ABOUT AJPP

The African Journal of Pharmacy and Pharmacology (AJPP) is published weekly (one volume per year) by Academic Journals.

African Journal of Pharmacy and Pharmacology (AJPP) is an open access journal that provides rapid publication (weekly) of articles in all areas of Pharmaceutical Science such as Pharmaceutical Microbiology, Pharmaceutical Raw Material Science, Formulations, Molecular modeling, Health sector Reforms, Drug Delivery, Pharmacokinetics and Pharmacodynamics, Pharmacognosy, Social and Administrative Pharmacy, Pharmaceutics and Pharmaceutical Microbiology, Herbal Medicines research, Pharmaceutical Raw Materials development/utilization, Novel drug delivery systems, Polymer/Cosmetic Science, Food/Drug Interaction, Herbal drugs evaluation, Physical Pharmaceutics, Medication management, Cosmetic Science, pharmaceuticals, pharmacology, pharmaceutical research etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in AJPP are peer-reviewed.

Contact Us

Editorial Office: ajpp@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/AJPP
Submit manuscript online http://ms.academicjournals.me/
Editors

Himanshu Gupta
Department of Pharmacy Practice
University of Toledo
Toledo, OH
USA.

Prof. Zhe-Sheng Chen
College of Pharmacy and Health Sciences
St. John’s University
New York,
USA.

Dr. Huma Ikram
Neurochemistry and Biochemical
Neuropharmacology Research Unit,
Department of Biochemistry,
University of Karachi
Karachi-75270
Pakistan

Dr. Shreesh Kumar Ojha
Molecular Cardiovascular Research Program
College of Medicine
Arizona Health Sciences Center
University of Arizona
Arizona,
USA.

Dr. Vitor Engracia Valenti
Departamento de Fonoaudiologia
Faculdade de Filosofia e Ciências,
UNESP
Brazil.

Dr. Caroline Wagner
Universidade Federal do Pampa
Avenida Pedro Anunciação
Brazil.

Dr. Ravi Shankar Shukla
Macromolecule and Vaccine Stabilization Center
Department of Pharmaceutical Chemistry
University of Kansas
USA.

Associate Editors

Dr. B. Ravishankar
SDM Centre for Ayurveda and Allied Sciences,
SDM College of Ayurveda Campus,
Karnataka
India.

Dr. Natchimuthu Karmegam
Department of Botany,
Government Arts College,
Tamil Nadu,
India.

Dr. Manal Moustafa Zaki
Department of Veterinary Hygiene and Management
Faculty of Veterinary Medicine,
Cairo University
Giza,
Egypt.

Prof. George G. Nomikos
Takeda Global Research & Development Center
USA.

Prof. Mahmoud Mohamed El-Mas
Department of Pharmacology,
Faculty of Pharmacy
University of Alexandria,
Alexandria,
Egypt.

Dr. Kiran K. Akula
Electrophysiology & Neuropharmacology Research Unit
Department of Biology & Biochemistry
University of Houston
Houston, TX
USA.
Editorial Board

Prof. Fen Jicai
School of life science, Xinjiang University, China.

Dr. Ana Laura Nicoletti Carvalho
Av. Dr. Arnaldo, 455, São Paulo, SP. Brazil.

Dr. Ming-hui Zhao
Professor of Medicine
Director of Renal Division, Department of Medicine
Peking University First Hospital
Beijing 100034
PR. China.

Prof. Ji Junjun
Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, China.

Prof. Yan Zhang
Faculty of Engineering and Applied Science, Memorial University of Newfoundland, Canada.

Dr. Naoufel Madani
Medical Intensive Care Unit
University hospital Ibn Sina, Université Mohamed V Souissi, Rabat, Morocco.

Dr. Dong Hui
Department of Gynaecology and Obstetrics, the 1st hospital, NanFang University, China.

Prof. Ma Hui
School of Medicine, Lanzhou University, China.

Prof. Gu Huijun
School of Medicine, Taizhou university, China.

Dr. Chan Kim Wei
Research Officer
Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra, Malaysia.

Dr. Fen Cun
Professor, Department of Pharmacology, Xinjiang University, China.

Dr. Sirajunnisa Razack
Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamilnadu, India.

Prof. Ehab S. EL Desoky
Professor of pharmacology, Faculty of Medicine
Assiut University, Assiut, Egypt.

Dr. Yakisich, J. Sebastian
Assistant Professor, Department of Clinical Neuroscience
R54 Karolinska University Hospital, Huddinge 141 86 Stockholm, Sweden.

Prof. Dr. Andrei N. Tchernitchin
Head, Laboratory of Experimental Endocrinology and Environmental Pathology LEEPA
University of Chile Medical School, Chile.

Dr. Sirajunnisa Razack
Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamilnadu, India.

Dr. Yasar Tatar
Marmara University, Turkey.

Dr Nafisa Hassan Ali
Assistant Professor, Dow institute of medical technology
Dow University of Health Sciences, Chand bbi Road, Karachi, Pakistan.

Dr. Krishnan Namboori P. K.
Computational Chemistry Group, Computational Engineering and Networking,
Amrita Vishwa Vidyapeetham, Amritanagar, Coimbatore-641 112 India.

Prof. Osman Ghani
University of Sargodha, Pakistan.

Dr. Liu Xiaoji
School of Medicine, Shihezi University, China.
Table of Contents

Articles

- Microspheres of insulin-Eudragit complex: Formulation, characterization and *in vivo* studies
 Mumuni A. Momoh, Tenderwealth C. Jackson, Adedokun O. Musiliu, Kenechukwu F. Chimaobi, Youngson C. Darlington and Kenneth C. Ofokansi

- Level and determinants of pharmacovigilance programme awareness in Nigeria: A multilevel analysis
 Oluwafemi D. Alo, Joshua O. Akinyemi, Matthew O. Akpa, Oyindamola B. Yusuf, Adeniyi F. Fagbamigbe, Elijah A. Bamgboye, Samson B. Adebayo, Issa Kawu, Perpetual Agbi and Onoriode Ezire

Volume 11 Number 29 8 August, 2017
Full Length Research Paper

Microspheres of insulin-Eudragit complex: Formulation, characterization and in vivo studies

Mumuni A. Momoh¹*, Tenderwealth C. Jackson², Adedokun O. Musiliu², Kenechukwu F. Chimaobi¹, Youngson C. Darlington¹ and Kenneth C. Ofokansi¹

¹Drug Delivery Research Unit, Department of Pharmaceutics, University of Nigeria Nsukka, 410001, Nigeria. ²Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Uyo, Akwa-Ibom, Uyo, Nigeria.

Received 7 May, 2017: Accepted 3 July, 2017

Insulin, a hormonal drug for the management of diabetes mellitus has continued to attract attention of many researchers and pharmaceutical formulators for more than a decade. However, its low oral bioavailability due to the activities of intestinal enzymes restricts its route of administration to only the parenteral route. This study was designed to evaluate the capacity of mucoadhesive microspheres formulated with varying blends of Eudragit® RL 100 and Eudragit® RS 100 to protect insulin for oral administration. Microspheres containing varying blends of Eudragit® RL 100/RS100 loaded insulin was prepared by solvent evaporation method and were characterized in vitro and in vivo. Results showed that stable formulation with high encapsulation efficiency, positive zeta potential and high bioadhesion were obtained in all the formulations. In vitro release showed a maximum release of 9 and 87% release in pH 1.2 and 7.2, respectively. Single oral studies showed a decreased in blood glucose level comparably equal to that of subcutaneous (sc) administration. The results of this study indicate that insulin-loaded Eudragit RL100/RS100 microspheres could be a promising drug delivery system to improve oral absorption of insulin.

Key words: Insulin, Eudragit®, microspheres, bioactivity, absorption.

INTRODUCTION

The oral route is widely accepted as the most common method of drug administration into the body due to accessibility, convenience, possibility of repeated self-administration by patients and the opportunity to achieve optimum absorption based on the large surface area available in the gastrointestinal (GI) tract (Khafagy et al., 2007). Additionally, oral delivery offers the unique feature of being able to mimic the physiological path that insulin would travel by entering the hepatic portal vein from the intestine and then to the liver (Lewis et al., 1996). In contrast, insulin injected subcutaneously must circulate through the body before reaching the liver. Accordingly, insulin delivered directly to the liver could decrease complications, such as atherosclerosis, which are
Table 1. Formulation compositions of the microspheres.

