ABOUT AJBR

African Journal of Biochemistry Research (AJBR) provides rapid publication (monthly) of articles in all areas of Biochemistry such as Nutritional biochemistry, Analytical biochemistry, Clinical Biochemistry, Human and Plant Genetics, Molecular and Cell Biology, Enzymology, Toxicology, Plant Biochemistry, Biochemistry Education etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles are peer-reviewed.

Contact Us

Editorial Office: ajbr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/AJBR
Submit manuscript online http://ms.academicjournals.me/
Editor

Prof. Johnson Lin
School of Biochemistry, Genetics, Microbiology and Plant Pathology
University of KwaZulu-Natal (Westville)
Private Bag X 54001, Durban
Republic of South Africa

Associate Editors

Gregory Lloyd Blatch
Dept Biochemistry Microbiology & Biotechnology
Rhodes University Grahamstown 6140
South Africa

Dr. Serap Yalin
Mersin University,
Faculty of Pharmacy,
Department of Biochemistry,
YenisehirKampusu,
Mezitli 33161
Mersin/Turkey

Dr. Om Prakash Gupta
Directorate of Wheat Research (ICAR)
Post Box-158, A grasainMarg, Karnal-132001, Haryana, India
Editorial Board

Dr. Desouky A.M. Abd-El-Haleem
Biological Sciences Department,
College of Arts and Sciences,
Qatar University, Doha,
Qatar

Dr. S.K. Trigun
Biochemistry and Molecular Biology Section,
Banaras Hindu University
Varanasi-221005,
India

Dr. Imed Gallouzi
McGill University,
Biochemistry Department,
3655 Promenade Sir William OslerMontreal,
Quebec, H3G 1Y6,
Canada

Dr. Ashraf A Khalil
Protein Technology Lab, Mubarak City for Science, New
Borg Elarab,
Alexandria,
Egypt.

Dr. Stanley Mukanganyama
Department of Biochemistry,
University of Zimbabwe, Box MP 167,
Mount Pleasant,Harare,
Zimbabwe

Prof. Salah A. Sheweita
Taibah University, Faculty of Medicine, Department of
Biochemistry, PO Box 30001, Madinah,
Saudi Arabia

Dr Oluwafemi O Oguntibeju
Department of Clinical Biochemistry,
School of Medicine,
Spartan Health Sciences University,
P.O. Box 324, Vieux Fort, St Lucia,
West Indies

Dr. Robert L. Brown
USDA ARS,
Southern Regional Research Center
1100 Robert E. Lee Blvd.,
New Orleans, LA 70124

Dr. Edward Etshola
Biomedical Engineering Center
Davis Heart and Lung Research Institute
Ohio State University
473 W. 12th Avenue
Columbus, OH 43210

G. Suress Kumar
Senior Scientist and Head
Biophysical Chemistry Laboratory
Indian Institute of Chemical Biology
Council of Scientific and Industrial Research
Jadavpur,
Kolkata 700 032,
India

Xu Lu
Department of Biochemistry and Molecular Biology
Colorado State University
Fort Collins,
CO 80523-1870
USA

Mohammed A.A Sarhan
Dept. Biological Sciences
Faculty of Science
King Khalid University
Saudi Arabia

Mehrdad Behmanesh
Department Of Genetics
School Of Science
P.O.Box 114-175 Tehran Iran
Iran

Hans Verhagen
P.o Box 1 3720 Ba Bilthoven
The Netherlands
Netherlands

P.K.Sumodan
Post Graduate Department Of Zoology
Government College Madappally India
India

Baleseng Moseki
University Of Botswana
Botswana
Bhaskar C. Behera
Agharkar Research Institute
Plant Science Division India
India

Luiz Claudio Miletti
Universidade Do Estado De Santa Catarina
Brasil

Oladipo Gabriel Sunday
University Of Port Harcourt
Port Harcourt-Nigeria
Nigeria

Basiouny Ahmed El-Gamal
Biochemistry Department
Faculty Of Science
Alexandria University
Egypt

Aminigo Ebiokpo Rebecca
University Of Port Harcourt
Porthacourt-Nigeria
Nigeria

Jia Zeng
Department Of Bioengineering
Central South University
Changsha Hunan 410083 P.R.China
China

Adenike Kuku
Obafemi Awolowo University
Department Of Biochemistry
Nigeria

Elsayed Hafez
Genetic Engineering and Biotechnology Research Institute
Egypt

Gabriella Castoria
Via L. De Crecchio 7 -80138 Naples
Department Of General Pathology
Italy

Salwa Seddik Abdel-Latif
21 Elbatal Ahmed Abdel Aziz
Elmohandesien Giza
Egypt

Erasto Vitus Mbugi
Muhimbili University
Biochemistry Department
School Of Medicine
India

Mohamed Rholam
Université Paris7 - Denis-Diderot
France

Hooi Ling Foo
Universiti Putra Malaysia
Malaysia

Jayanth Rao
Biochemistry And Nutrition
Cftri Mysore
India

Maznah Ismail
Universiti Putra Malaysia
Malaysia

Svetlana Lutsenko
Oregon Health & Science University
USA

Gabriel Ugwem
Rivers State University Of Science And Technology
P.M.B. 5080 Port Harcourt
Nigeria

Hari Chhatpar
Dept. Of Microbiology & Biotechnology Centre
Faculty Of Science
M.S. University Of Baroda
Vadodara 390 002
Baroda India

