ABOUT AJBR

African Journal of Biochemistry Research (AJBR) provides rapid publication (monthly) of articles in all areas of Biochemistry such as Nutritional biochemistry, Analytical biochemistry, Clinical Biochemistry, Human and Plant Genetics, Molecular and Cell Biology, Enzymology, Toxicology, Plant Biochemistry, Biochemistry Education etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles are peer-reviewed.

Contact Us

Editorial Office: ajbr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/AJBR
Submit manuscript online http://ms.academicjournals.me/
Editor

Prof. Johnson Lin
School of Biochemistry, Genetics, Microbiology and Plant Pathology
University of KwaZulu-Natal (Westville)
Private Bag X 54001, Durban
Republic of South Africa

Associate Editors

Gregory Lloyd Blatch
Dept Biochemistry Microbiology & Biotechnology
Rhodes University Grahamstown 6140
South Africa

Dr. Serap Yalin
Mersin University,
Faculty of Pharmacy,
Department of Biochemistry,
YenisehirKampusu,
Mezitli 33161
Mersin/Turkey

Dr. Om Prakash Gupta
Directorate of Wheat Research (ICAR)
Post Box-158, A
grasainMarg, Karnal-132001, Haryana, India
Editorial Board

Dr. Desouky A.M. Abd-El-Haleem
Biological Sciences Department,
College of Arts and Sciences,
Qatar University, Doha,
Qatar

Dr. S.K. Trigun
Biochemistry and Molecular Biology Section,
Banaras Hindu University
Varanasi-221005,
India

Dr. Imed Gallouzi
McGill University,
Biochemistry Department,
3655 Promenade Sir William OslerMontreal,
Quebec, H3G 1Y6,
Canada

Dr. Ashraf A Khalil
Protein Technology Lab, Mubarak City for Science, New
Borg Elarab,
Alexandria,
Egypt.

Dr. Stanley Mukanganyama
Department of Biochemistry,
University of Zimbabwe, Box MP 167,
Mount Pleasant, Harare,
Zimbabwe

Prof. Salah A. Sheweita
Taibah University, Faculty of Medicine, Department of
Biochemistry, PO Box 30001, Madinah,
Saudi Arabia

Dr. Oluwafemi O Oguntibeju
Department of Clinical Biochemistry,
School of Medicine,
Spartan Health Sciences University,
P.O. Box 324, Vieux Fort, St Lucia,
West Indies

Dr. Robert L. Brown
USDA ARS,
Southern Regional Research Center
1100 Robert E. Lee Blvd.,
New Orleans, LA 70124

Dr. Edward Eteshola
Biomedical Engineering Center
Davis Heart and Lung Research Institute
Ohio State University
473 W. 12th Avenue
Columbus, OH 43210

G. Suresh Kumar
Senior Scientist and Head
Biophysical Chemistry Laboratory
Indian Institute of Chemical Biology
Council of Scientific and Industrial Research
Jadavpur,
Kolkata 700 032,
India

Xu Lu
Department of Biochemistry and Molecular Biology
Colorado State University
Fort Collins,
CO 80523-1870
USA

Mohammed A.A Sarhan
Dept. Biological Sciences
Faculty of Science
King Khalid University
Saudi Arabia

Mehrdad Behmanesh
Department Of Genetics
School Of Science
P.O.Box 114-175 Tehran Iran
Iran

Hans Verhagen
P.o Box 1 3720 Ba Bilthoven
The Netherlands
Netherlands

P.K.Sumodan
Post Graduate Department Of Zoology
Government College Madappally India
India

Baleseng Moseki
University Of Botswana
Botswana
Dr. Suraini Abd-Aziz
Universiti Putra Malaysia
Malaysia

Dr. Mustafa Numan Bucak
Lalahan Livestock Central Research Institute Lalahan
Ankara Turkey

Alparslan Kadir Devrim
Department Of Biochemistry
Faculty of Veterinary Medicine
Kafkas University 36040 Kars
Turkey