<table>
<thead>
<tr>
<th>Code</th>
<th>Insulin (100 IU/ml)</th>
<th>Eudragit® RS 100 (g)</th>
<th>Eudragit® RL 100 (g)</th>
<th>Magnesium stearate (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0.40</td>
<td>2.00</td>
<td>0.00</td>
<td>0.10</td>
</tr>
<tr>
<td>A2</td>
<td>0.40</td>
<td>0.00</td>
<td>2.00</td>
<td>0.10</td>
</tr>
<tr>
<td>A3</td>
<td>0.40</td>
<td>2.00</td>
<td>2.00</td>
<td>0.10</td>
</tr>
<tr>
<td>A4</td>
<td>0.40</td>
<td>2.00</td>
<td>6.00</td>
<td>0.10</td>
</tr>
<tr>
<td>A5</td>
<td>0.40</td>
<td>6.00</td>
<td>2.00</td>
<td>0.10</td>
</tr>
</tbody>
</table>

A1–A5 are insulin-loaded microspheres containing varying quantities of polymer ratio of Eudragit® RS100: Eudragit® RL100 of 1:0, 0:1, 1:1, 1:3 and 3:1 respectively.

-associated with high concentrations and build-up of insulin in the body. Insulin is intrinsically poorly absorbable through the intestinal membrane owing to their high molecular weight and hydrophilicity. There are two principal factors that are responsible for this low bioavailability: Enzymatic degradation and poor absorption across the epithelial lining of the gastrointestinal tract (GIT) (Bai et al., 1995; Iyer et al., 2010). Polymeric encapsulation offers a promising method to overcome these obstacles by protecting insulin in the GIT as well as increasing permeability into systemic circulation. Polymeric materials such as poly(glycolic acid), poly(lactic acid), poly(lactic acid-co-glycolic acid), poly[lactic acid-co-poly(ethylene glycol)], dextran–PEG as well as pH-sensitive polymers like poly(acrylic acid) and poly(methacrylic acid), have been evaluated as carriers for oral insulin delivery (Jiao et al., 2002; Owens et al., 2003; Mundargi et al., 2008, Cadenas-Bailon et al., 2013).

Additionally, entrapment of insulin into polymeric materials has many advantages compared to traditional pharmaceutical dosage forms (Momoh and Adikwu 2008; Owens et al., 2003). The polymeric carrier can maintain the drug in a specific location in the body, have a prolonged duration of contact with the tissue, and increase the treatment efficiency. This is important since localizing the drug at a targeted site of absorption and transporting the drug across the intestinal epithelial layer are two problems associated with the low bioavailability that often plagues oral insulin delivery (Huang et al., 2003; Makhlof et al., 2010). Among these carriers, the pH-sensitive graft polymers of methacrylic acid and polyethylene glycol have been widely investigated for oral delivery of insulin (Chang and Hsiao, 1989; Samir and Sakr, 2003; Ebube and Jone 2004; Damgé et al., 2007). Industrially, acrylate and methacrylate copolymers are commercially available as Eudragit polymers in different ionic forms, and they are widely investigated in the preparation of microspheres to deliver macromolecules (Conti et al., 2007; Damgé et al., 2007; Tuesca, 2008; Damgé et al., 2008). Recently, the capability of Eudragits in protecting peptide and protein drug for oral administration had been re-echoed (Kidane and Bhatt, 2005; Lamprecht et al., 2006; Liu et al., 2006). In addition to biocompatibility (Chen and Langer, 1998; Chernysheva et al., 2003), mucoadhesive properties (Attivi et al., 2005; Zhang et al., 2012), and permeation enhancing effects (Lamprecht et al., 2006), Eudragits-based delivery systems exhibiting reversible formation of inter-polymer complexes that are insoluble at lower gastric pH, but swell in alkaline conditions of the intestine, followed by dissociate of the complexes to release insulin is an added advantage (Morishitta et al., 1998; Morishita and Peppas, 2006; Damgé et al., 2007).

The objective of this study was to develop acid-stable microsphere based on pH-sensitive Eudragit polymer with the capacity to encapsulate, protect and deliver insulin to the mucosal surface of the small intestine. Insulin-loaded Eudragit microspheres were prepared by solvent evaporation technique using Eudragit RL100 and RS-100 and their blends. The prepared microspheres were evaluated in vitro for particle size, shape, surface charge, mucoadhesion, insulin loading and release properties. The capabilities of the Eudragit microspheres to protect the bioactivity of insulin were evaluated in an alloxan induced diabetic rats after oral administration.

MATERIALS AND METHODS

Materials use includes insulin, Eudragit® RS100, Eudragit® RL100 (Röhm GmbH, Germany), liquid paraffin (Moko Pharm., Ltd, Lagos, Nigeria), hydrochloric acid, potassium dihydrogen phosphate, magnesium stearate, sodium chloride, polysorbate 60 (Span® 60), acetone, n-hexane (BDH, Poole, England) and distilled water (freshly prepared in Industrial Chemistry Laboratory, University of Nigeria) were used throughout the experiment. All other materials purchased were of analytical grade and were used without further purification.

Preparation of microspheres

Insulin-loaded Eudragit® microspheres were prepared by solvent evaporation technique according to the formula presented in Table 1. A known quantity (2.0 g each alone and 4.0 g blend of different ratios) of Eudragit® RS 100/RL100 was accurately weighed and dissolved at room temperature in a 500 ml beaker containing 12.5 ml of acetone and stirred with glass rod to dissolve the polymers. A known quantity of insulin dissolved in 100 IU and magnesium stearate (100 mg) were also weighed, added to the same beaker containing the Eudragits dissolved in acetone and the contents
further stirred for 10 min. The suspension was homogenized by a magnetic stirrer (Remi Equipments Pvt Ltd, Mumbai) for 5 min at 500 rpm. A 1% v/v of Span-60 was added to liquid paraffin (125.00 ml) in a 500 ml beaker with continuous stirring and the mixture homogenized using magnetic stirrer for 5 min at 500 rpm. The suspension containing the polymer and drug, was then transferred gradually (drop wise) into the 500 ml beaker containing the liquid paraffin mixture with continuous stirring and the system homogenized using a mechanical stirrer with double blade (4 cm in diameter) (MYP21-250, Henan China (Mainland) at 500 rpm for further 5 min. The resulting solution was stirred at room temperature for 3 h at (450 to 500 rpm) until the acetone evaporated completely. The microspheres were harvested by filtration using filter paper (Whatman No.1), the liquid paraffin and Span-60 was washed off three times with 50 ml of chilled n-hexane. The microspheres were air-dried at room temperature for 24 h, packed in air tight cover bottle and stored at in a refrigerator until further use.

Characterization of the microspheres

Percentage yield

The percentage yield of the microspheres was determined from the ratio of amount of solidified total microspheres to total solid material used in the inner phase.

Morphology and particle size analysis

Particle size analysis was carried out on the microspheres formulation using a digital light microscope (Leica Diestar, Germany) and images captured with Moticam 1000 digital microscope camera (Moticam® models 1000, USA). The morphology and size of the particle was determined based on image analysis of the microspheres.

Particle size distribution and zeta potential

Microparticles were analyzed for their size distribution using dynamic light scattering in a Zetasizer (Malvern Instruments, UK) and for their surface charge using the same instrument. Each sample was measured in triplicate.

Quantitative determination of insulin

The insulin content of the microspheres was determined using a high performance liquid chromatography (HPLC). The chromatographic system consisted of an Agilent 1100 series programmable separating module, quaternary pump G 1311 A (Agilent technology, Geneva, Switzerland), an auto degasser G1322A, and a variable wavelength detector G1314A (Marinfield, Germany). The column was a reverse phase ODS (C-18, 5 mm 4.6 x 250 mm, Supelcosol, Mumbai, India) equipped with a guard. The mobile phase consisted of acetonitrile and water (10:90), perchloric acid was used to adjust the pH to 3. The flow was set at 0.8 ml/min and the chromatogram was recorded at 280 nm.

Insulin entrapment efficiency (IEE%)

A 50 mg quantity of microspheres was dispersed in 10 ml of simulated intestinal fluid (SIF, pH 7.2). The dispersion was allowed to stand for 3 h after which it was mixed with a vortex mixer for 5 min and then centrifuged at 2500 rpm for 20 min. The amount of insulin contained in each batch of the formulations was determined by the HPLC (Builders et al., 2008b). The IEE was then determined according to Equation 1 (Kim and Peppas, 2003; Cui et al., 2006; Sarmento et al., 2007).

\[
\text{IEE} \% = \frac{\text{ADC}}{\text{TDC}} \times 100
\] (1)

Where TDC is the weight of drug added to the formulation, while ADC is the analyzed weight of the drug in the microspheres.

Measurement of micromeritics properties of microspheres

The flow properties were investigated by measuring the angle of repose of insulin-loaded Eudragit® microspheres using fixed-base cone method. The bulk and tapped densities were measured in a 10-ml graduated measuring cylinder as a measure of packability of the microspheres. The sample contained in the measuring cylinder was tapped mechanically by means of constant velocity rotating cam with the change in its initial bulk density to a final tapped density when it has attained its most stable form (that is, unchanging arrangement). Each experiment was carried out in triplicate.