Mahiuddin Alamgir
The University Of New South Wales
Sydney Nsw-2052
Australia

Sheeja Samuel Edwin
B.R Nahata College of Pharmacy & Research Centre
India

William Cho
Room 1305 13/F Block R Department of Clinical Oncology
Queen Elizabeth Hospital
30 Gascoigne Road Kowloon
Hong Kong
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Suraini Abd-Aziz</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>Dr. Mustafa Numan Bucak</td>
<td>Lalahan Livestock Central Research Institute Lalahan Ankara Turkey</td>
</tr>
<tr>
<td>Alparslan Kadir Devrim</td>
<td>Department Of Biochemistry, Faculty of Veterinary Medicine, Kafkas University 36040 Kars, Turkey</td>
</tr>
<tr>
<td>Vasudev R. Thakkar</td>
<td>Sardar Patel University, 3rd School of Biosciences, Sardar Patel University, Nagar</td>
</tr>
<tr>
<td>Prof. Emmanuel Anosike</td>
<td>Department Of Biochemistry, University Of Port Harcourt, Nigeria</td>
</tr>
<tr>
<td>Dr. Usama Beshay</td>
<td>New Bourg El-Arab City, Research Area, Alexandria 21934, Egypt</td>
</tr>
<tr>
<td>Dr. Ramar Perumal Samy</td>
<td>Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore</td>
</tr>
<tr>
<td>Dr. Shin-ichi ONO</td>
<td>Laboratory of Clinical Pharmacy, College of Pharmacy, Nihon University, Japan</td>
</tr>
<tr>
<td>Prof. Lawal Bilbis</td>
<td>Biochemistry Department, Usmanu Danfodiyo University, Sokoto, Nigeria</td>
</tr>
<tr>
<td>Dr. Adriana G. Chicco</td>
<td>Department of Biochemistry, University of Litoral, Santa Fe, Argentina</td>
</tr>
<tr>
<td>Prof. Zia-Ur Rahman</td>
<td>Department Of Physiology and Pharmacology, University Of Agriculture, Faisalabad, Pakistan</td>
</tr>
<tr>
<td>Dr. Oluwole Ariyo</td>
<td>Allen University, USA</td>
</tr>
<tr>
<td>Prof. Francisco Torrens</td>
<td>Institut Universitari de Ciência Molecular, Universitat de València, Spain</td>
</tr>
<tr>
<td>Prof. Belkhodja Moulay</td>
<td>University of Senia Oran, Algeria</td>
</tr>
<tr>
<td>Dr. Hossam M Ashour</td>
<td>Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Egypt</td>
</tr>
<tr>
<td>Dr. Fidelis Ocloo</td>
<td>Biotechnology and Nuclear Agriculture Research Institute/GAEC, Ghana</td>
</tr>
<tr>
<td>Ass. Prof. Alfonso Baldi</td>
<td>Dept. Biochemistry, Sect. Pathology, Second University of Naples, Italy</td>
</tr>
<tr>
<td>Dr. Anandh Babu Pon Velayutham</td>
<td>Department of Human Nutrition, Foods and Exercise 253 Wallace Hall Virginia Tech, Blacksburg VA 24061, USA</td>
</tr>
<tr>
<td>Dr. Tapan K. Chaudhuri</td>
<td>Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, HauzKhas New Delhi-110016, India.</td>
</tr>
<tr>
<td>Dr. Rong Zhang</td>
<td>Shenyang Pharmaceutical University, China</td>
</tr>
</tbody>
</table>
Ass. Prof. Tzong-Jih Cheng
Department of Bio-Industrial Mechatronics
National Taiwan University
Taiwan

Dr. Zuyong Xia
Department of Radiology,
1201 Welch Rd, Room P089, Stanford, CA 94301
USA

Dr. Pratap Kumar Das
Indian Institute of Chemical Biology
India

Dr. Vasudeo Pandharinath Zambare
Advanced Enzyme Technologies Ltd
India

Dr. A M Mujumdar
Agharkar Research Institute
India

Prof. Christine Clayton
ZMBH
ImNeuenheimer Feld 282
69120 Heidelberg
Germany

Prof. Rekik Boul baba
ESA Mateur
Département des sciences et techniques de productions animales
Tanzania

Dr. Farhad Mirzaei
National Dairy Research Institute, NDRI
Karnal
India

Dr. ROUABHI Rachid
Biology Department
Tebessa University
Algeria

Prof. Vaclav Vetrivka
University of Louisville
USA

Dr. Ramesh Putheti, Ph.D
Research scientist
Actavis Pharmaceuticals
10065 red run blvd, owings mills Blvd, Maryland, USA
21030
USA

Prof. Dr. Mustafa NAZIROGLU
Head of Department of Biophysics
Medical (TIP) Faculty, SuleymanDemirel University
Cunur, TR-32260 Isparta
TURKEY

Dr. José Luis Arias Mediano
GrupoInvestigaciónFarmacíaPráctica (CTS-205)
Dept. Farmacia y TecnologíaFarmacéutica
Facultad de Farmacia
Campus Universitario de Cartuja, s/n Universidad de Granada
18071 Granada.