Vasudev R. Thakkar
Sardar Patel University
Brd School of Biosciences
Sardar Patel University
Nagar

Prof. Emmanuel Anosike
Department Of Biochemistry
University Of Port Harcourt
Nigeria

Dr. Usama Beshay
New Bourg El-Arab City, Research Area Alexandria 21934
Egypt

Dr. Ramar Perumal Samy
Department of Anatomy
Yong Loo Lin School of Medicine
National University of Singapore
Singapore

Dr. Shin-ichi ONO
Laboratory of Clinical Pharmacy
College of Pharmacy, Nihon University
Japan

Prof. Lawal Bilbis
Biochemistry Department
Usmanu Danfodiyo University Sokoto
Nigeria

Dr. Adriana G. Chicco
Department of Biochemistry
University of Litoral, Santa Fe
Argentina

Prof. Zia-Ur Rahman
Department Of Physiology and Pharmacology
University Of Agriculture
Faisalabad
Pakistan

Dr. Oluwole Ariyo
Allen University
USA

Prof. Francisco Torrens
Institut Universitari de Ciência Molecular
Universitat de València
Spain

Prof. Belkhodja Moulay
University of Senia Oran
Algeria

Dr. Hossam M Ashour
Department of Microbiology and Immunology
Faculty of Pharmacy, Cairo University
Egypt

Dr. Fidelis Ocloo
Biotechnology and Nuclear Agriculture Research Institute/GAEC
Ghana

Ass. Prof. Alfonso Baldi
Dept. Biochemistry, Sect. Pathology
Second University of Naples, Italy

Dr. Anandh Babu Pon Velayutham
Department of Human Nutrition
Foods and Exercise 253 Wallace Hall Virginia Tech
Blacksburg VA 24061
USA

Dr. Tapan K. Chaudhuri
Department of Biochemical Engineering and Biotechnology
Indian Institute of Technology Delhi, HauzKhas
New Delhi-110016, India.

Dr. Rong Zhang
Shenyang Pharmaceutical University
China
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ass. Prof. Tzong-Jih Cheng</td>
<td>Department of Bio-Industrial Mechatronics, National Taiwan University, Taiwan</td>
</tr>
<tr>
<td>Dr. Zuyong Xia</td>
<td>Department of Radiology, 1201 Welch Rd, Room P089, Stanford, CA 94301 USA</td>
</tr>
<tr>
<td>Dr. Pratap Kumar Das</td>
<td>Indian Institute of Chemical Biology, India</td>
</tr>
<tr>
<td>Dr. Vasudeo Pandharinath Zambare</td>
<td>Advanced Enzyme Technologies Ltd, India</td>
</tr>
<tr>
<td>Dr. A M Mujumdar</td>
<td>Agharkar Research Institute, India</td>
</tr>
<tr>
<td>Prof. Christine Clayton</td>
<td>ZMBH, ImNeuenheimer Feld 282, 69120 Heidelberg, Germany</td>
</tr>
<tr>
<td>Prof. Rekik Boul baba</td>
<td>ESA Mateur, Département des sciences et techniques de productions animales, Tanzania</td>
</tr>
<tr>
<td>Dr. Farhad Mirzaei</td>
<td>National Dairy Research Institute, NDRI, Karnal, India</td>
</tr>
<tr>
<td>Dr. ROUABHI Rachid</td>
<td>Biology Department, Tebessa University, Algeria</td>
</tr>
<tr>
<td>Prof. Vaclav Vetvicka</td>
<td>University of Louisville, USA</td>
</tr>
<tr>
<td>Dr. Ramesh Putheti, Ph.D</td>
<td>Research scientist, Actavis Pharmaceuticals, 10065 red run blvd, owings mills Blvd, Maryland, USA 21030 USA</td>
</tr>
<tr>
<td>Prof. Dr. Mustafa NAZIROGLU</td>
<td>Head of Department of Biophysics, Medical (TIP) Faculty, Suleyman Demirel University, Cunur, TR-32260 Isparta, TURKEY</td>
</tr>
<tr>
<td>Dr. José Luis Arias Mediano</td>
<td>Grupo Investigación Farmacia Práctica (CTS-205), Dept. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Campus Universitario de Cartuja, s/n Universidad de Granada, 18071 Granada, Spain</td>
</tr>
<tr>
<td>Ahmed Malik, PhD</td>
<td>Lecturer of Biochemistry and Molecular Biology, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt</td>
</tr>
<tr>
<td>Dr. Alireza Seidavi (PhD)</td>
<td>Assistant Professor of Animal and Poultry Nutrition, Department of Animal Science, College of Agriculture, Islamic Azad University, Rasht Branch, Rasht, Iran</td>
</tr>
<tr>
<td>Amani S. Awaad</td>
<td>Professor of Pharmacognosy, Chemistry Department, Faculty of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia</td>
</tr>
<tr>
<td>Dr. Abdel-Tawab Mossa</td>
<td>Environmental Toxicology Research Unit (ETRU), Pesticide Chemistry Department, National Research Centre, Dokki, Egypt</td>
</tr>
</tbody>
</table>
Dr. Amal A. Mohamed
Plant Biochemistry Department,
Agriculture Division - National Research Center,
31-El-Tahrir St.,
Dokki,
Cairo – Egypt