Bioadhesiveness of the microspheres

This study was based on in vitro wash method as described by Attama and Adikwu (1999) with slight modifications. Freshly excised cow ileum was purchased from a local market and used for the bioadhesive study. The ileum was cut into pieces measuring 15 cm (length) x 3.0 cm (internal diameter) and each was gently rinsed with chilled saline to remove intestinal waste materials and quickly pinned unto the polythene support of the developed bioadhesion instrument. A known quantity (200 mg) of the different batches was weighed out, placed on the rough mucus surface and allowed to hydrate for 15 min for microspheres-mucus interaction to take place. A 250 ml of SIF (pH 7.4) contained in a separating funnel was allowed to flow over the hydrated microspheres at a rate of 20 ml/min. The percentage bioadhesion (BD%) of the microspheres adhered to the tissue was calculated from the equation:

\[
\text{BD} \% = \frac{\text{WAM}}{\text{TWM}} \times 100
\] (2)

Where WAM is the weight of microspheres adhered to the tissue, while TWM is the total weight of microspheres applied to the tissue.

Fourier transfer infrared spectroscopy (FTIR)

Drug-polymer/polymer-polymer interactions were studied by FTIR spectroscopy. The spectra were recorded for pure drug and drug-loaded microspheres using FTIR JASIO (Model No. 410). Samples were prepared in KBr disks (2 mg sample in 200 mg KBr). The scanning range was 400 to 4000 cm⁻¹ and the resolution was 2 cm⁻¹.

Differential scanning calorimetry (DSC)

Thermal analysis and changes in heat capacity of the Eudragit® RS100 and Eudragit® RL100 were determined using a calorimeter (DSC) (NETZSCH DSC 204 F1, Germany). Approximately 5.0 mg of the polymer was weighed (Mettler M3 Microbalance, Germany) into an aluminum pan, hermetically sealed, and the thermal behavior determined in the range of 35 to 190°C under a 20 ml/min
nonsense text

Table 2. Some physicochemical and physico-chemical properties of the microspheres.

<table>
<thead>
<tr>
<th>Batch code</th>
<th>PS (µm)</th>
<th>EE (%)</th>
<th>Yield (%)</th>
<th>ZP (mV)</th>
<th>BD (g/ml)</th>
<th>TD (g/ml)</th>
<th>CI (%)</th>
<th>AR(°)</th>
<th>HR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>134.10</td>
<td>94.40</td>
<td>73.10</td>
<td>38.9 ± 0.1</td>
<td>0.37</td>
<td>0.50</td>
<td>26.91</td>
<td>24.10</td>
<td>1.37</td>
</tr>
<tr>
<td>A2</td>
<td>111.20</td>
<td>95.20</td>
<td>63.99</td>
<td>29.6 ± 0.3</td>
<td>0.29</td>
<td>0.30</td>
<td>13.43</td>
<td>23.35</td>
<td>1.04</td>
</tr>
<tr>
<td>A3</td>
<td>64.00</td>
<td>98.50</td>
<td>64.41</td>
<td>36.4 ± 1.0</td>
<td>0.32</td>
<td>0.40</td>
<td>19.22</td>
<td>20.42</td>
<td>1.24</td>
</tr>
<tr>
<td>A4</td>
<td>96.00</td>
<td>98.90</td>
<td>76.53</td>
<td>39.3 ± 0.1</td>
<td>0.59</td>
<td>0.61</td>
<td>13.28</td>
<td>21.41</td>
<td>1.03</td>
</tr>
<tr>
<td>A5</td>
<td>87.16</td>
<td>98.70</td>
<td>86.72</td>
<td>38.8 ± 0.1</td>
<td>0.49</td>
<td>0.57</td>
<td>14.58</td>
<td>22.32</td>
<td>1.17</td>
</tr>
</tbody>
</table>

A1 - A5 are polymer ratio (Eudragit® RS100: Eudragit® RL100) of 1:0, 0:1, 1:1, 1:3 and 3:1 respectively; PS = particle sizes, EE = encapsulation efficiency, ZP = zeta potential, TD = Tapped density, CI = Carr’s index, AR = angle of repose and HR = Hausner’s ratio.

In vitro release of insulin

The in vitro release profiles of the insulin-loaded microspheres were determined quantitatively using a high performance liquid chromatography (HPLC). Briefly, the polycarbonate dialysis membrane (length 10 cm, diameter 3.5 cm, (MWCO 6000 - 8000, Spectrum Labs, Brenda, The Netherlands) was pre-treated by soaking it in the dissolution medium for 24 h prior to the commencement of each release experiment. In each case, 20 mg of the formulated microspheres was placed in the dialysis membrane containing 3 mL of the dissolution medium, securely tied with a thermo-resistant thread and then was placed in a 250 ml beaker containing 200 ml of phosphate citrate buffer solution (pH 2.2); agitation of the fluid system (60 rpm) was done with a magnetic stirrer (Remi Instruments, Mumbai, India). At predetermined time intervals, 0.5 ml samples were withdrawn and replaced immediately with phosphate citrate buffer solution. After 2 h the pH of the dissolution medium was changed to 7.4 by the addition of 0.1 N sodium hydroxide and further sampling continued for another 6 h. The temperature of the dissolution system and the replacement fluid were maintained at 37 ± 0.5°C. The insulin concentrations of the aliquots were determined by HPLC, and the percentage amount of insulin released from the microspheres was calculated. The percentage of insulin released was plotted against time. Each data point was recorded as mean (± SD) calculated from three measurements.

In vivo hypoglycemic effects

All experiments were carried out in accordance with the Federation of European Laboratory Animal Science Association (FELASA) Guide for the Care and Use of Laboratory Animals and the European Union (Council Directive 86/609/EEC). Male Wistar rats weighing 180 to 200 g were housed in controlled environmental conditions of temperature and relative humidity, maintained at 22 ± 2°C and 45%, respectively. The rats were fed with standard diet feed (MBC, new fields, Nigeria) and tap water provided ad libitum. Lighting was on a standard 12 h on/12 h off cycle. Diabetes was induced in rats by a single intraperitoneal injection of streptozotocin (50 mg/mL in pH 4.5 citrate) at 50 mg/kg. After two weeks, rats with fasted blood glucose levels above 250 mg/dL were used for the experiment. The rats were starved for 12 h before experiments and remained starved for 24 h during the experiment, but had free access to water. Forty-eight wistar rats were used for the evaluation of the anti-diabetic effects of the formulations. Rats were divided into nine groups of five animals each and each group of animals was housed in separate metallic cages.

The different formulations of the insulin-loaded microspheres after the solvent were completed evaporated following several washing, they were weight put into hard gelatin capsules (200 mg capacity), with each capsule containing formulated microspheres equivalent to insulin dose of 50 IU/kg body weight for each animal. The capsules containing insulin (experimental) and the unloaded capsule (negative control) were administered orally to the animals in their respective group according to their weight. Group I was orally administered 1.0 ml of distilled water; Group II received unloaded microspheres (no insulin), Group III and IV received oral insulin solution (40 IU/kg) and subcutaneous injection of insulin (40 IU/kg), respectively, as a positive control. The formulated insulin loaded-microspheres (A1-A5) was administered orally to the animals in groups V to IX, respectively according to their body weight. Blood was collected from the tail vein of each rat to obtain a baseline glucose level and, following insulin administration, additional samples were collected at predetermined times intervals: 0, 30 min, 1, 2, 3, 4, 5, 6 and 8 h and blood glucose concentrations were determined using a glucometer (ACCU-Check, USA). The data were corrected by subtracting the baseline glucose for each animal from each data point such that only changes in blood glucose were compared. Results were shown as the mean values (±SD) of basal blood glucose levels of animals of each group.

RESULTS

Percent yield recovery

The percentage of the microspheres recovered from the formulations ranges from 87.3 to 93.5% in the loaded insulin while the unloaded batches shows 75.9% indicates that all the insulin-loaded microspheres had overall higher recovery percentages than the unloaded microspheres.

Morphology and particle size (PS) analysis

The microscopic images of the microspheres are shown in Figure 1. The results indicate that all the microspheres prepared were spherical in shape. However, the ratio of the polymers used in the preparations had no influence on the shape of the microspheres. As shown in Table 2,
the mean diameter of loaded microspheres prepared ranged from 64 to 134 µm. It was observed (Table 1) that the ratio of the polymer used in the formulations affected the size of the microspheres, which is in the range 111.20 to 134.00 µm for the microspheres prepared by individual polymer and 64.00 to 96.00 µm for insulin-loaded blended polymers.

