar
Agharkar Research Institute
India

Prof. Christine Clayton
ZMBH
ImNeuenheimer Feld 282
69120 Heidelberg
Germany

Prof. Rekik Boul baba
ESA Mateur
Département des sciences et techniques de productions animales
Tanzania

Dr. Farhad Mirzaei
National Dairy Research Institute, NDRI
Karnal
India

Dr. ROUABHI Rachid
Biotechnology Department
Tebessa University.
Algeria

Prof. Vaclav Vetvicka
University of Louisville
USA

Dr. Ramesh Putheti, Ph.D
Research scientist
Actavis Pharmaceuticals
10065 red run blvd, owings mills Blvd, Maryland. USA 21030
USA

Prof. Dr. Mustafa NAZIROGLU
Head of Department of Biophysics
Medical (TIP) Faculty, SuleymanDemirel University
Cunur, TR-32260 Isparta
TURKEY

Dr. José Luis Arias Mediano
GrupoInvestigaciónFarmaciaPráctica (CTS-205)
Dept. Farmacia y TecnologiaFarmacéutica
Facultad de Farmacia
Campus Universitario de Cartuja, s/n Universidad de Granada
18071 Granada.

Ahmed Malki, PhD
Lecturer of Biochemistry and Molecular Biology
Biochemistry Department
Faculty Of Science
Alexandria University
Alexandria,
Egypt

Dr. Alireza Seidavi (PhD)
Assistant Professor of Animal and Poultry Nutrition,
Department of Animal Science,
College of Agriculture,
Islamic Azad University, Rasht Branch,
Rasht, Iran

Amani S. Awaad
Professor of pharmacognosy, Chemistry Department
Faculty of Sciences, King Saud University .
Riyadh. KSA. P.O. Box 22452, Riyadh 11495
Saudi Arabia

Dr. Abdel-TawabMossa
Environmental Toxicology Research Unit (ETRU),
Pesticide Chemistry Department,
National Research Centre,
Dokki,
Egypt
Dr. Amal A. Mohamed
Plant Biochemistry Department,
Agriculture Division - National Research Center,
31-El-Tahrir St.,
Dokki,
Cairo – Egypt

Dr. Anabella Gaspar
Department of Biochemistry,
University of Pretoria,
South Africa

Dr. Anna Janecka
Department of Biomolecular Chemistry,
Medical University of Lodz,
Mazowiecka 6/8,
92-215 Lodz,
Poland

Dr. Caser Abdel
Horticulture Department,
Dohuk University,
Iraq

Dr. David Sheehan
Dept Biochemistry,
University College Cork,
Ireland

Dr. Dayananda Chandrappa
Center for Bioenergy,
Department of Life and Physical Sciences,
Cooperative Research,
Lincoln University,
Jefferson City,
USA

Dr. Elsayed Abdelaal
Special Graduate Faculty,
University of Guelph,
Ontario,
Canada

Dr. Etienne Marbaix
CELL Unit,
de Duve Institute,
UCL-75.41, 75 avenue Hippocrate,
B-1200 Bruxelles,
Belgium

Dr. Gary L. Firestone
Department of Molecular and Cell Biology,
University of California,
Berkeley,
CA, 94720,
USA

Dr. Henryk Zielinski
Institute of Animal Reproduction and Food Research,
Polish Academy of Sciences,
Poland

Dr. Irshad A. Nawchoo
Department of Botany,
University of Kashmir,
India

Dr. Luchai Butkhup
Department of Biotechnology,
Faculty of Technology,
Mahasarakham University,
Mahasarakham 44000,
Thailand

Dr. Luminita Vladescu
Department of Analytical Chemistry,
Faculty of Chemistry,
University of Bucharest,
Romania

Dr. Mira Debnath
School of Biochemical Engineering,
Institute of Technology - Banaras Hindu University,
Varanasi,
India

Dr. Nilesh S. Panchal
Department of Biosciences,
Saurashtra University,
Rajkot-360005,
Gujarat,
India

Dr. Rayappa A. Balikai
University of Agricultural Sciences,
Dharwad,
Karnataka- 580 005,
India
Dr. Saad Tayyab
Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

Dr. Shijun Fu
Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China

Dr. Shiming Zhang
Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA

Dr. Thomas Efferth
Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Heidelberg, 55128 Mainz, Germany
Effects of date fruit extract on paracetamol induced nephrotoxicity in wistar rats
Tijani Idris Ahmad Oseni, Nurah Tijani Oseni, Hauwa Tijani Oseni and Pauline Etuaje Eromon
Effects of date fruit extract on paracetamol induced nephrotoxicity in wistar rats