Dr. Anabella Gaspar
Department of Biochemistry,
University of Pretoria,
South Africa

Dr. Anna Janecka
Department of Biomolecular Chemistry,
Medical University of Lodz,
Mazowiecka 6/8,
92-215 Lodz,
Poland

Dr. Caser Abdel
Horticulture Department,
Dohuk University,
Iraq

Dr. David Sheehan
Dept Biochemistry,
University College Cork,
Ireland

Dr. Dayananda Chandrappa
Center for Bioenergy,
Department of Life and Physical Sciences,
Cooperative Research,
Lincoln University,
Jefferson City,
USA

Dr. Elsayed Abdelaal
Special Graduate Faculty,
University of Guelph,
Ontario,
Canada

Dr. Etienne Marbaix
CELL Unit,
de Duve Institute,
UCL-75.41, 75 avenue Hippocrate,
B-1200 Bruxelles,
Belgium

Dr. Gary L. Firestone
Department of Molecular and Cell Biology,
University of California,
Berkeley,
CA, 94720,
USA

Dr. Henryk Zielinski
Institute of Animal Reproduction and Food Research,
Polish Academy of Sciences,
Poland

Dr. Irshad A. Nawchoo
Department of Botany,
University of Kashmir,
India

Dr. Luchai Butkhup
Department of Biotechnology,
Faculty of Technology,
Mahasarakham University,
Mahasarakham 44000,
Thailand

Dr. Luminita Vladescu
Department of Analytical Chemistry,
Faculty of Chemistry,
University of Bucharest,
Romania

Dr. Mira Debnath
School of Biochemical Engineering,
Institute of Technology - Banaras Hindu University,
Varanasi,
India

Dr. Nilesh S. Panchal
Department of Biosciences,
Saurashtra University,
Rajkot-360005,
Gujarat,
India

Dr. Rayappa A. Balikai
University of Agricultural Sciences,
Dharwad,
Karnataka- 580 005,
India
Dr. Saad Tayyab
Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

Dr. Shijun Fu
Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China

Dr. Shiming Zhang
Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA

Dr. Thomas Efferth
Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Heidelberg, 55128 Mainz, Germany
ARTICLE

Antioxidative activity of Tamarindus indica L. extract and chemical fractions

Amadou Ibrahima Mbaye, Papa Madieye Gueye, Alioune Dior Fall, Modou Oumy Kane, Kady Diatta Badji, Abdou Sarr, Daouda Diattara and Emmanuel Bassene
Antioxidative activity of *Tamarindus indica* L. extract and chemical fractions

