ABOUT AJBR

African Journal of Biochemistry Research (AJBR) provides rapid publication (monthly) of articles in all areas of Biochemistry such as Nutritional biochemistry, Analytical biochemistry, Clinical Biochemistry, Human and Plant Genetics, Molecular and Cell Biology, Enzymology, Toxicology, Plant Biochemistry, Biochemistry Education etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles are peer-reviewed.

Contact Us

Editorial Office: ajbr@academicjournals.org

Help Desk: helpdesk@academicjournals.org

Website: http://www.academicjournals.org/journal/AJBR

Submit manuscript online http://ms.academicjournals.me/
Editor

Prof. Johnson Lin
School of Biochemistry, Genetics, Microbiology and Plant Pathology
University of KwaZulu-Natal (Westville)
Private Bag X 54001, Durban
Republic of South Africa

Associate Editors

Gregory Lloyd Blatch
Dept Biochemistry Microbiology & Biotechnology
Rhodes University Grahamstown 6140
South Africa

Dr. Serap Yalin
Mersin University,
Faculty of Pharmacy,
Department of Biochemistry,
Yenisehir Kampusu,
Mezitli 33161
Mersin/Turkey

Dr. Om Prakash Gupta
Directorate of Wheat Research (ICAR)
Post Box-158, A grasa in Marg, Karnal-132001, Haryana, India
Editorial Board

Dr. Desouky A.M. Abd-El-Haleem
Biological Sciences Department,
College of Arts and Sciences,
Qatar University, Doha,
Qatar

Dr. S.K. Trigun
Biochemistry and Molecular Biology Section,
Banaras Hindu University
Varanasi-221005,
India

Dr. Imed Gallouzi
McGill University,
Biochemistry Department,
3655 Promenade Sir William Osler
Montreal, Quebec, H3G 1Y6,
Canada

Dr. Ashraf A Khalil
Protein Technology Lab, Mubarak City for Science, New
Borg Elarab,
Alexandria,
Egypt.

Dr. Stanely Mukanganyama
Department of Biochemistry,
University of Zimbabwe, Box MP 167,
Mount Pleasant, Harare,
Zimbabwe

Prof. Salah A. Sheweita
Taibah University, Faculty of Medicine, Department of
Biochemistry, PO Box 30001, Madinah,
Saudi Arabia

Dr Oluwafemi O Oguntibeju
Department of Clinical Biochemistry,
School of Medicine,
Spartan Health Sciences University,
P.O. Box 324, Vieux Fort, St Lucia,
West Indies

Dr. Robert L. Brown
USDA ARS,
Southern Regional Research Center
1100 Robert E. Lee Blvd.,
New Orleans, LA 70124

Dr. Edward Eteshola
Biomedical Engineering Center
Davis Heart and Lung Research Institute
Ohio State University
473 W. 12th Avenue
Columbus, OH 43210

G. Suresh Kumar
Senior Scientist and Head
Biophysical Chemistry Laboratory
Indian Institute of Chemical Biology
Council of Scientific and Industrial Research
Jadavpur, Kolkata 700 032,
India

Xu Lu
Department of Biochemistry and Molecular Biology
Colorado State University
Fort Collins, CO 80523-1870
USA

Mohammed A.A Sarhan
Dept. Biological Sciences
Faculty of Science
King Khalid University
Saudi Arabia

Mehrdad Behmanesh
Department Of Genetics
School Of Science
P.O.Box 114-175 Tehran Iran
Iran

Hans Verhagen
P. o Box 1 3720 Ba Bilkoven
The Netherlands

P.K. Sumodan
Post Graduate Department Of Zoology
Government College Madappally India
India

Baleseng Moseki
University Of Botswana
Botswana
Bhaskar C. Behera
Agharkar Research Institute
Plant Science Division India
India

Luiz Claudio Milettn
Universidade Do Estado De Santa Catarina
Brasil

Oladipo Gabriel Sunday
University Of Port Harcourt
Port Harcourt-Nigeria
Nigeria

Basiouny Ahmed El-Gamal
Biochemistry Department
Faculty Of Science
Alexandria University
Egypt

Aminigo Ebiokpo Rebecca
University Of Port Harcourt
Portharcourt-Nigeria
Nigeria

Jia Zeng
Department Of Bioengineering
Central South University
Changsha Hunan 410083 P.R.China
China

Adenike Kuku
Obafemi Awolowo University
Department Of Biochemistry
Nigeria

Elayed Hafez
Genetic Engineering and Biotechnology Research Institute
Egypt

Gabriella Castoria
Via L. De Crecchio 7 -80138 Naples
Department Of General Pathology
Italy