Ahmed Malki, PhD
Lecturer of Biochemistry and Molecular Biology
Biochemistry Department
Faculty Of Science
Alexandria University
Alexandria,
Egypt

Dr. Alireza Seidavi (PhD)
Assistant Professor of Animal and Poultry Nutrition,
Department of Animal Science,
College of Agriculture,
Islamic Azad University, Rasht Branch,
Rasht, Iran

Amani S. Awaad
Professor of pharmacognosy, Chemistry Department
Faculty of Sciences, King Saud University
Riyadh, KSA. P.O. Box 22452, Riyadh 11495
Saudi Arabia

Dr. Abdel-TawabMossa
Environmental Toxicology Research Unit (ETRU),
Pesticide Chemistry Department,
National Research Centre,
Dokki,
Egypt
Dr. Amal A. Mohamed
Plant Biochemistry Department,
Agriculture Division - National Research Center,
31-El-Tahrir St.,
Dokki,
Cairo – Egypt

Dr. Anabella Gaspar
Department of Biochemistry,
University of Pretoria,
South Africa

Dr. Anna Janecka
Department of Biomolecular Chemistry,
Medical University of Lodz,
Mazowiecka 6/8,
92-215 Lodz,
Poland

Dr. Caser Abdel
Horticulture Department,
Dohuk University,
Iraq

Dr. David Sheehan
Dept Biochemistry,
University College Cork,
Ireland

Dr. Dayananda Chandrappa
Center for Bioenergy,
Department of Life and Physical Sciences,
Cooperative Research,
Lincoln University,
Jefferson City,
USA

Dr. Elsayed Abdelaal
Special Graduate Faculty,
University of Guelph,
Ontario,
Canada

Dr. Etienne Marbaix
CELL Unit,
de Duve Institute,
UCL-75.41, 75 avenue
Hippocrate,
B-1200 Bruxelles,
Belgium

Dr. Gary L. Firestone
Department of Molecular and Cell Biology,
University of California,
Berkeley,
CA, 94720,
USA

Dr. Henryk Zielinski
Institute of Animal Reproduction and Food Research,
Polish Academy of Sciences,
Poland

Dr. Irshad A. Nawchoo
Department of Botany,
University of Kashmir,
India

Dr. Luchai Butkhup
Department of Biotechnology,
Faculty of Technology,
Mahasarakham University,
Mahasarakham 44000,
Thailand

Dr. Luminita Vladescu
Department of Analytical Chemistry,
Faculty of Chemistry,
University of Bucharest,
Romania

Dr. Mira Debnath
School of Biochemical Engineering,
Institute of Technology - Banaras Hindu University,
Varanasi,
India

Dr. Nilesh S. Panchal
Department of Biosciences,
Saurashtra University,
Rajkot-360005,
Gujarat,
India

Dr. Rayappa A. Balikai
University of Agricultural Sciences,
Dharwad,
Karnataka- 580 005,
India
Dr. Saad Tayyab
Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

Dr. Shijun Fu
Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China

Dr. Shiming Zhang
Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA

Dr. Thomas Efferth
Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Heidelberg, 55128 Mainz, Germany
Protease inhibition in cowpea pod-sucking bug species (Hemiptera: Heteroptera) using cereal and legume grain extracts

Abiola Elfrida Taiwo, Olalekan Joseph Soyelu and Raphael Emuebie Okonji
Selected grain extracts were assayed against digestive proteases of *Anoplocnemis curvipes*, *Clavigralla tomentosicollis* and *Mirperus jaculus* with a view to identifying suitable sources of protease inhibitors against the cowpea pests. Laboratory bioassays showed that grains of a local soybean variety *Kìší* and a cowpea landrace NG/SA/07/0098 contain potent inhibitors although the former produced a consistently higher level of inhibition in each of the three pests. Protease activity was highest in *C. tomentosicollis* (1.06 μmol/mg) followed by *M. jaculus* (0.94 μmol/mg) and *A. curvipes* (0.69 μmol/mg) but inhibition was highest in *M. jaculus*. The optimum temperature range for the inhibitors was 40-90°C while optimum inhibitory activity occurred in weak acidic to neutral media, pH 4-7. There was total protease inhibition in the pests when soybean and cowpea extracts were combined against gut extracts in soybean-biased volumetric ratios of 0.7:0.3 and 0.8:0.2. This synergistic efficacy was superior to those of two commercial products. The inhibitors were stable for 10-50 min at 80°C but got denatured within few minutes of exposure to higher temperatures. Obtained results showed that the soybean and cowpea are suitable sources of protease inhibitors in breeding exercises for development of transgenic cowpea varieties.

Key words: Grain extract, optimum pH, optimum temperature, protease inhibition, thermostability, transgenic cowpea.

INTRODUCTION

Cowpea, *Vigna unguiculata* (L.) Walp., is a staple food and source of cheap protein for poor and medium income earners in the tropics and subtropics (Tarawali et al., 2002). It is a good source of fodder for livestock and usually desired by farmers because of its role in maintaining soil fertility through nitrogen fixation (Eskandari and Ghanbari, 2009). The world cowpea production for 2014 was estimated at 5,588,947 tonnes,
of which 95.7% came from Africa (FAOSTAT, 2016). West Africa, with 80.9% of world total, is the key cowpea producing zone, mainly in the dry savannas and semiarid agro-ecological zones. Nigeria is the world’s leading producer of cowpea followed by Niger, Burkina Faso, Tanzania and Cameroon in descending order with 38.3, 28.4, 10.2, 3.4 and 3.1% of the world total, respectively. Despite this dominance by Nigeria, there has been a consistently low yield of cowpea per hectare of land cultivated (Ayodele and Oso, 2014).