Zeta potential (ZP) measurement

Microspheres containing insulin microparticles prepared with Eudragit® RS100 alone or in combination with Eudragit® RL100 were positively charged (from + 36 to + 44 mV) due to the quaternary ammonium groups of Eudragits. The ZPs were all high as shown in Table 2.

Encapsulation efficiency (EE%)

The results of the IEE% shows that drug IEE% increased when the polymer were blended together as compared to individual polymer, yielding maximum EE% of 95.55, 98.90 and 98.79% for microspheres formulated with Eudragits RS /RL in the ratios of 1:1, 1:3 and 3:1 respectively. Maximum IEE% (98.9) was observed in batch A4, while minimum (94.40) was obtained in batch A1. However, all the batches of the formulations had good encapsulation efficiency above 90% (Table 2).

Micromeritics properties of microspheres

Micromeritics data are shown in Table 2, the value of angle of repose determined ranges between 20.42-24.12°, bulk density (BD) and tapped density (TD) of the formulated microspheres were found to be in the range of 0.2871 - 0.5900 and 0.2973 - 0.6100, respectively. The Carr’s index (CI) and Hausner’s ratio (HR) was found to be in range of 13.00 - 26.91 and 1.0338 - 1.3682, respectively.

Bioadhesive studies

The bioadhesive strength (Figure 2) of the microspheres...
Figure 2. Bioadhesive strength of the various formulations: A1 (inuline+ RS100 alone), A2 (Insulin + RL100), A3 (Insulin + 1:1 of RS:RL), A4 (Insulin + 3:1 of RS:RL) and A5 (Insulin + 1:3 of RS:RL).

Table 3. Thermal properties of the insulin sample and insulin-loaded microspheres.

<table>
<thead>
<tr>
<th>Code</th>
<th>Melting point (°C)</th>
<th>Enthalpy (mW/mg)</th>
<th>Area (J/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin</td>
<td>125.3</td>
<td>-133.0</td>
<td>-186.4</td>
</tr>
<tr>
<td>A1</td>
<td>60.9</td>
<td>-2.263</td>
<td>-37.63</td>
</tr>
<tr>
<td>A2</td>
<td>63.6</td>
<td>-4.777</td>
<td>-170.5</td>
</tr>
<tr>
<td>A3</td>
<td>63.2</td>
<td>-6.729</td>
<td>-132.9</td>
</tr>
<tr>
<td>A4</td>
<td>62.3, 83.9</td>
<td>-6.742, -6.473</td>
<td>-159.3, -42.3</td>
</tr>
<tr>
<td>A5</td>
<td>65.0, 80.2</td>
<td>-6.528, -4.84</td>
<td>-125.4, -30.38</td>
</tr>
</tbody>
</table>

A1, A2, A3, A4 and A5, are insulin loaded polymer ratio of Eudragit® RS100: Eudragit® RL100; 1:0, 0:1, 1:1, 1:3 and 3:1, respectively.

made from the polymers was assessed to determine the bioadhesive effectiveness of blends RS100-RL100 in comparison with its component polymers. The order of bioadhesive strength was A4 > A5 > A3>A2>A1. The adhesion of the polymer discs to the mucous membrane is due to the reduction of the surface energy (interfacial tension) between the membrane and the polymer (Harding, 2003; Guo, 1994).

FT-IR- spectra

FT-IR is a quick and relatively cheap technique for identifying compounds and for detection interactions between drugs excipients and excipients-excipients (Builders et al., 2008a; Builders et al., 2008b). FT-IR measurement was used to identify the polymer and to study the physical and chemical interaction between the polymers as well as drug-polymer interaction. The FT-IR spectra graph is depicted in Figure 3.

Differential scanning calorimetry (DSC)

The thermal heat characteristics as measured by DSC of the insulin-loaded microspheres formulation based on blends polymer of Eudragit RS:RL (1:1, 1:3 and 3:1) are shown in Figure 4c to e whereas the DSC thermograms of Eudragit RS100, RL100 microspheres loaded insulin separately and the unloaded (drug free) polymer blend (1:1) of RS100:RL100 are shown in Figure 4a to b. The thermal properties of the microspheres are shown in Table 3. Thermograms of insulin loaded RS100 and RL100 separately, showed a sharp endothermic peak.
Figure 3. Spectra of A1-A5 of the formulated microsphere. (a) FT-IR spectrum of A1; (b) FT-IR spectrum of A2; (c) FT-IR spectrum of A3; (d) FT-IR spectrum of A4; (e) FT-IR spectrum of A5.
corresponding to melting points at 60.9 and 63.6°C respectively. Thermograms of the drug-loaded polymer blend (A3-A5) showed sharp endothermic peaks at varying degrees (Table 4). It was observed that the DSC traces of the microspheres depend on the polymer ratio. However, the enthalpies of the loaded formulations are much lower than the individual polymers indicating its capability of encapsulating the incorporated drug.

In vitro release of insulin

The in vitro release profiles of the insulin-loaded polymeric microspheres in pH 1.2 and 7.4 are shown in Figure 5. This shows that at pH 1.2, the polymer collapsed, whereas at pH 7.4, it swelled to release insulin. At pH 1.2, Eudragit RS 100, RL100 and the various blended polymers showed a maximum insulin release in the range of 2 to 9% within 2 h whereas at pH 7.4, the amount of insulin released ranged from 24.6 to 93.26%. It was observed that formulation A4 has the highest release (93.26%) in about 8 h, while that of A3 has the least release (68.78%), among the blends polymers. However, there was a significant difference (p < 0.05) between the release from the polymers blends and individual polymer or unblended polymer. However, the formulations exhibited good and sustained release properties.

In vivo activity of the insulin-loaded microspheres

The results of blood glucose lowering studies shown in Figure 6 show that the formulations exhibited good blood glucose lowering effects. At 30 min post treatment, none of the insulin loaded-microspheres showed any sign of glucose lowering effect, but insulin administered subcutaneously exhibited about 8 to 12% of glucose reduction. At 5 h, the microsphere formulations achieved up to 19 to 25% decrease in blood glucose. At 8 h, up to 30 to 40% of blood glucose reduction was achieved by the batches A4 and A5. However, the insulin loaded into the microspheres was found to show a remarkable decrease in the blood glucose in all the formulations and lasted over 8 h. The decrease in blood glucose levels was comparable to the effect produced by the insulin administered subcutaneously (sc).

DISCUSSION

The formulation concept of insulin-loaded microspheres prepared with pH-sensitive polymers such as Eudragit® RS, RL and their blends as carriers was aimed at enhancing the absorption of insulin from the GIT, by providing a protecive environment for insulin and improved mucoadhesion of the insulin-loaded microspheres. The process of formulation of the insulin-loaded microspheres was based on emulsification-coacervation technique. This process involves two steps: The first step consists of the formation of the and leads to the formation of droplets of polymers (Eudragit® RS100 and Eudragit® RL100 alone or their blends) dispersed into the organic phase of aceton followed by the water-in-oil-in-oil emulsion obtained by mixing the insulin into a non-aqueous solution of acetone. The second step is the solvent evaporation from the droplets of the second emulsion leading to the precipitation of polymers which are insoluble in water and consequently the solidification of the core of the particles and the entrapment of the drug.

Characterization of polymeric microspheres

High values of the percentage of the microspheres recovered from the formulations are a strong indication that the formulation technique adopted was reliable. The percentage recovery across the batches was generally high. Polymer blends gave the highest yield compared to when the polymers were used alone. Spherical, free flowing and off white microspheres were successfully prepared with Eudragit RS, RL and their blends in different ratio. The surface morphology of the different formulations of the microspheres was slightly or negligibly affected by the variation in composition of polymer types. Due to their quaternary ammonium groups, Eudragit® RS100 and Eudragit® RL100 have surface active properties able to stabilize the first emulsion, and consequently hampers the coalescence of the droplets, leading to reduction in the diameter of the particles (Chernysheva et al., 2003) and that might be the reason the particle size of the microspheres formulated with Eudragit® RS100 and Eudragit® RL100 blends is less than microspheres of either Eudragit® RS100 or Eudragit® RL100 alone. Also since the particle size is related to a greater extent to the stability of the first emulsion, it can be assumed that some excipients included in the commercial preparation of insulin (Humulin®) could interfere with Eudragit® RS100 and Eudragit® RL100.