Salwa Seddik Abdel-Latif
21 Elbatal Ahmed Abdel Aziz
Elmohandesien Giza
Egypt

Erasto Vitus Mbugi
Muhimbili University
Biochemistry Department
School Of Medicine
India

Mohamed Rholam
Université Paris7 - Denis-Diderot
France

Hooi Ling Foo
Universiti Putra Malaysia
Malaysia

Jayanth Rao
Biochemistry And Nutrition
Cftri Mysore
India

Maznah Ismail
Universiti Putra
Malaysia

Svetlana Lutsenko
Oregon Health & Science University
USA

Gabriel Ugwem
Rivers State University Of Science And Technology
P.M.B. 5080 Port Harcourt
Nigeria

Hari Chhatpar
Dept. Of Microbiology & Biotechnology Centre
Faculty Of Science
M.S.University Of Baroda
Vadodara 390 002
Baroda India

Mahiuddin Alamgir
The University Of New South Wales
Sydney Nsw-2052
Australia

Sheeja Samuel Edwin
B.R Nahata College of Pharmacy & Research Centre
India

William Cho
Room 1305 13/F Block R Department of Clinical Oncology
Queen Elizabeth Hospital
30 Gascoigne Road Kowloon
Hong Kong
Ass. Prof. Tzong-Jih Cheng
Department of Bio-Industrial Mechatronics
National Taiwan University
Taiwan

Dr. Zuyong Xia
Department of Radiology,
1201 Welch Rd, Room P089, Stanford, CA 94301
USA

Dr. Pratap Kumar Das
Indian Institute of Chemical Biology
India

Dr. Vasudeo Pandharinath Zambare
Advanced Enzyme Technologies Ltd
India

Dr. A M Mujumdar
Agharkar Research Institute
India

Prof. Christine Clayton
ZMBH
ImNeuenheimer Feld 282
69120 Heidelberg
Germany

Prof. Rekik Boul baba
ESA Mateur
Département des sciences et techniques de productions animales
Tanzania

Dr. Farhad Mirzaei
National Dairy Research Institute, NDRI
Karnal
India

Dr. ROUABHI Rachid
Biology Department
Tebessa University.
Algeria

Prof. Vaclav Vetvicka
University of Louisville
USA

Dr. Ramesh Putheti, Ph.D
Research scientist
Actavis Pharmaceuticals
10065 red run blvd, owings mills Blvd, Maryland USA 21030
USA

Prof. Dr. Mustafa NAZIROGLU
Head of Department of Biophysics
Medical (TIP) Faculty, SuleymanDemirel University
Cunur, TR-32260 Isparta
TURKEY

Dr. José Luis Arias Mediano
GrupoInvestigaciónFarmaciaPráctica (CTS-205)
Dept. Farmacia y TecnologíaFarmacéutica
Facultad de Farmacia
Campus Universitario de Cartuja, s/n Universidad de Granada
18071 Granada.

Ahmed Malki, PhD
Lecturer of Biochemistry and Molecular Biology
Biochemistry Department
Faculty Of Science
Alexandria University
Alexandria,
Egypt

Dr. Alireza Seidavi (PhD)
Assistant Professor of Animal and Poultry Nutrition,
Department of Animal Science,
College of Agriculture,
Islamic Azad University, Rasht Branch,
Rasht, Iran

Amani S. Awaad
Professor of pharmacognosy, Chemistry Department
Faculty of Sciences, King Saud University .
Riyadh. KSA. P.O. Box 22452, Riyadh 11495.
Saudi Arabia

Dr. Abdel-TawabMossa
Environmental Toxicology Research Unit (ETRU),
Pesticide Chemistry Department,
National Research Centre,
Dokki,
Egypt
Dr. Amal A. Mohamed
Plant Biochemistry Department, Agriculture Division - National Research Center, 31-El-Tahrir St., Dokki, Cairo – Egypt

Dr. Anabella Gaspar
Department of Biochemistry, University of Pretoria, South Africa

Dr. Anna Janecka
Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland

Dr. Caser Abdel
Horticulture Department, Dohuk University, Iraq

Dr. David Sheehan
Dept Biochemistry, University College Cork, Ireland

Dr. Dayananda Chandrappa
Center for Bioenergy, Department of Life and Physical Sciences, Cooperative Research, Lincoln University, Jefferson City, USA

Dr. Elsayed Abdelaal
Special Graduate Faculty, University of Guelph, Ontario, Canada