Cowpea yield is known to be low because of heavy insect pest problems and virtually every part of the crop is attacked by insect pests (Nampala et al., 1999; Karungi et al., 2000). The crop is most vulnerable during the flowering and podding stages of its development when over 70% yield loss due to insect attack occurs (Akingbounge, 1982). The heteropteran pod-sucking bug species (PSBs) are the most important post-flowering pests of cowpea (Dreyer et al., 1994). The bug complex consists of various combinations of coreids [Clavigralla shadabi Dolling, C. tomentosicollis Stal, Anoplocnemis curvipes (Fabricius)], alydids [Riptortus dentipes Fabricius, R. acantharis (Dallas), Mirperus jaculus (Thunberg)] and pentatomids [Aspavia armigera Fabricius, Nezara viridula (Linnaeus)] (Mitchell, 2000). Nymph and adult bugs pierce and cut pod tissues with their styllets while injecting digestive enzymes through the salivary canal to liquefy the food into nutrient-rich slurry. The food slurry is ingested through the food canal and passed into the alimentary canal where it is further digested and absorbed (Cohen, 2000). The cellular and tissue damage caused by the injected salivary enzymes usually lead to shriveling of developing pods and seed malformation in mature pods (Soyelu and Akingbohungbe, 2006). Soyelu et al. (2007) also reported that proteases played a major role in tissue damage associated with pod penetration, extra-oral digestion and ingestion of food slurry. It was, therefore, concluded that feeding damage caused by PSBs on cowpea pods could be reduced significantly by using suitable protease inhibitors (PIs).

Control of cowpea pests has been mainly through application of synthetic insecticides but over-reliance on different chemicals and frequent misuse of the active ingredients have led to cases of poisoning in man, animals and the environment (Kopittke and Menzies, 2006; Ilavda, 2013, 2014; Dahiru et al., 2014). Efforts have, therefore, been directed towards finding non-chemical control strategies that are safer. Plant protease inhibitors are prime candidates for non-chemical control with highly proven inhibitory activity against insect pests (Lawrence and Koundal, 2002). The PIs act as defensive compounds against insects in direct assay or by expression in transgenic crop plants where they slow down digestion of plant materials thereby hindering insects from utilizing plant nutrients maximally. This ultimately renders the host plant unappealing to the herbivorous insects (Pueyo et al., 1995). Omitogun et al. (1999) demonstrated that crude lectin-enriched extract from African yam bean, Sphenostyles stenocarpa Harms, retarded the development of larval and adult C. tomentosicollis. Similarly, purified seed lectin from S. stenocarpa was toxic to the same bug species in an artificial cowpea seed system (Machuka et al., 1999; Okeola et al., 2000).

Proteases are proteolytic enzymes that catalyse the hydrolytic cleavage of specific peptide bonds in target proteins, thus being indispensable to the maintenance and survival of their host organism. Proteases are mostly classified according to the main catalytic amino acid residue in their active site in several groups, such as: serine proteases, cysteine proteases, aspartic proteases and metalloproteases, the latter having a metallic ion in their active site (Pouvreau, 2004; Habib and Fazili, 2007). Digestive physiology varies among bugs of the suborder Heteroptera because of the range of food sources. Heteropteran salivary proteases are most often of the serine protease class, as determined by inhibitor and substrate specificities and pH optima (Laurema et al., 1985; Cohen, 1993). The salivary gland protease activity is predominantly trypsin-like in some heteropterans (Cohen, 1993; Agusti and Cohen, 2000) while chymotrypsin-like protease activity predominates in some others (Cobleatch et al., 2001). On the contrary, midgut proteases are predominantly acidic proteases from both the cysteine and aspartic mechanistic classes (Houseman et al., 1985; Overney et al., 1998). Each bug species uses a specific complement of proteases belonging to a mechanistic class and this specificity makes the insects vulnerable because any suitable protein molecule that is able to bind to active sites on the protease group would have adverse effects on digestive activity of the enzymes. This interference with enzyme activity could serve as a basis for cowpea genome transformation to produce transgenic plants with improved level of cowpea resistance to the PSBs. High concentrations of PIs are often found in storage tissues of plants, such as tubers and seeds (Ryan, 1990), and there is, therefore, a need to assess plants that are available locally for their protease inhibition potentials against the cowpea pod-sucking bug species. In addition to this, the study also characterized PIs from selected plants with a view to establishing their suitability as control agents.

MATERIALS AND METHODS

Field establishment

A susceptible cowpea variety (Ife Brown) was planted on a 0.04 ha plot at a spacing of 60 cm × 30 cm at two seeds per stand. The field was established for the purpose of obtaining pod-sucking bug species needed for bioassays in the laboratory. Metobromuron and metolachlor formulated as Galex 500 EC (pre-emergence herbicide)
Table 1. Sources of protease inhibitors assayed against enzyme extracts of three cowpea pod-sucking bug species.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Botanical name</th>
<th>Accession number, Common name or Local name</th>
<th>Family</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cowpea</td>
<td>Vigna unguiculata</td>
<td>Ife Brown NG/SA/07/0098 NGB/06/047 NGB/VU/118</td>
<td>Fabaceae</td>
<td>IITA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NACGRAB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NACGRAB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NACGRAB</td>
</tr>
<tr>
<td>Soybean</td>
<td>Glycine max</td>
<td>Kíshi</td>
<td>Poaceae</td>
<td>Local market</td>
</tr>
<tr>
<td>Maize</td>
<td>Zea mays</td>
<td>TZM 158</td>
<td>Poaceae</td>
<td>NACGRAB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TZM 212</td>
<td></td>
<td>NACGRAB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TZM 1457</td>
<td></td>
<td>NACGRAB</td>
</tr>
<tr>
<td>Sorghum</td>
<td>Sorghum bicolor</td>
<td>Oka baba</td>
<td>Gramineae</td>
<td>Local market</td>
</tr>
<tr>
<td>Pearl millet</td>
<td>Pennisetum glaucum</td>
<td>Dawa</td>
<td></td>
<td>Local market</td>
</tr>
</tbody>
</table>

IITA: International Institute of Tropical Agriculture, Nigeria; NACGRAB: National Centre for Genetic Resources and Biotechnology, Nigeria.

were sprayed at the rate of 2.5 kg a.i./ha immediately after planting. Thereafter, weeding was done manually whenever the need arose.