The magnitude of the measured zeta potential is an indication of the repulsive forces that are present and can be used to predict the long-term stability of the microspheres (Builders et al., 2008b). When particles have a high negative or positive zeta potential, they tend to repel each other and have no tendency to aggregate. On the contrary, when particles have low absolute zeta potential values, there is no counteracting force to prevent their aggregation and flocculation. Table 1 shows that microspheres prepared with Eudragit RS100 alone or in combination with RL 100 were positively charged (from +36 to +44 mV), due to the predominance of the quaternary ammonium groups of Eudragit RS 100 which
Figure 4. DSC thermograms of Eudragit RS100, RL100 and RS/RL blends at various compositions used in microsphere formulation. (a) Thermogram of insulin inj; (b) Thermogram of polymer ratio; RS/RL; (c) Thermogram of batch A3; (d) Thermogram of Batch A4; (e) Thermogram of Batch A5.
Figure 5. *In vitro* release of insulin-loaded Eudragit RS 100, RL100 and their admixtures RS/RL microspheres at pH 1.2 and 7.4 (n = 3). A1-A5 is polymer ratio Eudragit® RS100: Eudragit® RL100 of 1:0, 0:1, 1:1, 1:3 and 3:1 respectively.

Figure 6. Changes in blood glucose levels after oral administration of control (DW = distilled water), insulin solution (oral ins), insulin-loaded microspheres (A1-A5) and insulin sc administered subcutaneous as a positive control group (mean ± SD, n = 5). A1-A5 is polymer ratio Eudragit® RS100: Eudragit® RL100 of 1:0, 0:1, 1:1, 1:3 and 3:1 respectively, insulin sc; ND = no drug; D/W, oral insulin.
were directed toward the continuous aqueous phase. However, the negative charge of insulin was unable to alter the surface charge of the formulation, an indication that the insulin was completely encapsulated into the microspheres. Thus, the release data further proves that the insulin was not adhered to the surface of the microparticles as no burst effect was observed (Figure 2).

Previous researchers have shown that poor encapsulation of the negatively charged molecule often decreases and alters the surface charge (zeta potential) of the particle (Attama et al., 1999; Biklaris, 2011). Generally, the magnitude of zeta potential gives an indication of the potential stability of a system. Large negative or large positive zeta potential is required for colloidal dispersion stability.

The general dividing line between stable and unstable formulation is generally taken as either +30 mV or -30 mV. Microspheres prepared with polymer blends (RS/RL) possessed positive zeta potential, with magnitude higher in batches containing more of Eudragit RS (Table 2). Thus, in comparison, the zeta potential obtained when either of the polymers is used alone showed no significant difference (p < 0.05) between the values of the particles. The presence of polysorbate 80 in the formulation further improved the surface properties, since polysorbate 80 has been shown to modify the surface properties of microspheres (Attama et al., 2011; Momoh et al., 2012). Surface-modified agents are potential delivery materials due to ability of the fact that, biological macromolecules such as proteins, peptides, and diagnostics could be tethered to the structures formed at the surface and their cellular trafficking improved.

Encapsulation efficiency (%)

The encapsulation efficiency of insulin were high (95.23 - 98.90%), an indication that the polymer blends and the method used in the formulation were able to allow insulin intake and prevent its expulsion during washing. However, electrostatic interactions may also take place during the preparation which led to a lower release of the drug and high entrapment efficiency. It was concluded that the encapsulation efficiency may have resulted from the ionic activities of the Eudragit L100 and S100 and the insulin.

FT-IR spectral analyses

FT-IR of pure insulin, various polymers (RS100, RL100 and their blends) and other excipients used in the formulation are depicted Figure 3. No predominant drug interaction was detected between drug and polymers along with the excipients. FT-IR spectrum of insulin-loaded microspheres-based on Eudragit® RL100 (A2) (Figure 3b) showed that peaks of the polymer were observed at wave numbers 2931.90, 1728.28, 1459.20 and 1166.97 cm⁻¹ corresponding to C-H stretching, C=O ester vibration, C-H deformation and C-O stretching, respectively. FT-IR of insulin-loaded microspheres based on Eudragit® RS100 (A1) (Figure 2b) showed strong peaks at 2929, 1731.17, 1460.16 and 1166.97 cm⁻¹ corresponding to C-H stretching, C=O ester vibration, C-H deformation (CH₃) and C-O stretching respectively. FT-IR spectrum of insulin-loaded microspheres A3 (Figure 3c) (containing parts of Eudragit® RS100 and Eudragit® RL100) showed characteristic peaks at 2929.97, 1730.21, 1458.23 and 1165.04 cm⁻¹ corresponding to C-H stretching, C=O ester vibration, C-H deformation (CH₃) and C-O stretching respectively. FT-IR spectrum of insulin-loaded microsphere A4 (Figure 3d) (containing one part of Eudragit® RS100 and three parts of Eudragit® RL100) showed that principal peaks were observed at wave numbers 2934.79, 1724.42, 1457.27 and 1176.62 cm⁻¹ corresponding to C-H deformation (CH₃) and C-H stretching respectively. FT-IR spectrum of insulin-loaded microspheres A5 (Figure 3e) (containing three parts of Eudragit® RS100 and one part of Eudragit RL100) showed characteristic peak of the polymers at 2930.93, 1731.17, 1461.13 and 1166.01 cm⁻¹ due to C-H stretching, C=O ester vibration, C-H deformation (CH₃) and C-O stretching respectively. From the FT-IR of insulin-loaded microspheres it can be concluded that there was no interaction between the drug and polymers.

Differential scanning calorimetry (DSC)

The DSC results of the conventional insulin formulation used in this study showed a sharp melting peak of 125.3⁰, indicating a high level of purity. Also, the DSC results of the pure Eudragits RS100 and RL100, each showed double melting peaks at 60.2, 81.8 and 62.7, 78.2⁰ respectively. The result of DSC of insulin loaded microspheres with individual polymers or their blends produced microspheres with minor changes in the melting enthalpies.

However, the observed peak in pure insulin was slightly altered in the insulin loaded microspheres’ an indication that the insulin was completely solubilized in the carrier or was uniformly dispersed in the polymer. The minor shift observed in transition temperature and the enthalpies of the polymer blends (Batch A4 and A5) occurred in accordance with the thermotropic behavior of various polymers ratio.

Studies have shown that the quantity of quaternary ammonium salt present in the polymer has a direct relation with heat changes (Momoh et al., 2008). Thus, this minor increase in the enthalpy is signal of imperfect matrixes generated by the polymer due to distortion of crystal arrangement creating more space for drug entrapment as observed in the result of encapsulation efficiency.
Release study

The release profiles of insulin from microspheres varied in accordance to their polymer composition as shown in Figure 5. There was no burst release from insulin-loaded microspheres formulations indicating a very good encapsulation of insulin inside the microspheres. This may have resulted from the method used in formulating the microspheres (Jameela et al., 1997; Kim et al., 2002). As shown in Figure 5, only a fraction of insulin (2-6 %) was released from the formulation in acidic pH of 1.2. The release rate in an acidic medium indicates an increased retardation of insulin release from the microspheres with increase in Eudragit RL100 content relative to Eudragit RS. However, the case is different at pH 7.2 where batch A4 formulation gave the maximum release of 93.26%, while batch A3 gave the least (68.78%) and batches A5, A1 and A2 released 77.35, 69.55 and 78.12% of insulin respectively at 8 h. There was insignificant difference (p>0.05) in the release profiles of the various batches of the microspheres. The drug concentration and the polymeric carrier are some of the main factors affecting drug release (Tozaki et al., 1997). Expectedly, this manner of release is related to the pH responsiveness of Eudragit RL100 (Pignatello et al., 2000; Philip et al., 2010). Similar result was observed when Eudragit RS 100 was used in the formulation of a certain drug molecule (Horoz et al., 2004). In another study by Philip et al. (2010), the author presented a similar effect when a pH responsiveness material such as sodium alginate was used in oral delivery of insulin.

Pharmacodynamic study

The orally administered distilled water (DW), insulin solution (Ins sol) and the subcutaneously (sc) administered insulin solution, all served as controls. The percentage reduction of initial blood glucose level was used as an evidence of insulin absorption (Huang et al., 2003). The mean blood glucose baseline (initial glucose level) value was taken as the 100% level and all other blood glucose level/time data were calculated as a percentage of the baseline. In some of the animals the blood glucose levels were higher than the initial levels within the first 15 to 30 min of administration (Figure 6). This increase could be due to the stress associated with the administration of the microspheres (Huang et al., 2003; Attivi et al., 2005). Rats that received DW continued to have elevated blood glucose levels throughout the 8-h sampling period. This is because there was no insulin in the DW. So the rats remained hyperglycemic all through the period and some even died as a result. To compensate for the effect of drug transport in the GIT, a slightly higher dose (50 iu/kg) of the formulations in the oral evaluation as compare to the classical dose used for subcutaneous injection of insulin (40 iu/kg) in the treatment of diabetes was used. Due to lower absorption figures associated with the oral route, it was deemed necessary to administer a higher dose for the oral route than for the parenteral one.