Tijani Idris Ahmad Oseni¹*, Nurah Tijani Oseni², Hauwa Tijani Oseni³ and Pauline Etuaje Eromon⁴

¹Department of Family Medicine, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria.
²Innovation and Technology Development Department, Nigerian Institute for oil Palm Research (NIFOR), Benin City, Nigeria.
³Department of Biochemistry, University of Benin, Benin City, Nigeria.
⁴Department of Family Medicine, Irrua Specialist Teaching Hospital, Irrua, Nigeria.

Received 3 February, 2017; Accepted 4 April, 2017

This study was aimed to investigate the protective, ameliorative and preventive effects of aqueous Date fruit extract on paracetamol induced nephrotoxicity in wistar rats. A total of 30 male albino wistar rats were used for this study. Rats were randomly divided into five groups containing 6 animals each. Treatments were given daily for fourteen days. The animals in the control group (Group I) did not receive any treatment, while those in group 2 received paracetamol (2 g/kg/day). Group 3 were pretreated with aqueous date fruit extract (400 mg/kg/day) for a week before paracetamol administration. Rats in group 4 received paracetamol (2 g/kg/day) for a week before treatment with aqueous date palm extract (400 mg/kg). Group 5 was administered paracetamol (2 g/kg/day) in concurrent with 400 mg/kg aqueous date fruit extract. Exposure of rats with a nephrotoxic dose of paracetamol disturbed the kidney function tests; blood urea nitrogen (BUN) and serum creatinine (SC) levels increased significantly (P>0.05). The protective use of aqueous date fruit extract on paracetamol-induced nephrotoxicity resulted in a significant improvement in most evaluated parameters.

Key words: Date fruit, paracetamol, wistar rats, kidney.

INTRODUCTION

Medicinal plants continue to provide valuable therapeutic agents, both in modern and in traditional medicine (Abdelrahman et al., 2012; Iwu et al., 2014). Nephrotoxicity is one of the most common kidney...
problems and occurs when the body is exposed to a drug or toxin that causes damage to the kidneys. Some nephrotoxic compounds are arsenic, cadmium, copper, naturally-occurring plant toxins such as pyrrolizidine alkaloids, mycotoxins and bacterial toxins. Exposure to nephrotoxic compounds may be occupational, environmental or domestic via accidental, homicidal or suicidal ingestion (Lil et al., 2014).

Nephro-protective agents are those compounds which alleviate the kidney injury caused by nephrotoxic compounds. Nephro-protective effects of plant drugs and herbal formulations have been studied against chemicals (alcohol, CCl₄, alcohol, beta galactosamine, thioacetamide) and drugs (paracetamol, nimusalide, antitubercular drugs like isoniazid etc.) induced nephrotoxicity in rats and mice, as they virtually mimic any form of naturally-occurring liver disease (Abdelrahman et al., 2012).

Date fruit (Phoenix dactylifera L) is a good source of rapid energy, due to their high carbohydrate content (70 to 80%) (El-Far et al., 2016). The good nutritional value of dates is also based on the presence of vitamin C (Allaith, 2008). Date fruit provides essential minerals such as calcium, iron, magnesium, phosphorus, potassium, zinc, selenium and manganese (Assirey, 2015). The date fruit is listed in folk remedies for the treatment of various infectious diseases and cancer (El-Far et al., 2016).

Accordingly, we hypothesized that date fruit extract may prevent, protect and ameliorate the nephrotoxicity in rats induced by acetaminophen (paracetamol). This study is aimed to investigate the preventive, protective and ameliorating effects of Date fruit extract on paracetamol induced toxicity on kidney function.

MATERIALS AND METHODS

The date palm fruit (P. dactylifera) was obtained from Nigerian Institute for oil palm research (NIFOR). Date was sun dried, seeds removed and grounded to fine powder. Fifty grams of the pulverized fruit was soaked in 1 liter of distilled water for 72 h with constant stirring, to avoid fermentation. A 15 g solution of the extract was prepared and stored in a refrigerator. This solution was used as stock crude drug.

Proximate analysis of date fruit

Moisture content, total ash and fat content were carried out on the pulverized sample according to AOCS Ca 2c-25, AOCS Ca 11-55, AOCS Am 5-04 (AOCS, 2009). Crude fibre and crude protein were assayed using (Neubert et al., 1940) and (Thiex, 2002), respectively.