Insect rearing in the laboratory

Nymph and adult A. curvipes, C. tomentosicollis and M. jaculus were collected from the cowpea field and reared in separate 90 cm \(\times \) 62 cm \(\times \) 62 cm laboratory cages at 26 ± 1°C and 73 ± 3% RH. The insects were provided with freshly cut young cowpea pods every 48 h. Freshly-emerged adults (≤ 2 days old) of each insect species were used for the bioassays.

Preparation of enzyme extracts

Enzyme samples were prepared as described by Oyebanji et al. (2014) with little modifications. Each insect was dissected in ice cold 0.09% NaCl under a Kyowa Optical Model SDZ-PL binocular microscope and a clean lateral cut was made through the length of the insect body to expose the digestive tract which was carefully extracted. The extracted digestive tracts were weighed and homogenized in 3 volumes of sodium phosphate buffer (pH 7.5) after which the solution was centrifuged at 4,000 rpm for 30 min at 4°C. The protease-rich supernatant gut extract was collected for bioassays.

Preparation of plant extracts

Grains of five cereal and five legume plants (Table 1) were used as sources of protease inhibitors. The grains were cleaned properly and blended separately into fine powder. Fifty grams (50 g) of each powder was dissolved in 3 volumes of 0.1 M potassium phosphate buffer (pH 7.0) and stirred thoroughly for 30 min. The mixture was stored in a refrigerator at 4°C for 24 h to ensure adequate release of plant juice. After 24 h, the mixture was brought out of the refrigerator, stirred evenly and the slurry was sieved with a cheese cloth. The obtained solution was centrifuged at 4000 rpm for 30 min at 4°C to obtain a pure extract. The supernatant was collected and frozen until needed for bioassays.

Determination of protein concentration in enzyme and plant extracts

The concentration of protein in enzyme extract of each insect species and plant extract was determined using Bradford (1976) method. The reaction mixture consisted of 0.01 ml distilled water in a test tube to which 0.01 ml extract was added and then shaken for some seconds. To this mixture was added 1.0 ml Bradford reagent. Blank was made of 0.02 ml distilled water and 1.0 ml Bradford reagent. The optical density was read at 540 nm using a Visible Camp Spectrophotometer.

Protease activity

Protease activity in the enzyme extract of each pod-sucking bug species was quantified spectrophotometrically as described by Morihara and Tsuzuki (1977) with slight modification. The reaction mixture consisted of 1 ml 1% (w/v) casein and 0.5 ml of the enzyme preparation. This was incubated in a water bath at 35°C for 30 min. The reaction was terminated by the addition of 3 ml cold 10% (w/v) Trichloroacetic acid (TCA). The mixture was allowed to stand at 4°C for 30 min, centrifuged at 3000 rpm for 10 min and the supernatant was collected for the determination of non-precipitated TCA protein (Lowry et al., 1951). One milliliter of the TCA protein was mixed with 5 ml Lowry’s reagent C, mixed thoroughly and incubated at room temperature for 10 min. Three fold diluted Folin-Ciocalteu’s phenol reagent (0.5 ml) was added to the mixture with shaking, and incubated at room temperature for 30 min. The optical density of the mixture was read at 760 nm and the amount of non-precipitated TCA protein was estimated as tyrosine from a standard curve of known concentrations of tyrosine. One unit of protease activity is defined as the quantity that is required to produce 100 μg of tyrosine in 1 ml of TCA filtrate under the above conditions.

Protease inhibition and kinetics assays

The assay was similar to the one described for protease activity except that 0.25 ml of each plant extract was incubated with 0.5 ml enzyme extract for at least 15 min before 1 ml 1% (w/v) casein was added. For comparison, separate assays were carried out in which the plant extracts were replaced with 0.25 ml commercial protease.
inhibitors, phenylmethylsulfonyl fluoride (PMSF) and α-ε-N-caproic acid, which inhibit serine and cysteine proteases. For kinetic analysis of inhibition, serial concentrations (5, 8, 10, 15, 17 and 20 μl) of each plant extract were added to the assay buffer prior to each bioassay. The concentration of the extract resulting in 50% protease inhibition (IC₅₀) was determined from a plot of remaining activity versus extract concentration.

Temperature and pH activities

The replicated inhibition assay mixtures were incubated at temperatures between 40 and 90°C to assess thermal effect on inhibitory activity and to determine the optimum temperature for each PI. Similarly, effect of pH on inhibitory activity and optimum pH were assessed by assaying the enzyme in buffers of different pH levels at 25°C. The buffer solutions used were citrate buffer pH 4.0 and 5.0, borate buffer pH 9.0 and, phosphate buffer pH 7.0 and 8.0. The absorbance was read at 366 nm. The thermostability of PIs in the best two plant sources (Kishi and NG/SA/07/0098) was also determined. Separate protease inhibition assays were repeated as earlier described using the two extracts but assay mixtures were incubated for 1 h at 40, 50, 60, 70 and 80°C. Inhibition activity was determined every 10 min and the length of time for which the PIs remained active was determined for each plant extract.

Combined effect of Kishi and NG/SA/07/0098

Grain extracts of the two plants with superior PIs were assayed together in nine separate volumetric ratios against the insect enzyme extracts. The constituted inhibition bioassay was as described earlier and combination ratios ranged from soybean-biased to equality and cowpea-biased.

Statistical analysis

Each bioassay was replicated three times and data obtained for total protein and protease activity in the pod-sucking bug species were subjected to analysis of variance (ANOVA) using SAS v. 9.0 (SAS, 2002). Activity of the plant-based protease inhibitors against enzyme extracts was also subjected to ANOVA. Mean values were separated using the Least Significant Difference (LSD) procedure at α = 0.05.