As shown in Figure 6, the decrease in blood glucose level started 2 h after oral administration. This lag time could be due to the time required for microspheres to reach the site of the gastro-intestinal tract where microspheres or free insulin released from microspheres could be absorbed. The insulin-loaded microspheres prepared with the blends of the polymers produced blood glucose lowering effect higher than those produced by either Eudragit® RS100 or Eudragit® RL100 when used alone. The high blood glucose reduction resulting from insulin-loaded microparticles prepared with polymer blends indicated that there may be synergistic effect between the two polymers in insulin protection or absorption within the GIT. The microspheres prepared by 1:3 of Eudragit® RS100 and Eudragit® RL100 (batch A4) produced maximum blood glucose reduction within 6 to 8 h after oral administration that was equal to that of subcutaneously (sc) administered insulin. The release of insulin from microspheres is first based on the diffusion of the drug through the polymer matrix which takes some time to come into effect. The encapsulation of insulin into polymeric microspheres allowed insulin to be protected against degradation by proteolytic enzymes (that is, trypsin, chymotrypsin), as previously observed (Damgé et al., 1997; Builders et al., 2008a; Builders et al., 2008b) with poly (alkyl cyanoacrylate) nanospheres. The quaternary ammonium groups of Eudragit conferred a global positive zeta potential to microspheres which can interact with the negative charges of intestinal mucus, thereby improves the adhesion of microspheres on the wall of the intestinal barrier, allowing a closer intimacy of contact between drug and mucus membrane at the absorption sites and thus enhancing the permeability as well as reducing the local degradation of the drug. In such case, absorption will be easy and fast as the tight junction will be avoided due the intimacy of the formulation and the absorption site. Previous study has shown that in such intimacy the likely mechanism for drug like insulin to complete its absorption may be either or combination of (i) uptake via a paracellular pathway, (ii) transcytosis or receptor-mediated transcytosis and transport via the epithelial cells of the intestinal mucosa, and (iii) lymphatic uptake via the M-cells of the Peyer’s patches mostly abundant in the ileum (Damgé et al., 2008). The importance of cationic microparticles made of Eudragit RS or polycationic of Eudragit RL on the wall of gastrointestinal tract has been evaluated (Jain and Majumdar et al., 2006; Gowthamarajan et al. 2003). Thus, the attachment of the microspheres on the surface of the wall of the GIT which may eventually be replaced by the incorporated drug may further enhance the ease with which this preparation could deliver the active pharmaceutical ingredient (API). Consequently, the free
drug could then be taken up into or transported through the cells thereby eliciting its biological effects.

Conclusion

Oral delivery is a physiological route for insulin administration. Improved disease management, enhancement of patient compliance and reduction of long-term complications of diabetes could be achieved by oral application. However, the challenges for developing oral insulin dosage forms are significant. In this study involving oral delivery of insulin, Eudragit polymers were used as carriers to protect the insulin in acidic conditions and to release it in alkaline medium. Therefore, materials that could change insulin behavior based on the pH of the physiological environment were carefully selected and varied in different ratios. In all cases, the insulin-microspheres formulation showed a prolonged hypoglycemic effect over an 8 h period comparable to intravenous injection of insulin. It can be concluded that insulin bioactivity was preserved by the formulation developed in this study from the enzymatic activities and the harsh acidic environment of the GIT and hence, holds a large promise for an oral delivery of insulin indication that it is an effective alternative for oral delivery of insulin.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENT

The authors wish to thank Evonik, Germany for providing Eudragits for this work. The leading author is also grateful to the National Research Institute of Chemical Technology (NARICT), Zaria and Nigerian Institute of Pharmaceutical Research and Development (NIPRID), Abuja for running the FTIR and DSC, respectively.

REFERENCES

Full Length Research Paper

Level and determinants of pharmacovigilance programme awareness in Nigeria: A multilevel analysis

Oluwafemi D. Alo1*, Joshua O. Akinyemi2, Matthew O. Akpa2, Oyindamola B. Yusuf2, Adeniyi F. Fagbamigbe2, Elijah A. Bamgboye2, Samson B. Adebayo3, Issa Kawu4, Perpetual Agbi4 and Onoriode Ezire5

1Centre for Integrated Health Programs, Abuja, Nigeria.
2Department of Epidemiology and Medical Statistics, University of Ibadan, Nigeria.
3National Agency for Food Drugs Administration and Control, Abuja, Nigeria.
4Federal Ministry of Health, Abuja, Nigeria.
5Society for Family Health, Abuja, Nigeria.

Received 8 April, 2016; Accepted 3 August, 2016

Previous studies have reported poor awareness of the Pharmacovigilance Programme (PP) among health professionals in Nigeria but similar information on the general population is unavailable. This study was designed to investigate the individual and contextual factors associated with awareness of the PP among the general population. The study utilised data collected in the 2012 National HIV and AIDS and Reproductive Health and Serological Survey which were collected through a multi-stage cluster survey among women aged 15-49 years and men aged 15-64 years across all the states in Nigeria. Data on regulatory activities about food and drugs as well as household and individual characteristics were extracted and analyzed using descriptive statistics and multilevel logistic regression. Mean age of the respondents was 31.45±11.8 years. Females constituted 50.1% while 68.7% resided in rural areas. Only 26.0% of the respondents were aware of the PP and this was significantly higher among those with higher education (57.7%) and those who have seen/heard any campaign on Adverse Drug Reactions (ADRs) (79.7%). Participants who had seen/heard any campaign on ADRs were more likely to be aware of the PP (Odd Ratio [OR]: 32.85, 95% Confidence Interval [CI]: 29.13–36.57). Tertiary education (OR: 4.29, 95% CI: 3.51–5.07), and secondary education (OR= 2.35, 95%CI= 2.0–2.70) significantly increased PP awareness. Participants who were employed and those who resided in urban communities were more likely to be aware of the PP in Nigeria. Generally, awareness of the PP in Nigeria is low. Awareness campaigns should be re-packaged to reach rural dwellers and those with lower education.

Key words: Nigeria, pharmacovigilance programme, adverse drug reactions, multilevel logistic regression.

INTRODUCTION

According to the World Health Organization (WHO, 2006), pharmacovigilance is defined as ‘the science and activities related to the detection, assessment, understanding and prevention of adverse effects or any other possible drug-related problems. The scope of pharmacovigilance in Nigeria has been widened to include herbal products, medical devices and vaccines. Good pharmacovigilance involves identification of the risk
factors for adverse reactions in the shortest possible time in order to minimize any harm that can be caused.

Adequate pharmacovigilance reporting provides information that allows for evidence-based use of medicine and prevention of many adverse reactions (World Health Organization, 2006).

A major component of pharmacovigilance is the documentation of adverse drug reactions. According to WHO, adverse drug reactions (ADRs) are significant causes of sickness and deaths globally (World Health Organization, 2006). ADRs can also lead to disease resistance and relapse of diseases. The concept of pharmacovigilance is not well known among health professionals and the general population (World Health Organization, 2006). A study among community pharmacists in the state of Lagos (south-western part of Nigeria) reported that 55% of the participants had never heard of the word “pharmacovigilance” (Oreagba et al., 2011). Also, studies have shown that there is a low awareness of the pharmacovigilance programme among healthcare workers in the state of Sokoto (north-western part of Nigeria). It was reported that 95.1% of the physicians in the state were not aware of Adverse Drug Reactions (ADR) reporting systems (Bello and Umar, 2011). Likewise, it was revealed that 78.1% of the resident doctors in tertiary hospitals in Edo and Lagos States had inadequate knowledge of pharmacovigilance and that 71.2% were unaware of the ADR reporting scheme (Ohaju-Obodo and Iribhogbe, 2010).

In several developed countries awareness of ADRs reporting was also low. An Australian study found that only 10.4% of the consumers in Australia were aware of the available ADR reporting scheme (Robertson and Newby, 2013). Similarly, the awareness of an ADR reporting scheme among the general population was reported to be low in the UK: only 8.5% of the general population in UK are aware of the UK system for collecting information on suspected ADRs (Yellow Card Scheme) (Fortnum et al., 2012). Also, a study among physicians at the Malaysian Medical Centre showed that about 40% of the participants were not aware of the existence of the national reporting system in Malaysia (Aziz et al., 2007).

All the previous studies on the awareness of the Nigerian Pharmacovigilance Programme (NPP) were conducted among health care professionals (health care workers). Information on the awareness of the NPP in the general population is scarce in the literature. Furthermore, factors associated with the low awareness of the NPP have not been examined in any literature. Hence, the present study was initiated to assess the awareness of the NPP in the general population and examine the individual and community-level factors associated with awareness of the NPP.