Amadou Ibrahima Mbaye¹,², Papa Madieye Gueye¹*, Alioune Dior Fall², Modou Oumy Kane³, Kady Diatta Badji², Abdou Sarr², Daouda Diattara² and Emmanuel Bassene²

¹Laboratory of Pharmaceutical Biochemistry, Faculty of Medicine, Pharmacy, University Cheikh Anta DIOP, Dakar Senegal.
²Laboratory of Pharmacognosy and Botany, Faculty of Medicine, Pharmacy, University Cheikh Anta DIOP, Dakar, Senegal.
³Laboratory of Pharmaceutical Physiologies, Faculty of Medicine, Pharmacy, University Cheikh Anta DIOP, Dakar Senegal.

Received 15 June, 2016; Accepted 19 December, 2016

Tamarindus indica L is a tropical plant that is used around the world mainly for medicinal purposes. Yet few scientific studies of its biological potential have been undertaken. The aim of this study was to assess the antioxidative potential of *T. indica* L leaves. The plant material was harvested and then dried in the absence of direct sunlight. The extraction was done by alcoholic decoction, and the fractions were obtained by liquid-liquid chromatography using solvents of increasing polarity. The reducing capacity of each sample was assessed using DPPH and FRAP methods. The yield of extract from the alcoholic decoction of the leaves was 8%. The hexane, dichloromethyl, acetyl acetate and aqueous fractions represent respectively 0.91, 1.17, 1.06 and 2.69% of the leaves. Evaluation's results of the antioxidative capacity assessed by DPPH indicate that the best IC50 values were obtained from the extract (60.53 μg/mL) followed by the aqueous fraction (71.66 μg/mL), while the ethyl acetate fraction (453.33 μg/mL) was the least potent. As for the results obtained by the FRAP method, the best antioxidative activity was obtained with the extract (A = 0.066), followed by the hexane fraction (A = 0.016). This study shows that the extract and its chemical fractions reduce DPPH and the FRAP, thus indicating that *T. indica* L leaves have an antioxidative activity.

Key words: *Tamarindus indica* L leaves, antioxidative activity,

INTRODUCTION

Research of plants that have antioxidative activity has become a topic of increasing interest in light of the important roles for antioxidative compounds in the treatment and prevention of pathologies linked to oxidative stress that is generated by free radicals (Cole et al., 2005; Bolignon et al., 2009).

Indeed, antioxidants help to neutralize free radicals which can damage cellular membranes and interact with the genetic material of cells. Antioxidants from fruits, vegetables and beverages play an important role in
human health, for example preventing cancer and cardiovascular diseases, and reduce the incidence of different diseases (Mircea and Isabel, 2015). Tamarindus indica L is a tropical plant that is mainly used for medicinal purposes. With the exception of the forests of the Casamance, it is found throughout Senegal. At the chemical level, prior research has revealed the presence of phenolic constituents such as flavonoids, alkaloids, and tannins (Selvi et al., 2012), as well as the presence of amino acids, carbohydrates, and proteins (Kerharo and Adam, 1974). In terms of pharmacopoeia, the leaves are used against phagedenic ulcers (Kerharo and Adam, 1974). Leaf extracts have been shown to exhibit an antioxidant activity in hepatic disorders, and they are ingredients in the composition of medications used to prevent cardiovascular diseases (Diallo, 2001; Bowe, 2007). The leaves are also known to have laxative properties (Bhat et al., 1990). Further, the hydroalcoholic extract of the leaves has been shown to result in hypoglycemia in Wistar rats that have alloxane-mediated diabetes. The hypoglycemic effect was most pronounced at a dose of 200 mg/kg body weight (Ramchander et al., 2012). Since anti-diabetic effects often correlate with antioxidative effects, and its potential has not yet been demonstrated, in this study we decided to focus on the in vitro antioxidative potential of aqueous extract and subsequent fractions of T. indica L.