RESULTS

The total protein and corresponding protease activity in each pod-sucking bug species are presented in Table 2. *Anoplocnemis curvipes* had the highest concentration of protein (3.5 mg/ml) followed by *C. tomentosicollis* (2.5 mg/ml) and *M. jaculus* (2.1 mg/ml). However, the highest protease activity was recorded in *C. tomentosicollis* (1.1 μmol/mg) while *A. curvipes* (0.7 μmol/mg) had the least. Evidently, *C. tomentosicollis* and *M. jaculus* had higher protease to total protein ratios compared to *A. curvipes*. Extracts of legume grains had higher protein concentrations compared to the cereals (Table 3) and high concentrations were found in the local soybean variety *Kishi* and cowpea landrace NG/SA/07/0098.

Percent protease inhibitory activity of ten grain extracts and two commercial protease inhibitors against enzyme extracts of the three PSBs are also presented in Table 3. The legume grain extracts had higher efficacy compared to the cereal plants. Extract of *Kishi* compared very well with PMSF in *A. curvipes* and with α-ε-N-caproic acid in *C. tomentosicollis* while it outperformed the two commercial inhibitors in *M. jaculus*. The two plant extracts with higher total protein had significantly higher inhibitory activity with PIs from the soybean being the most potent. The degree of protease inhibition in each PSB varied significantly depending on the plant extract tested. Also, proteases in *M. jaculus* were generally more susceptible to action of the PIs; yielding the highest inhibition of 76% when assayed against extract of *Kishi*.

Grain extracts inhibited protease activity in a dose-dependent manner with 50% inhibition concentration (IC₅₀) of 11.6, 13.1, 14.9 μg/ml (*Kishi*) and 10.9, 17.1, 8.9 μg/ml (NG/SA/07/0098) against *M. jaculus*, *C. tomentosicollis* and *A. curvipes*, respectively (Table 4). The optimum temperature and pH for protease inhibition by each plant extract are presented in Table 5. There was a noticeable variation in values recorded within and among the PSBs depending on plant extract. Generally, lower optimum temperatures (64.00 ± 6.36°C, range: 40-90°C) were recorded in assays involving *A. curvipes* compared to 77.00 ± 4.73°C (range: 60-90°C) for *C. tomentosicollis* and 80.00 ± 3.65°C (range: 50-90°C) for *M. jaculus*. There was also a noticeable difference in the optimum temperature of PIs from cereal and legume plants. Cereal-linked PIs acted best at higher temperatures (80.00 ± 4.78°C, range: 50-90°C) than those from legumes (67.33 ± 5.27°C, range: 40-90°C).

Table 2. Total protein concentration and protease activity in gut extracts of three cowpea pod-sucking bug species.

<table>
<thead>
<tr>
<th>Pod-sucking bug species</th>
<th>Protein concentration (mg/ml)</th>
<th>Protease activity (μmol/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anoplocnemis curvipes</td>
<td>3.545 ± 0.008</td>
<td>0.686 ± 0.005</td>
</tr>
<tr>
<td>Clavigralla tomentosicollis</td>
<td>2.525 ± 0.009</td>
<td>1.055 ± 0.007</td>
</tr>
<tr>
<td>Mirperus jaculus</td>
<td>2.115 ± 0.037</td>
<td>0.938 ± 0.032</td>
</tr>
<tr>
<td>LSD₀.₀₅</td>
<td>0.368</td>
<td>0.067</td>
</tr>
</tbody>
</table>

Values shown are average ± standard error.
Table 3. Total protein and protease inhibition effected by ten grain extracts and two commercial inhibitors against three cowpea pod-sucking bug species.

<table>
<thead>
<tr>
<th>Source of protease inhibitor</th>
<th>Protein concentration (mg/ml)</th>
<th>Percentage inhibition</th>
<th>(^\d)LSD(_{0.05})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Anoplocnemis curvipes</td>
<td>Clavigralla tomentosicollis</td>
</tr>
<tr>
<td>Kishi</td>
<td>1.457 ± 0.012</td>
<td>61.07 ± 0.08</td>
<td>37.80 ± 0.19</td>
</tr>
<tr>
<td>NG/SA/07/0098</td>
<td>0.776 ± 0.006</td>
<td>16.32 ± 0.17</td>
<td>22.65 ± 0.07</td>
</tr>
<tr>
<td>NGB/06/047</td>
<td>0.740 ± 0.007</td>
<td>20.69 ± 0.09</td>
<td>20.37 ± 0.04</td>
</tr>
<tr>
<td>NGB/Vu/118</td>
<td>0.714 ± 0.011</td>
<td>11.66 ± 0.06</td>
<td>18.10 ± 0.05</td>
</tr>
<tr>
<td>Ife Brown</td>
<td>0.721 ± 0.005</td>
<td>18.00 ± 0.08</td>
<td>5.97 ± 0.02</td>
</tr>
<tr>
<td>TZM 212</td>
<td>0.716 ± 0.007</td>
<td>19.24 ± 0.08</td>
<td>6.35 ± 0.01</td>
</tr>
<tr>
<td>TZM 1457</td>
<td>0.701 ± 0.013</td>
<td>8.75 ± 0.03</td>
<td>7.77 ± 0.02</td>
</tr>
<tr>
<td>TZM 158</td>
<td>0.644 ± 0.011</td>
<td>6.71 ± 0.02</td>
<td>0.57 ± 0.01</td>
</tr>
<tr>
<td>Sorghum</td>
<td>0.679 ± 0.002</td>
<td>0.73 ± 0.01</td>
<td>5.02 ± 0.03</td>
</tr>
<tr>
<td>Pearl millet</td>
<td>0.612 ± 0.004</td>
<td>10.50 ± 0.03</td>
<td>18.48 ± 0.07</td>
</tr>
<tr>
<td>Phenylmethylsulfonyl fluoride</td>
<td></td>
<td>67.80</td>
<td>100.00</td>
</tr>
<tr>
<td>α-ε-N-caproic acid</td>
<td>100.00</td>
<td>41.00</td>
<td>39.40</td>
</tr>
</tbody>
</table>

\(^{1,2}\)Separate mean values (± s.e.) within and among the pod-sucking bug species, respectively.