METHODS

Study settings

Nigeria is a federal republic with 36 states including the Federal Capital Territory, Abuja. Based on the 2006 National Population Census figure, Nigeria’s population was 140,431,790 (Federal Republic of Nigeria, 2007). The National Pharmacovigilance Centre (NPC) in Nigeria was opened in 2004 and affiliated to the WHO Collaborating Centre for International Drug Monitoring. The NPC raises awareness on the magnitude of drug safety problems, and encourages health professionals in becoming vigilant in the detection and reporting of ADRs. There are pharmacovigilance centres in all the states in Nigeria (National Pharmacovigilance Centre (NPC), NAFDAC Nigeria, 2004).

Study design and data extraction

The present study was a secondary analysis of data collected in the 2012 National HIV & AIDS and Reproductive Health and Serological Survey (NARHS Plus II) in Nigeria. The survey covered all the 36 states of Nigeria and evaluated female (aged 15-49 years) and male (15-64 years) participants selected through a multi-stage probability sampling method. In the parent study (NARHS), data were collected using a structured and semi-structured questionnaire in face-to-face interviews. The questionnaire covered characteristics of the household and survey populations, sexual behaviors, opinions and attitudes about HIV and AIDS knowledge, regulatory activities about food and drugs, etc. Data on characteristics of household and survey populations and regulatory activities about food/drugs were extracted for all respondents (31235 respondents) and used for the present analyses.

Variable identification and data management

The main outcome variable in the present analysis was awareness of Nigerian Pharmacovigilance Programme measured by the question: “Are you aware of any government programme asking people to report adverse reactions to drug/food products in Nigeria” (Responses: “Yes” was coded as 1 while “No” was coded as 0). The independent variables were classified into two levels: person or individual level (including sex, age group, marital status, religion, occupation and educational level) and community-level characteristics (place of residence (location) and geo-political zone). Other individual level characteristics investigated included whether the individual had seen/heard any advertisement on the National for Food, Drug Administration and Control (NAFDAC) programmes on what people should do when they experience adverse reactions to drug/food products, how often individuals listen to the radio and how often individuals watch television.

Furthermore, missing data were excluded from analysis. Participants’ occupations were recoded into the following categories: not working, professionals/civil servant, semi-skilled/self-employed, student and unskilled/agricultural worker. Marital status was also recoded as: never married, currently married / living with sexual partner, separated / divorced.
and widowed.

Statistical model and analysis

Descriptive statistics were used to summarize the variables in the study while association between individual-level factors and the outcome variables were initially investigated using the Chi-square test. In order to further examine the individual-level and community-level factors associated with the outcome variables, the hierarchical structure of the data cannot be overlooked. Hence a multi-level binary logistic regression was used to assess the role of measured individual and community (cluster) factors on the outcome variables.

Specifically, a three-level random intercept model was used to assess the predictive values of measured individual and community-level factors using the ‘gllamm’ command in Stata (Rabe-Hesketh and Skondral, 2008). Two models were estimated: a null model that contained no covariates and a full random intercept model that included fixed effects (individual variables) and community and state-variables as random effects. The null model was used to verify if the magnitude of random effects at the community level and state level justifies assessing the random effects at that level. The Intra-Class Correlation (ICC) was used to measure the amount of dependency that was observable due to the clustering of the data at the community level. All analyses were carried out using STATA version 12.

RESULTS

Individual-level characteristics of participants

Females constituted 50.1% of the total sample with 68.7% residing in rural areas. The mean age of the respondents was 31.45 years (S.D=11.8). One-fourth (26.0%) of the respondents were aware of the pharmacovigilance programme in Nigeria. The proportion of males (28.8%) reporting awareness of the pharmacovigilance programme was significantly higher than the female (23.1%) participants (p<0.001). Also, the proportion of respondents who reported awareness of PP was higher among those with a tertiary education (57.7%) than any other level of education (p<0.001) in Nigeria.

Similarly, the proportion reporting awareness of the PP (79.7%) among respondents who had heard/seen any NAFDAC campaigns on ADRs was significantly higher than those who had not heard of any NAFDAC campaigns (9.4%) in Nigeria (Table 1). Furthermore, the proportion of the participants reporting awareness of the PP in Nigeria was significantly higher (p<0.001) among older respondents (27.1%), professional/civil servants (53.5%), those who had never been married (31.2%) and those who watched TV (27.8%) or listened to radio at least once in a week (28.1%) (Table 1).

The bivariate relationships between selected characteristics and awareness of the PP in Nigeria as reported in Table 1 could be due to interrelationships among the various measured characteristics as well as the unmeasured characteristics at the individual, community and state levels.

The intra-class correlation (ICC) in the intercept-only model indicated that 68.6 and 14.7% of the total variance in awareness of the PP in Nigeria was attributable to the dependency of observations within the communities and states respectively. This implies that, the awareness of the Nigerian Pharmacovigilance Programme correlated significantly within community and state (Table 2).

In Table 3, respondents who had heard/seen any NAFDAC campaign on ADRs were more likely to be aware of the PP (OR: 32.85, 95%CI: 29.13 – 36.57) compared with those who had never heard/seen of any NAFDAC campaigns in Nigeria. Also, a positive association between educational attainment and awareness of the PP was evident. Participants with a tertiary education (OR: 4.29, 95%CI: 3.51 – 5.07), a secondary education (OR= 2.35, 95%CI, l= 2.00 – 2.70) and a primary education (OR: 1.51, 95%CI: 1.26 – 1.75) were more likely to be aware of the PP compared to those without a formal education in Nigeria. Similarly, participants who resided in the urban communities were more likely to be aware of the PP (OR: 1.42, 95%CI: 1.28 – 1.52) compared with those who resided in the rural communities in Nigeria.

However, after controlling for observed factors, the residual intra-class correlation for the community and state-levels were 17.03 and 7.25% respectively.

DISCUSSION

This study was designed to assess factors affecting the awareness of the Nigerian Pharmacovigilance Programme based on the data from the National HIV and AIDS and Reproductive Health and Serological Survey of 2012. We found that awareness of the Nigerian Pharmacovigilance Programme was generally low among the general population. Though it may be difficult to explain the exact reason for this low awareness, it however revealed that not much emphasis had been placed on the pharmacovigilance campaign in Nigeria. Also, except for some occasional advert placement in the media, comprehensive education about adverse drug reactions (that focused on the population) is practically non-existent in Nigeria. Findings from this study are not too different from what have been found in other countries, both in developing and developed countries. For instance, awareness of pharmacovigilance programme was also reported to be low in some developed countries like the UK (Fortnum et al., 2012) and Australia (Robertson and Newby, 2013).