Experimental protocol

A total of 30 male albino wister rats were used for this study. They were obtained from the anatomy departement of University of Benin, Benin City. The animals were housed in a cage controlled environment at room temperature and 12-h light-dark cycle. Animals were fed meal pellet and fresh water ad libitum for 2 weeks prior to experiments. Rats were randomly divided into five groups containing 6 animals each and all treatments were given daily for 14 days.

Rats in Group 1 served as the control group and were administered fresh water only. Groups 2 received 2 g/kg/day paracetamol orally. Group 3 were administered date extracts (400 mg per kg of body weight) orally for 7 days prior to induction with paracetamol (2 g/kg/day) orally; this served as the preventive group. Rats in group 4 were given extract at 400 mg per kg body weight orally after being induced with oral paracetamol for 7 days, this served as the ameliorating group. Group 5 rats were administered extract orally, delivered concurrently with oral paracetamol administration (protective group).

After two weeks on induction with date extract, animals were anaesthetized and blood samples were withdrawn from retro-orbital sinus by heparinized capillary tubes under light chloroform anaesthesia after 12 to 14 h fasting period. The withdrawn blood was collected in centrifuge tubes for serum separation, allowed to clot for an hour at room temperature and centrifugation done at 3000 rpm for 15 min. Serum were separated and stored at –20°C until used for an estimation of serum urea (BUN), serum creatinine (SC) and Electrolyte (Na, K, Cl and HCO₃⁻).

Biochemical analysis

Urea in serum was hydrolyzed to ammonia in the presence of urease. The ammonia was then measured photometrically (550 mm) using Bertholot’s reaction. Levels of serum creatinine were estimated using the Jaffe method as modified by slot (Slot, 1965). Working reagent was mixture of picric acid (55 mM), sodium hydroxide (0.4 M) and sodium carbonate (50 mmol). Working reagent (2 ml) was mixed with 0.1 ml of sample and allowed to stand for 15 min at 20 to 25°C. The absorbance was read at 510 mm.

Chloride ion estimation was carried out using mercurimetric titration method (Schales and Schales, 1941). Bicarbonate ion estimation was done using the Van Slyke titration method. In van Slyke form of titration method, an excess HCl (0.1N) was added to serum. The mixture was then titrated with 0.01N sodium hydroxide solution (Van Slyke, 1919). Sodium and Potassium were assayed using flame photometric method according to (Mosher and Boyle, 1949).

Statistical analysis

The statistic used in this research is SPSS version 18.0. Data were analyzed using Shapiro-Wilk normality test and one way analysis of variance (ANOVA) was used for comparison between groups. Data were expressed as mean ± standard deviation (SD) and P<0.05 showed statistically significance.

RESULTS

Table 1 depict that, there were significant increase (p<0.05) in the level of urea, creatinine, sodium and phosphate of the control (group 1) compared with
Table 1. Effect of Paracetamol-induced kidney function toxicity on albino Wistar rats.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Creatinine (mg/dl)</th>
<th>Urea (mg/dl)</th>
<th>Sodium (mmol/l)</th>
<th>Potassium (mmol/l)</th>
<th>Chloride (mmol/l)</th>
<th>Bicarbonate (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.07±0.16</td>
<td>32.5±2.51</td>
<td>136.5±6.12</td>
<td>5.60±0.60</td>
<td>101.33±2.42</td>
<td>19.17±0.98</td>
</tr>
<tr>
<td>2</td>
<td>1.35±0.24</td>
<td>37.1±5.38</td>
<td>141.67±2.66</td>
<td>7.88±0.44</td>
<td>102.67±1.63</td>
<td>19.17±0.98</td>
</tr>
<tr>
<td>3</td>
<td>1.13±0.10</td>
<td>36.83±5.32</td>
<td>140.83±1.83</td>
<td>6.53±0.41</td>
<td>103.66±2.42</td>
<td>19.83±1.60</td>
</tr>
<tr>
<td>4</td>
<td>0.88±0.13</td>
<td>31.4±2.19</td>
<td>141.2±1.64</td>
<td>6.44±0.97</td>
<td>102.0±2.53</td>
<td>19.2±1.64</td>
</tr>
<tr>
<td>5</td>
<td>1.05±0.12</td>
<td>34.67±5.05</td>
<td>135.67±4.18</td>
<td>5.40±0.88</td>
<td>102.0±2.53</td>
<td>20.33±0.52</td>
</tr>
</tbody>
</table>

P value | < 0.05 | < 0.05 | < 0.05 | < 0.05 | > 0.05 | > 0.05 |

*Values are expressed as mean ± SD using one way ANOVA. P value < 0.05 denotes significant differences between means.