Dr. Etienne Marbaix
CELL Unit, de Duve Institute, UCL-75.41, 75 avenue Hippocrate, B-1200 Bruxelles, Belgium

Dr. Gary L. Firestone
Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA

Dr. Henryk Zielinski
Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Poland

Dr. Irshad A. Nawchoo
Department of Botany, University of Kashmir, India

Dr. Luchai Butkhup
Department of Biotechnology, Faculty of Technology, Mahasarakham University, Mahasarakham 44000, Thailand

Dr. Luminita Vladescu
Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Romania

Dr. Mira Debnath
School of Biochemical Engineering, Institute of Technology - Banaras Hindu University, Varanasi, India

Dr. Nilesh S. Panchal
Department of Biosciences, Saurashtra University, Rajkot-360005, Gujarat, India

Dr. Rayappa A. Balikai
University of Agricultural Sciences, Dharwad, Karnataka- 580 005, India
Antihyperlipidaemic and anti-atherosclerotic activities of aqueous leaf extract of L. africana in streptozotocin induced diabetic rats

Uwakwe Augustine A., Miikue-Yobe Togenu F. B., Akaninwor Joyce O. and Felix-Samuel Barisi
Antihyperlipidaemic and anti-atherosclerotic activities of aqueous leaf extract of *L. africana* in streptozotocin induced diabetic rats

Uwakwe Augustine A.¹, Miikue-Yobe Togenu F. B.²*, Akaninwor Joyce O.¹ and Felix-Samuel Barisi²

¹Department of Biochemistry, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria.
²Department of Science Laboratory Technology, Rivers State Polytechnic, Bori, Rivers State, Nigeria.

Received 20 October, 2015; Accepted 29 March, 2016

Hyperlipidaemia is a usual and life threatening complication of diabetes mellitus. Consequently, a good anti-diabetic agent should reduce the progression of this complication. In view of this, the antihyperlipidaemic and anti-atherogenic activities of aqueous extract of *Lasianthera africana* was studied in streptozotocin induced diabetic rats. Extract treatment was administrated at a dose of 1ml of 180 mg/ml of extract per kg body weight once daily for three weeks (21 days). Blood samples were collected thereafter by cardiac puncture for the analysis of lipid profile after the rats were exposed to chloroform vapour for 5 min. Results show that extract treatment caused significant (p<0.05) reduction in all lipid parameters analyzed when compared to the diabetic control. The reduction in total cholesterol was more for low density lipoprotein (LDL) (90%) than high density lipoprotein (HDL) (69%) by extract treatment when compared to the diabetic control by 94 and 75 percent respectively. The extract also caused significant (p < 0.05) reduction in cardiac risk ratio (CRR), atherogenic index of plasma (AIP) and the atherogenic coefficient respectively. The result therefore shows that the aqueous extract of *L. africana* possess anti-hyperlipidaemic and anti-atherosclerotic activities, a justification for its use by ethno-botanist in the treatment of diabetic complications.

Key words: Anti-hyperlipidaemia, anti-atherosclerotic, atherogenic coefficient, cardiac risk ratio, atherogenic index of plasma, *Lasianthera africana*.

INTRODUCTION

Dyslipidaemia is one common characteristic of diabetes mellitus resulting to the accompanied cardiovascular disorder often encountered by persons suffering from untreated diabetes. This complication often is the cause of lipid related disorders such as hyperlipilaemia, hypercholesterolaemia, stroke and cardiac arrest in such
persons. These are often life threatening and so may result to death if proper medical attention is not employed. In low income earning economy, such as the ones noticeable in the sub-Saharan African regions, access to prompt medical attention may be delayed if not denied or completely absent, hence locals rely on herbal remedy which seems to be readily available from nature and cheaper to obtain (Mbagwu et al., 2011; McGrowder, 2013; Balde et al., 2006; Tanko et al., 2008). The treatment of diabetes and its complication with herbal remedy is a common historical practice among the local of the African continent and indeed the Niger Delta people of Nigeria (Obute et al., 2007). One of such herb in common use among the people is Lasianthera africana. Beside its use as herbs, it is also used as vegetables and food spices (Andy et al., 2008). L. africana commonly known as “editang” by Efik speaking group and “gargbon” by the Ogonis of the Niger Delta is a plant that belongs to the order celestrates and family Icacinacea. It comprises of 13 families of trees and shrub possessing simple leaves (Sofowora, 1993). It has been reported to possess cooling and purifying effects, as well as preventing internal bleeding (Adegoke et al., 2009). It is also reported to have bacteriostatic, fungicidal, anti-diabetic (Ekanem, 2006), antiplasmodial (Okokon et al., 2009), and antimicrobial (Nsor et al., 2012; Adegoke et al., 2008) activities. The phytochemical screening of the aqueous extract showed the active ingredients present to be more of alkaloids and carotenoids and trace amount of terpenoids, saponins, tannins, phytic and oxalic acids.