Table 4. Inhibition concentration (IC\(_{50}\)) of ten grain extracts acting on proteases of three cowpea pod-sucking bug species.

<table>
<thead>
<tr>
<th>Grain extract</th>
<th>Inhibition concentration (μg/ml)</th>
<th>Anoplocnemis curvipes</th>
<th>Clavigralla tomentosicollis</th>
<th>Mirperus jaculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kishi</td>
<td>14.899</td>
<td>13.074</td>
<td>11.560</td>
<td></td>
</tr>
<tr>
<td>NG/SA/07/0098</td>
<td>8.859</td>
<td>17.084</td>
<td>10.934</td>
<td></td>
</tr>
<tr>
<td>NGB/06/047</td>
<td>11.163</td>
<td>16.189</td>
<td>11.582</td>
<td></td>
</tr>
<tr>
<td>NGB/Vu/118</td>
<td>12.721</td>
<td>11.057</td>
<td>16.526</td>
<td></td>
</tr>
<tr>
<td>Ife Brown</td>
<td>12.036</td>
<td>8.696</td>
<td>9.229</td>
<td></td>
</tr>
<tr>
<td>TZM 212</td>
<td>10.412</td>
<td>11.317</td>
<td>14.185</td>
<td></td>
</tr>
<tr>
<td>TZM 1457</td>
<td>10.059</td>
<td>9.164</td>
<td>14.839</td>
<td></td>
</tr>
<tr>
<td>TZM 158</td>
<td>13.154</td>
<td>11.900</td>
<td>10.575</td>
<td></td>
</tr>
<tr>
<td>Sorghum</td>
<td>14.733</td>
<td>9.784</td>
<td>15.655</td>
<td></td>
</tr>
<tr>
<td>Pearl millet</td>
<td>13.598</td>
<td>7.947</td>
<td>9.069</td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Optimum conditions for protease inhibitory activity against the three cowpea pod-sucking bug species.

<table>
<thead>
<tr>
<th>Grain extract</th>
<th>Optimum temperature (°C)</th>
<th>Optimum pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anoplocnemis curvipes</td>
<td>Clavigralla tomentosicollis</td>
</tr>
<tr>
<td>Kìshi</td>
<td>40.0</td>
<td>60.0</td>
</tr>
<tr>
<td>NG/SA/07/0098</td>
<td>60.0</td>
<td>60.0</td>
</tr>
<tr>
<td>NGB/06/047</td>
<td>90.0</td>
<td>80.0</td>
</tr>
<tr>
<td>NGB/Vu/118</td>
<td>60.0</td>
<td>60.0</td>
</tr>
<tr>
<td>Ife Brown</td>
<td>40.0</td>
<td>90.0</td>
</tr>
<tr>
<td>TZM 212</td>
<td>50.0</td>
<td>90.0</td>
</tr>
<tr>
<td>TZM 1457</td>
<td>70.0</td>
<td>90.0</td>
</tr>
<tr>
<td>TZM 158</td>
<td>50.0</td>
<td>60.0</td>
</tr>
<tr>
<td>Sorghum</td>
<td>90.0</td>
<td>90.0</td>
</tr>
<tr>
<td>Pearl millet</td>
<td>90.0</td>
<td>90.0</td>
</tr>
</tbody>
</table>

Table 6. Percent protease inhibition due to different volumetric combinations of Kìshi and NG/SA/07/0098 extracts.

<table>
<thead>
<tr>
<th>Combined ratio (Soybean: Cowpea)</th>
<th>Percent inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anoplocnemis curvipes</td>
</tr>
<tr>
<td>0.5:0.5</td>
<td>100</td>
</tr>
<tr>
<td>0.4:0.6</td>
<td>93</td>
</tr>
<tr>
<td>0.3:0.7</td>
<td>18</td>
</tr>
<tr>
<td>0.2:0.8</td>
<td>36</td>
</tr>
<tr>
<td>0.1:0.9</td>
<td>58</td>
</tr>
<tr>
<td>0.8:0.2</td>
<td>100</td>
</tr>
<tr>
<td>0.7:0.3</td>
<td>100</td>
</tr>
<tr>
<td>0.6:0.4</td>
<td>99</td>
</tr>
<tr>
<td>0.9:0.1</td>
<td>100</td>
</tr>
</tbody>
</table>

While Kìshi, TZM 212 and sorghum extracts were more active in weakly-acidic medium (pH 6.0), the cowpeas (Ife Brown, NG/SA/07/0098, NGB/06/047 and NGB/Vu/118) inhibited proteases best at pH 7.0. Generally, optimum pH for the protease inhibitors ranged from weak acidity (pH 4.0) to neutral (pH 7.0).