Paracetamol altered a number of biomarkers (blood urea nitrogen and serum creatinine levels). These changes occurred as a result of the inactivation of the mitochondrial pathway during acetaminophen-induced cell death.

In the present study, administration of nephrotoxic dose of paracetamol to rats resulted in a significant elevation of serum levels of urea and creatinine in paracetamol toxic group (group 2) when compared to the normal control group. These results are in agreement with that observed by Isik et al. (2006), who noticed an elevation in serum urea and creatinine in rats after 1 g/kg b.w. of paracetamol administration. Karadeniz et al. (2008) and Ajami et al. (2010) explained elevation in the levels of urea and creatinine, by the presence of strong correlation between nephrotoxicity and oxidative stress. The elevated H₂O₂ and O₂⁻ production alters the filtration surface area and modifies the filtration coefficient; both factors could decrease the glomerular filtration leading to accumulation of urea and creatinine in the blood.

There was significant increase in potassium and sodium concentration in paracetamol control group (group 1) when compared with normal group (group 2). This result is in agreement with the work of Yakubu et al. (2006), who reported increased levels of potassium (K⁺) and sodium (Na⁺) in rat treated with artemesine. It is suggested that, increased serum Na⁺ concentration is an indication of alteration in important biochemical parameters, such as an increase production of aldosterone and other mineral corticoids, which will in turn increase the tubular reabsorption of Na⁺ or decrease production of either antidiuretic hormone or tubular sensitivity to the hormone (Anyasor et al., 2011).

Potassium ion plays an important role during transmission of nerve impulses along the nerve cells to receptor cells. The hyperkalaemia observed in toxic treated animals suggests a possible adverse effect on the pump, which maintains the homeostasis of K⁺ in extracellular concentration. Bicarbonate and chloride ion showed no significant changed in all the parameters estimated. This finding is not in line with what was observed by Yakubu et al. (2006).

DISCUSSION

Paracetamol toxic overdose is often linked to many metabolic disorders including serum electrolyte, urea and creatinine derangements (Palani et al., 2009). Ghosh et al. (2010) observed that, exposure of rats with a nephrotoxic dose of paracetamol control (group 2).

However, there were no significant changes (p>0.05) in the levels of bicarbonate and chloride of control and Paracetamol control group. There was no significant difference (p>0.05) in all the kidney function parameters between Paracetamol control (Group 2) and Preventive (Group 3). There was significant decrease (P<0.05) in creatinine and urea of the Paracetamol control (Group 2) and the ameliorative (Group 4).

However there are no significant changes in other parameter. There were significant decrease (p<0.05) in the level of serum Urea, creatinine, Sodium and Potassium of the paracetamol control (Group 2) and the Protective (Group 5).
This may be due to difference in duration of experiment and drug dosage used.

In this study, the preventive treatment of rats with aqueous *p. dactylifera* showed a significant decrease on the paracetamol induced kidney toxicity. The protective group (group 4) rats treated with aqueous *p. dactylifera* showed significant (P<0.05) reduction values of serum creatinine, Urea, Sodium and Potassium as compared to paracetamol toxic (group 2). Previous studies reported the significant decrease in serum creatinine, urea and electrolytes on Paracetamol induced nephrotoxic rats when treated with garlic oil (Gulnaz et al., 2010). This finding supports the findings of present study.

Also, ameliorative treatment of rats with aqueous extract of *p. dactyleria* showed a significant reduction in serum urea and creatinine after honey treatment as it corrects the influence of hemorrhage and food restriction on renal functions.

Conclusion

Rats with Paracetamol induced nephrotoxicity, when treated with aqueous date palm extract (protective, ameliorative, preventive) had better renal function parameters compared to the control. It can therefore be concluded from the study that, date fruit has protective effect on kidney function.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

RECOMMENDATION

Further study should be carried out to investigate the mechanism in which *p. dactylifera* improved kidney function. The active ingredient in it that has the nephron-protective action should be determined. This will help in developing pharmacological agents that will be active against renal diseases. Consumption of dates should be encouraged for better health.

REFERENCES

AOCS (2009). Official methods and recommended practices of the AOCS/ editors of analytical methods, David Firestone. Urbana, III. AOCS.