Most of the works reported the herbal activities of the extract in alcoholic, ethylacetate and butanolic media. We are however reporting its herbal potential in the aqueous medium, a form in which it is mostly consumed as food and vegetable spices, with the aim of ascertaining its effect on lipid metabolism in a diabetic induced experimental condition.

MATERIALS AND METHODS

Chemical

Streptozotocin used was obtained from Sigma-Aldrich, (USA) and the diagnostic kits for triglyceride, total cholesterol and high density lipoprotein were products of Randox Laboratories Ltd, Crumlin, England, UK. They were all of analytical grades. The reference drug (Daonil, a brand of glibenclamide) was purchased commercially from a local store.

Experimental animal handling

Healthy Wister albino rats (Rattus rattus) were purchased from the animal house of the Department of Biochemistry, University of Port Harcourt, Rivers State, Nigeria and transported in plastic cages to the Biological Laboratory of the Rivers State Polytechnic, Bori-Ogoni, Nigeria for housing. Fifty rats weighing between 180-200 g were kept in plastic cages covered with stainless wire gauge and given standard food pellets and water ad libitum to acclimatize. All the animals were maintained in normal conditions of light (12:24 h) and temperature (27±1°C). The acclimatization was for a period of one month before they were used for the experiment. The food pellets were that of grower mash, a product of Port Harcourt flourmills.

Extract preparation

Fresh leaves of L. africana was pulverized to coarse form of weight 100 g. The pulverized mass was dissolved in 1000 ml of distilled water and allowed to stand for 24 h on the laboratory bench with intermittent stirring to ensure proper extraction. The resulting solution was filtered with the aid of a muslin cloth and the filtrate concentrated to dryness by freeze drying for two weeks. The extract mass of 0.30 g obtained was dissolved in 100 ml of distilled water and used in the experiment as the aqueous stock solution from which the 180 mg/ml extract dose was obtained by appropriate dilution. This concentration of extract was obtained by a previous study as the amount capable of causing antihyperglycaemia in diabetic induced rats (Mliuke-Yobe et al., 2015).

Induction of diabetes

Healthy rats were fasted for 18 h and then injected intraperitoneally with an aliquot (1.0 ml) of Streptozotocin (70 mg/kg body weight in 0.9% cold normal saline). The rats were observed for five days for signs of hyperglycaemia by daily monitoring of their blood glucose levels using the one touch glucometer (Prohp and Onogbe, 2009; Azadpakhta et al., 2010). The rats were allowed free access to water and food for the period. After the five days duration, rats with fasting blood levels ≥ 150 mg/dl (9.7 mmol/L) were considered diabetic. Twenty out of the fifty rats showed signs of hyperglycaemia. They were allowed an extra three days to stabilize before commencing treatment with extract and reference drug.

Estimation of plasma lipid profile

Assay of plasma triglyceride concentration

The plasma triglyceride concentration was enzymatically assayed using spectrophotometric method as reported by Ochei and Kohhatkar (2006). The determination was based on lipase/glycerol kinase/glycerol phosphate oxidase/peroxidase/chromogen reaction, a four step sequential reactions as represented below.

Test tubes labeled test, standard and blank contained 3.0 ml of the colour reagent to which 0.03 ml of serum obtained from the blood sample of experimental animals was added to the tubes labeled ‘test’ and same volume of the standard and distilled water were added to the tubes labeled ‘standard’ and ‘blank’ respectively. The solutions were properly mixed and incubated at 37°C for 15 min. Absorbance readings of the test and standard solutions were taken at 420 nm wavelength while the blank was used to zero the machine.

Assay of plasma total cholesterol (TC) concentration

Plasma total cholesterol was assayed enzymatically with Commercial Test Kits (Randox Laboratories Ltd., Crumlin, England,
Three test tubes were set up and labeled: T₁ (standard), T₂ (test sample) and T₃ (control sample). T₁ contained 0.01 ml distilled water, T₂ contained 0.01 ml plasma while test tube T₃ contained distilled water. To each tube was added 1.0 ml of Randox cholesterol reagent. The contents were thoroughly mixed. Placed in water bath at 25°C for 10 min after which their absorbance (A) were read at 546 nm, against the blank, in a spectrophotometer.