MATERIALS AND METHODS

The plant material was harvested at the botanical garden of the Faculty of Sciences and Technologies at the Cheikh Anta Diop University of Dakar (Senegal) in May of 2013, and they were identified and dried away from direct sunlight at the Laboratory of Pharmacognosy of the Faculty of Medical Pharmacy and Odontology of Dakar. The following reagents were used to determine the various activities: DPPH: 2, 2, Diphényl-1-pycrylhydrazyl (Sigma Aldrich). L (+) Ascorbic acid (ACS ISO), absolute Ethanol (Scharla Chemie S.A.), Trichloroacetic acid (Cl₃CCO₂H) (Alfa Aesar), Disodium phosphate Na₂HPO₄, Potassium hexacyanoferrate (K₃Fe(CN)₆) at 1% (EMSURE®).

Extraction

The extraction was performed by decocion of 75 g of leaves powder, brought to a boil under reflux in 750 mL of ethanol for 30 min. After filtration, the resulting ethanolic extract was evaporated using a Rotavapor (Stuart rotary evaporator, Stuart Equipment), yielding a dry residue (12 g) (Dieng et al., 2015).

Fractionation

The fractionation consisted of adding 250 mL of warm water to nine grams (9 g) of dry extract. Following complete dissolution, the aqueous extract was added to 100 mL of hexane and 100 mL of dichloromethane and 100 mL of ethyl acetate in a separating funnel for the fractionation. The organic hexane, dichloromethane, ethyl acetate phases and the aqueous phase obtained thereby were then evaporated with a Rotavapor to yield dry extracts. These extracts were then suspended in ethanol for the pharmacological testing (Sarr et al., 2015).

Calculation of yields

The yields were calculated using the following formula:

\[
\text{Yield} = \frac{\text{residue weight/ original dry weight}}{100}
\]

The residue represents the extract or the fraction following fractionation, while the dry weight becomes the residue after evaporation. Determination of the free radical scavenging capacities was performed by the DPPH and the FRAP methods.

DPPH

The determinations of DPPH activities were performed according to the method of Molyneux (Molyneux, 2003). The extract was tested at various concentrations (that is, at 6.25-12.5-25-50-100-200 μg/mL) with the DPPH at a ratio ¼ in the extract/DPPH mixture. Ascorbic acid was used as a reference antioxidant, and tested at the same concentrations. Absorbance was measured at 517 nm using a spectrophotometer after an incubation time of 30 min (T30) using ethanol as a blank. Three assays were performed for each concentration of entity tested (n=3). The results were first expressed as percentage inhibition (that is, PI, which is equal to the absorbance of DPPH on its own minus the absorbance after adding the extract at a given concentration, divided by the absorbance of DPPH on its own), the antiradical activity, and as an IC₅₀ (that is, the antiradical concentration that allows for scavenging of 50% of the free radicals). The values of EC₅₀ were then calculated based on the IC₅₀ divided by the molar mass of DPPH, and the AP (the antiradical potential) was equal to the inverse of the effective concentration (Bassène, 2012).

FRA

The reducing capacity of the extract of T. indica L leaves was assessed according to the method of Oyaizu (Oyaizu, 1986). Briefly, various concentrations of each extract (that is, 200; 100; 50; 25; 12.5 and 6.25 μg/mL) were diluted in half with distilled water and then mixed with 2.5 mL of the phosphate buffer solution (0.2M; pH 6.6) and 2.5 mL of 1% potassium ferricyanide [K₃Fe(CN)₆]. The mixtures obtained thereby were incubated at 50°C for 30 min, after which 2.5 mL of trichloroacetic acid (10%) was added. After centrifugation at 3,000 rpm for 10 min, 2.5 mL of the supernatant fraction of each concentration was mixed with distilled water and 0.5 mL FeCl₃ (0.1%). The absorbance was measured at 700 nm using a spectrophotometer of Biosystems (BTS 350, Biosystems, Barcelona, Spain).