Percent protease inhibition caused by nine volumetric ratios of the two superior plant extracts is presented in Table 6. There was a significant (**P < 0.01) intra- and interspecific variation in inhibitory activity depending on the extract ratio used. The combined protease inhibitory effect was synergistic for most of the extract ratios considered and inhibition efficacy was superior to those of two commercial inhibitors. Soybean-biased ratios of 0.7:0.3 and 0.8:0.2 caused total protease inhibition (100%) in all the three pod-
Table 7. Thermostability of protease inhibitors in Kìshí and NG/SA/07/0098 extracts.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Grain extract</th>
<th>Thermostability (min)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Anoplocnemis curvipes</td>
<td>Clavigralla tomentosicollis</td>
</tr>
<tr>
<td>40</td>
<td>Kìshí</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>NG/SA/07/0098</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>Kìshí</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>NG/SA/07/0098</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>Kìshí</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>NG/SA/07/0098</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>70</td>
<td>Kìshí</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>NG/SA/07/0098</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>80</td>
<td>Kìshí</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>NG/SA/07/0098</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>90</td>
<td>Kìshí</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>NG/SA/07/0098</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 Thermostability could not be determined at 90°C because protease inhibitors were denatured very quickly when incubated.

sucking bug species. Generally, cowpea-biased ratios effected lower protease inhibition, the lowest at 18% when 0.3:0.7 extract ratio was assayed against the gut extract of A. curvipes. The thermostability of PIs from the two plants is shown in Table 7. The protease inhibitors were more stable at lower temperatures, for as long as 1 h at 40 and 50°C. However, thermostability could not be determined at temperatures higher than 80°C because the inhibitors were denatured.

DISCUSSION

The protease inhibitors are basic agents of plant defense and an attempt was made in this study to exploit the mechanism of defense with a view to identifying suitable plant sources of PIs against cowpea pod-sucking bug species. Two legume plants were found to be good sources of PIs against the PSBs and when assayed together against the enzyme extracts, they deactivated proteases synergistically. Many of the biosynthesised defensive chemicals in plants act either alone or in concert to contribute to the resistance of plants against insect pests (War et al., 2012). A combination of protease inhibitors holds promise of higher success rate than when each of them is applied singly (Koiwa et al., 1997; Vain et al., 1998). Insect herbivores have successfully developed multiple mechanisms of adaptation to overcome defensive effects of plant protease inhibitors (Gatehouse, 2011) especially when acting alone but combined effect of a mixture of PIs may not be broken easily.

Generally, the legume plants had higher total protein concentration and more efficient PIs compared to the cereals. The PIs, especially trypsin and chymotrypsin inhibitors, are widespread among legume crops (Clemente et al., 2015) and this may explain the reason for higher inhibitory efficacy achieved by the legumes because trypsin and chymotrypsin play important roles in extra-oral digestion. The first PI to be isolated and characterized was Kunitz’s soybean trypsin inhibitor (KTI) (Kunitz, 1947). The KTI is primarily an inhibitor of trypsin, but also weakly inhibits chymotrypsin. McGrain et al. (1992) reported a slow phase of KTI accumulation in soybean during seed maturation followed by a rapid phase when the seeds reached half their maximum fresh weight and over 80% of maximum length. Thus, a good level of KTI accumulation is attained in matured soybean seeds.

The PIs from cereal crops were more structurally stable than those from the legumes. This was evident in their ability to function at higher temperatures and more acidic environments compared to lower temperatures and mostly neutral media required by legume-linked PIs. The stability is likely due to stronger disulfide bonds linking amino acids in the storage protein of cereal crops. Disulfide bonds play an important role in determining the structure and properties of storage proteins and they are formed between sulphhydryl groups of cysteine residues, either within a single protein (intrachain) or between proteins (interchain) (Koehler and Wieser, 2013). Cereals have higher content of cysteine residues than legumes (Mlyneková et al., 2014) and this gives room for formation of more disulfide bridges. For instance, the protein fraction in wheat (glutenins) has fifty disulfide bridges compared to twenty two possessed by glycinin from soybean (Carbonaro et al., 2015). The higher number of disulfide bonds in cereals play an important role in enabling stability of proteins to a variety of chemical and
physical denaturants, including low pH, chaotropes, high temperature and pressure (Mills et al., 2009). The protein fraction of plants with high cysteine content is typically quite resistant to heat denaturation and proteolytic digestion. Therefore, for the health of man and animals, these traits are usually avoided when developing transgenic crops.

Because of the key roles played by proteases in digestion, considerable interest has been generated over the years about the effects of PIs that could be present in the food chain. If present, they can impair nutritional quality and food safety by altering the digestive processes and interfering with growth and development (Ryan, 1990; Clemente et al., 2015; vaz Patto et al., 2015). A few of the PIs tested in this study acted at 90°C but none of them was able to sustain its activity beyond 50 min at 80°C, losing their potency and getting denatured. Instability of a PI below 100°C is one of the desirable traits that guarantee safety of man and animals when such PI is incorporated into a food source (Ryan, 1990).

The tropical region has a great floral diversity from which more suitable sources of PIs against the PSBs and other major insect pests could be identified. However, it is advisable to use less susceptible proteases, such as the ones in C. tomentosicollis, when screening plant extracts for good PIs. Cowpea is severely attacked by insect pests at every stage of its growth (Asiwe et al., 2005) and its production cannot be successful without insecticide application (Nabiyre et al., 2003; Dugje et al., 2009; Kamara et al., 2010). Genetic modification of cowpea cultivars using genes that mediate protease inhibition in Kíšhi and NG/SA/07/0098 may serve as a basis for producing transgenic cowpea lines. This may eventually reduce the heavy dependence on synthetic chemical insecticides for cowpea production.

Conflict of Interests

The authors have not declared any conflict of interests.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

REFERENCES

Conflict of Interests

The authors have not declared any conflict of interests.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

REFERENCES

African Journal of Biochemistry Research

Related Journals Published by Academic Journals

- International Journal of Plant Physiology and Biochemistry
- African Journal of Biotechnology
- Journal of Developmental Biology and Tissue Engineering