Assay of plasma HDL-cholesterol (HDL-C) concentration

Plasma HDL-cholesterol was assayed enzymatically with commercial test kits (Randox Laboratories Ltd., Crumlin England, UK). Three test tubes were set up and labeled: T₁ (blank), T₂ (Randox standard cholesterol) and T₃ (test sample). T₁ contained 0.01 ml of the supernatant from the tube above; T₂ contained 0.10 ml of the supernatant Randox from the standard cholesterol solution tube while T₃ contained 0.10 ml supernatant from sample tube. To each tube was added 1.0 ml of Randox cholesterol reagent. The contents were thoroughly mixed, placed in water bath at 25°C for 10 min after which their absorbance (A) were read at 546 nm, against the blank, in a spectrophotometer.

Estimation of plasma VLDL, LDL and non-HDL-cholesterol concentration

Plasma VLDL and LDL-cholesterol (LDLC and VLDLC) were calculated using the Friedelwald equation (Friedelwald et al., 1972) as shown in Equation "a" and "b":

\[
LDL-cholesterol (mg/dl) = \frac{\text{total cholesterol} - \text{HDL-cholesterol}}{\text{triglyceride/5}} \quad \text{(a)}
\]

\[
\text{VLDL} = \frac{\text{triglyceride}}{5} \quad \text{(b)}
\]

The plasma non-HDL cholesterol concentration was determined as reported by Brunzell et al. (2008) as shown in equation "c":

Non-HDLcholesterol = [Total cholesterol] – [HDL-cholesterol]…. (c)

Evaluation of atherogenic indices

The atherogenic indices were calculated as earlier reported by Ikewuchi and Ikewuchi (2011) using the formulas as shown in equations d-f:

Cardiac risk ratio (CRR) = \[\frac{\text{Total cholesterol}}{\text{HDL cholesterol}} \] … (d)

Atherogenic coeffient (AC) = \[\frac{\text{Total cholesterol} - \text{HDL cholesterol}}{\text{HDL cholesterol}} \] … (e)

Atherogenic Index of Plasma (AIP) = \[\log \frac{\text{Triglyceride}}{\text{HDL cholesterol}} \] … (f)

All the concentrations in the calculation of the atherogenic indices were in mmol/L (Dobiasova, 2004).
The result as shown in Table 2 indicates that the extract treatment of the diabetic rats caused a significant reduction in all lipid profile parameters when compared to the diabetic untreated control. The result is significant as the reduction in total cholesterol is such that its total component is more of HDL than that of LDL which is a strong indicator of cardiovascular risk especially in the face of diabetes. Several reports have implicated HDL as a good antidote to cardiovascular disease, however consideration have not been given to its effect in the presence of increased total cholesterol fraction of HDL. Our result seem to suggest the likelihood that increased total cholesterol fraction of HDL as against that of LDL (Ogbera et al., 2009) as a positive indicator of CVD lowering effect by the extract. This is revealed in the result obtained by comparing the HDL level with that of the total cholesterol (the cardiac risk ratio).

The parameters so considered above are also atherogenic and their interpretation have received differing definitions from various groups and experts in the health care sector. This lack of consensus among these health care professionals is due to periodic changes and interrelationship between the risk factors which make it difficult to isolate the effect of a specific risk factor on lipid profile (Shivanand et al., 2012). The known fact as has been reported by some researchers is that among diabetics there appear to be a higher level of these lipids than in the normal non-diabetic condition while it increases higher in the absence of control (Shavanand et al., 2012). Our result as shown in Table 3 indicates that the aqueous extract of *L. africana* caused a significant reduction in cardiac risk ratio, a factor that is the ratio of the total cholesterol level to that of the level of HDL and is a determinant of the risk of onset of attack of cardiac arrest or myocardial infarction. It also reduced significantly the atherogenic Index of Plasma (AIP); a factor that tells the effect of treatment on the parameter of interest (El-Tantawy and Hassanin, 2007). It therefore provides the proof that the aqueous extract of the leaves of *L. africana* possesses antihyperlipidemid and antiatherosclerotic potential in their effect on the diabetic induced rats as shown in this study.
Conflict of Interests

The authors have not declared any conflict of interest.

ACKNOWLEDGEMENTS

The authors are grateful to the Management of the Rivers State Polytechnic, Bori for their permission to use their infrastructures, to Francis Laboratory for their technical support and to TETFUND for providing part of the funds.

REFERENCES