Statistical analysis

Statview software was used for the statistical analyses. An analysis of the variance of the norm, followed by a Fisher’s test were performed. The difference was deemed to be significant when P < 0.05 relative to the negative control (i.e. the DPPH solution). Statgraphics 5.0 software was used to determine the inhibitory concentrations. Analysis of the variances was performed using the Fisher’s test with a threshold for significance of 0.05 using Statview software.

RESULTS

DPPH

The results for the determination of the antioxidizing activity of the extracts and ascorbic acid by the DDH
Figure 1. Inhibitory activity of the extracts and ascorbic acid on DPPH. C1= 6.25 µg/mL; C2=12.5 µg/mL; C3= 25 µg/mL; C4=50 µg/mL; C5=100 µg/mL; and C6=200 µg/mL; E.E= Ethanolic Extract; H.F= Hexane Fraction; D.M.F= Dichloromethane Fraction; E.A.F= Ethyl Acetate Fraction; A.F= Aqueous Fraction; A.A: Ascorbic Acid. *: Statistically significant difference versus the negative control.

Table 1. 50% inhibitory and effective concentrations (IC$_{50}$ and EC$_{50}$) and antiradical potential (AP) of various fractions of tamarind and ascorbic acid.

<table>
<thead>
<tr>
<th>Extract</th>
<th>IC$_{50}$ (µg/mL)</th>
<th>EC$_{50}$ (g/mol)</th>
<th>AP (mol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol extract</td>
<td>60.53 ± 2.41*</td>
<td>596.97 ± 23.74*</td>
<td>0.0018±6.8.10$^{-5}$</td>
</tr>
<tr>
<td>Hexane</td>
<td>232.66 ± 20.67*</td>
<td>2294.54 ± 203.92*</td>
<td>0.00044±3.8.10$^{-5}$</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>205.33 ± 3.39*</td>
<td>2024.98 ± 33.52*</td>
<td>0.00049±8.1.10$^{-6}$</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>453.33 ± 41.35*</td>
<td>4470.74 ± 407.78*</td>
<td>0.00022±1.9.10$^{-6}$</td>
</tr>
<tr>
<td>Aqueous fraction</td>
<td>71.66 ± 4.42*</td>
<td>706.77 ± 43.64*</td>
<td>0.00142±8.9.10$^{-5}$</td>
</tr>
<tr>
<td>Ascorbic Acid</td>
<td>0.33 ± 0.094*</td>
<td>3.28 ± 0.93*</td>
<td>0.338± 0.19*</td>
</tr>
</tbody>
</table>

*: Statistically significant difference versus the negative control (DPPH solution); n=3 for each concentration tested.

The 50% inhibitory and effective concentrations, and the antiradical activity were calculated and the values obtained are presented in Table 1. As shown in Table 1, the ethanolic extract had the best IC$_{50}$, EC$_{50}$, AP, followed by the aqueous fraction results while the ethyl acetate had the lowest values.

The results for the determination of the antioxidizing activity of the extracts and ascorbic acid by the FRAP method, as expressed in absorbance, are presented in Figure 2. The ethanolic extract and its fractions reduce in a dose-dependent manner. At concentrations from 6.25 to 25 µg/mL, the ethanolic extract and its fractions showed moderate antioxidant activity; while the best activities were observed at concentrations of 100 and 200 µg/mL. The ethanolic extract at concentrations of 100 and 200 µg/mL inhibited more significant absorbance of radical DPPH compared to the aqueous fraction and other fractions.

The 50% inhibitory and effective concentrations, and the antiradical activity were calculated and the values obtained are presented in Table 1. As shown in Table 1, the ethanolic extract had the best IC$_{50}$, EC$_{50}$, AP, followed by the aqueous fraction results while the ethyl acetate had the lowest values.

DISCUSSION

The aim of our study was to investigate the antioxidizing potential of *T. indica* L. leaves. The results obtained regarding the antioxidizing activity of the extract and the fractions of *T. indica* L leaves by the DPPH method have shown that the extract and the fractions in question significantly inhibited DPPH at all of the concentrations.
Figure 2. Assessment of the reducing power of the various extracts that were tested and of ascorbic acid by the FRAP method. C1= 6.25 μg/mL; C2=12.5 μg/mL; C3= 25 μg/mL; C4=50 μg/mL; C5=100 μg/mL, and C6=200 μg/mL. E.E= Ethanolic Extract; H.F= Hexane Fraction; D.M.F= Dichloromethane Fraction; E.A.F= Ethyl Acetate Fraction; A.F= Aqueous Fraction; A.A: Ascorbic Acid. *: Statistically significant difference versus the negative control.

tested (P<0.05). This effect occurred in a dose dependent manner. The ethanolic extract and the aqueous fraction of the leaves had the best antioxidative activities, followed by the dichloromethane and hexane fractions. This may be explained by the extraction of polyphenols by the polar solvents (Bassène, 2012). Thus, the best antioxidative capacity can be assigned to the ethanolic extract and the aqueous fraction with IC50's of 60.53 and 71.66 μg/mL, respectively.

Further, the lowest antioxidative activity was seen with the dichloromethane, hexane and ethyl acetate fractions of the leaves, with IC50 inhibitory concentrations of 205.33, 232.66 and 453.33 μg/mL, respectively. The statistical test reveals a highly significant difference with p<0.05. The apolar extracts (that is, hexane, dichloromethane, and ethyl acetate) exhibited a very weak antiradical activity, for which the percentage of antiradical activity did not even reach 50%. This shows that the apolar antioxidants are inactive when it comes to DPPH. It is clear that the potent activity of the extracts is due to the abundance of phenolic components, of which the ethanol extract has the highest content of dosed molecules (e.g. polyphenols, flavonoids and tannins), followed by the aqueous fraction. A study done by Kang et al. (2003) suggests that the polar molecules in plant extracts contribute to the high antiradical activity.

The ascorbic acid that we used as an antioxidant reference shows a higher activity than T. indica L’s extract at all three concentrations that were tested (P < 0.05). The relative IC50 indicates that the extract of T. indica L leaves corresponds to 183.42 equivalents of ascorbic acid (P< 0.05). This same trend is seen for the EC50 (the EC50 of the extract was equal to 182 Equivalents of ascorbic acid), although in regard to the apolar fractions, such as dichloromethane for example, 205.33 μg/mL is required for an efficacy of 50%. Lastly, the antiradical potential shows that ascorbic acid is 187 times more active than the extract, since ascorbic acid is a purified compound. The FRAP method is based on the reducing capacity of polyphenols to reduce ferric iron Fe3+ to ferrous iron Fe2+. The reducing power is one of the antioxidative mechanisms. Furthermore, the reducing capacity of a constituent can serve as an important indicator of its antioxidative potential (Yang et al., 2008).

Some authors have reported that there is a direct correlation between antioxidizing activities and the ability of plant constituents to reduce ferric iron (Fe3+) to ferrous iron (Fe2+) (Yildirim et al., 2001). Indeed, the presence of reducing agents in plant extracts results in the reduction of Fe3+ to the ferrous form by the ferricyanide complex. Consequently, Fe2+ can be assessed by measuring and monitoring the increase in the intensity of the blue color of the reaction mixture at 700 nm (Chung et al., 2002). In other words, the FeCl3/KFe3(CN)6 system provides the method with sufficient sensitivity to “semi-quantitatively” determine the concentration of polyphenols which participate in the redox reaction (Amarowicz et al., 2004).
In our extract, as well as its fractions, we have demonstrated activities that reduce ferric ions to ferrous ions with values of 0.066 to 0.016 at concentrations of 200 μg/mL. The highest optical densities were observed in the ethanol extract (0.066 ± 0.003) followed by hexane fractions (0.058 ± 0.002) and lastly the dichloromethane fraction (0.051 ± 0.0024). The lowest optical densities were detected in the ethyl acetate fractions (0.039 ± 0.002) and the aqueous fraction (0.016 ± 0.008). The statistical test reveals a highly significant difference with p<0.05. These results may be due to the presence of polyphenols in the leaves, such as tannins, flavonoids, and alkaloids (Selvi, 2011). Polyphenolic constituents are known to be good antioxidants. These polyphenols could therefore be partially responsible of the antioxidative activity of the leaves. The antioxidative activity of several plant-derived entities is proportional to their total polyphenol content, which indicates that there is a link between the level of polyphenols and the antioxidative activity (Djeridane et al., 2006; Lamien-Meda et al., 2008).

In this study, a good correlation was obtained with the results of the phytochemical characterization, the antioxidative and antimicrobial activities of the methanol extract of T. indica L. leaves, with 50% tannins, 60-70% flavonoids, and 80% of the content as phenolics (Selvi, 2011). The DPPH scavenging activity was similar, with a PI of 72%. This is close to our values, such as 76.28 ± 0.9% at the highest concentration (200 μg/mL). This minor difference may be due to the solvents used for extraction. This shows that it is the polyphenolic constituents that contribute to the anti-oxidative activity of leaves that are used for various pathologies.

Flavonoids and tannins have been described to be the main constituents of T. indica leaf extract (Selvi, 2011; De Caluwe et al., 2010). The structure/activity relationship of flavonoids and phenolic constituents has shown that the antioxidative activity is determined by the position and extent of hydroxylation (Igor, 2002), and their ability to scavenge free radicals reflects (Nijjdveltd et al., 2001; Pyo et al., 2004). The antioxidative activity of plant constituents is increasingly becoming relevant to research of medicinal plants. Indeed, the cellular and oxidative damage derived from free radicals, or by ROS, currently appears to be one of the principal causes of human pathologies relating to hypertension, cancer, atherosclerosis, arthritis, Alzheimer’s disease, cardiovascular diseases, auto-immune diseases, digestive disorders such as gastro duodenal and intestinal ulcers as well as inflammation of the gut, neurodegenerative disorders, diabetes, and viral infections (Bonnefoy et al., 2002; Huang et al., 2005; Ziyatdiniva et al., 2005; Li et al., 2009). The free radicals that occur naturally as a result of normal metabolism in living organisms can be scavenged by chemo-prevention using antioxidative constituents present in the food consumed by humans and by medicinal plants (Kubola and Siriamornpun, 2008; Verma et al., 2009).

Conclusion
This study has shown that T. indica L. leaves contain a proven antioxidative activity. This explains their use to treat liver pathologies. The results obtained support the use of the whole extract, as well as chemical fractions, or as food additives complements. The use of the leaves, which are more readily accessible, could be an alternative to achieve equilibrium in the pro-oxidant/antioxidant balance among disadvantaged sectors of the population. Lastly, follow-up studies could lead to ways to isolate and identify the antioxidative molecules by bioactivity-guided methods, as well as permitting determination of acute and sub-acute toxicity of the leaves.

CONFLICT OF INTERESTS
The authors declare that there is no conflict of interests regarding the publication of this paper.

ACKNOWLEDGEMENTS
We thank all of the personnel of the Laboratory of Pharmacognosy and the Laboratory of Biochemistry at the CHU of Fann, as well as Mr. Jean Baptiste Hzounda for providing advice.

REFERENCES

African Journal of Biochemistry Research

Related Journals Published by Academic Journals

- International Journal of Plant Physiology and Biochemistry
- African Journal of Biotechnology
- Journal of Developmental Biology and Tissue Engineering