Education has had a positive influence on the awareness of the pharmacovigilance programme in Nigeria; those with a higher level of education are more likely to be aware of the pharmacovigilance programme. It is really not because information about pharmacovigilance are built into the curriculum of higher education but maybe because most pharmacovigilance programmes and advertisements are packaged for those who can read and for those who are educated. In China,
Table 1. Awareness of Nigerian Pharmacovigilance Programme according to selected background characteristics.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Frequency (%)</th>
<th>Aware of NPP</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>15639 (50.1)</td>
<td>23.1</td>
<td>76.9</td>
</tr>
<tr>
<td>Male</td>
<td>15596 (49.9)</td>
<td>28.8</td>
<td>71.2</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No formal education</td>
<td>9914 (31.8)</td>
<td>7.8</td>
<td>92.2</td>
</tr>
<tr>
<td>Primary</td>
<td>5264 (16.9)</td>
<td>19.8</td>
<td>81.2</td>
</tr>
<tr>
<td>Secondary</td>
<td>12172 (39.0)</td>
<td>33.3</td>
<td>66.7</td>
</tr>
<tr>
<td>Tertiary</td>
<td>3835 (12.3)</td>
<td>57.7</td>
<td>42.3</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td><0.023*</td>
</tr>
<tr>
<td>15-19</td>
<td>5243 (16.8)</td>
<td>25.5</td>
<td>74.5</td>
</tr>
<tr>
<td>20-24</td>
<td>4848 (15.5)</td>
<td>25.0</td>
<td>75.0</td>
</tr>
<tr>
<td>25-29</td>
<td>5000 (16.0)</td>
<td>25.1</td>
<td>74.9</td>
</tr>
<tr>
<td>30-34</td>
<td>4336 (13.9)</td>
<td>26.8</td>
<td>73.2</td>
</tr>
<tr>
<td>35-39</td>
<td>3457 (11.1)</td>
<td>25.5</td>
<td>74.5</td>
</tr>
<tr>
<td>40+</td>
<td>8351 (26.7)</td>
<td>27.1</td>
<td>72.8</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
<td><0.001*</td>
</tr>
<tr>
<td>Not working</td>
<td>7112 (22.8)</td>
<td>18.0</td>
<td>82.0</td>
</tr>
<tr>
<td>Professionals/civil servant</td>
<td>2090 (6.7)</td>
<td>53.5</td>
<td>46.5</td>
</tr>
<tr>
<td>Semi- skilled/self-employed</td>
<td>6294 (20.2)</td>
<td>34.6</td>
<td>65.4</td>
</tr>
<tr>
<td>Student</td>
<td>5979 (19.2)</td>
<td>34.6</td>
<td>65.4</td>
</tr>
<tr>
<td>Unskilled/agricultural worker</td>
<td>9700 (31.1)</td>
<td>15.0</td>
<td>85.0</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td><0.001*</td>
</tr>
<tr>
<td>Never married</td>
<td>9624 (31.2)</td>
<td>31.2</td>
<td>68.8</td>
</tr>
<tr>
<td>Currently married/living with sexual partner</td>
<td>19943 (64.7)</td>
<td>23.7</td>
<td>76.3</td>
</tr>
<tr>
<td>Separated/divorced</td>
<td>599 (1.9)</td>
<td>22.8</td>
<td>77.2</td>
</tr>
<tr>
<td>Widowed</td>
<td>646 (2.1)</td>
<td>19.8</td>
<td>80.2</td>
</tr>
<tr>
<td>Religion</td>
<td></td>
<td></td>
<td><0.001*</td>
</tr>
<tr>
<td>No religion</td>
<td>200 (0.6)</td>
<td>27.3</td>
<td>72.7</td>
</tr>
<tr>
<td>Islam</td>
<td>134200 (43.1)</td>
<td>24.6</td>
<td>75.4</td>
</tr>
<tr>
<td>Christian</td>
<td>17271 (55.4)</td>
<td>26.9</td>
<td>73.1</td>
</tr>
<tr>
<td>Traditional</td>
<td>270 (0.9)</td>
<td>35.4</td>
<td>64.6</td>
</tr>
<tr>
<td>Ever heard/seen any NAFDAC campaign on ADRs.</td>
<td></td>
<td></td>
<td><0.001*</td>
</tr>
<tr>
<td>No</td>
<td>2353 (76.4)</td>
<td>9.4</td>
<td>90.6</td>
</tr>
<tr>
<td>Yes</td>
<td>7260 (23.6)</td>
<td>79.7</td>
<td>20.3</td>
</tr>
<tr>
<td>How often do you listen to radio</td>
<td></td>
<td></td>
<td><0.001*</td>
</tr>
<tr>
<td>Not at all</td>
<td>7761 (26.4)</td>
<td>21.1</td>
<td>79.9</td>
</tr>
<tr>
<td>Every day/almost every day</td>
<td>8291 (28.2)</td>
<td>27.6</td>
<td>72.4</td>
</tr>
<tr>
<td>At least once a week</td>
<td>7990 (27.2)</td>
<td>28.1</td>
<td>71.9</td>
</tr>
<tr>
<td>Less than a week</td>
<td>5353 (18.2)</td>
<td>26.6</td>
<td>73.4</td>
</tr>
<tr>
<td>How often do you watch television</td>
<td></td>
<td></td>
<td><0.001*</td>
</tr>
<tr>
<td>Not at all</td>
<td>11464 (39.5)</td>
<td>25.0</td>
<td>75.0</td>
</tr>
<tr>
<td>Every day/almost every day</td>
<td>6161 (21.2)</td>
<td>24.3</td>
<td>75.7</td>
</tr>
<tr>
<td>At least once a week</td>
<td>6305 (21.7)</td>
<td>27.8</td>
<td>72.2</td>
</tr>
<tr>
<td>Less than a week</td>
<td>5102 (17.6)</td>
<td>27.5</td>
<td>72.5</td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td><0.001*</td>
</tr>
<tr>
<td>Rural</td>
<td>21448 (68.7)</td>
<td>19.8</td>
<td>80.2</td>
</tr>
<tr>
<td>Urban</td>
<td>9787 (31.3)</td>
<td>39.4</td>
<td>60.6</td>
</tr>
<tr>
<td>Zone</td>
<td></td>
<td></td>
<td><0.001*</td>
</tr>
<tr>
<td>North Central</td>
<td>6008 (19.2)</td>
<td>16.5</td>
<td>83.5</td>
</tr>
</tbody>
</table>
Table 1. Contd.

<table>
<thead>
<tr>
<th>Region</th>
<th>Population (Number of respondents)</th>
<th>Awareness (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North East</td>
<td>4875 (15.6)</td>
<td>17.1</td>
</tr>
<tr>
<td>North West</td>
<td>6152 (19.7)</td>
<td>37.4</td>
</tr>
<tr>
<td>South East</td>
<td>4282 (13.7)</td>
<td>33.7</td>
</tr>
<tr>
<td>South South</td>
<td>4939 (15.8)</td>
<td>32.6</td>
</tr>
<tr>
<td>South West</td>
<td>4979 (15.9)</td>
<td>19.0</td>
</tr>
</tbody>
</table>

*Significant at p<0.05.

Table 2. Random intercept only model for awareness of Nigerian Pharmacovigilance Programme.

<table>
<thead>
<tr>
<th>Awareness of Nigerian Pharmacovigilance Programme</th>
<th>Coefficient</th>
<th>ICC</th>
<th>P-value</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-1.753</td>
<td>0.000</td>
<td>0.000</td>
<td>-2.076 -2.076</td>
</tr>
<tr>
<td>Standard deviation of Random effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community level</td>
<td>2.377</td>
<td>0.69</td>
<td>0.000</td>
<td>2.263 -2.263</td>
</tr>
<tr>
<td>State level</td>
<td>1.245</td>
<td>0.15</td>
<td>0.000</td>
<td>0.982 -0.982</td>
</tr>
</tbody>
</table>

Table 3. Three-level random intercept model for factors associated with awareness of NPP.

<table>
<thead>
<tr>
<th>Awareness of Nigerian Pharmacovigilance Programme</th>
<th>OR</th>
<th>Std. Err.</th>
<th>P-Value</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual-level factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female (ref)</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.09</td>
<td>0.051</td>
<td>0.062</td>
<td>0.99 -1.19</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-19 (ref)</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-24</td>
<td>1.08</td>
<td>0.078</td>
<td>0.309</td>
<td>0.93 -1.23</td>
</tr>
<tr>
<td>25-29</td>
<td>1.10</td>
<td>0.080</td>
<td>0.174</td>
<td>0.94 -1.26</td>
</tr>
<tr>
<td>30-34</td>
<td>1.13</td>
<td>0.084</td>
<td>0.097</td>
<td>0.97 -1.30</td>
</tr>
<tr>
<td>35-39</td>
<td>1.10</td>
<td>0.087</td>
<td>0.251</td>
<td>0.93 -1.27</td>
</tr>
<tr>
<td>40+</td>
<td>1.09</td>
<td>0.069</td>
<td>0.188</td>
<td>0.95 -1.23</td>
</tr>
<tr>
<td>Religion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No religion (ref)</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Islam</td>
<td>0.98</td>
<td>0.236</td>
<td>0.940</td>
<td>0.52 -1.44</td>
</tr>
<tr>
<td>Christian</td>
<td>1.12</td>
<td>0.267</td>
<td>0.642</td>
<td>0.60 -1.64</td>
</tr>
<tr>
<td>Traditional</td>
<td>1.14</td>
<td>0.362</td>
<td>0.691</td>
<td>0.43 -1.85</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not working (ref)</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Director /Civil servant</td>
<td>1.52</td>
<td>0.145</td>
<td>0.000*</td>
<td>1.24 -1.81</td>
</tr>
<tr>
<td>Skilled and self employed</td>
<td>1.25</td>
<td>0.089</td>
<td>0.002*</td>
<td>1.08 -1.42</td>
</tr>
<tr>
<td>Student</td>
<td>1.23</td>
<td>0.103</td>
<td>0.013*</td>
<td>1.03 -1.43</td>
</tr>
<tr>
<td>Unskilled and agricultural worker</td>
<td>0.96</td>
<td>0.067</td>
<td>0.577</td>
<td>0.83 -1.10</td>
</tr>
<tr>
<td>Educational level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No formal education (ref)</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>1.51</td>
<td>0.126</td>
<td>0.000*</td>
<td>1.26 -1.78</td>
</tr>
</tbody>
</table>
Table 3. Contd.

<table>
<thead>
<tr>
<th>Frequency of listening to radio</th>
<th>1.00</th>
<th>0.065</th>
<th>0.848</th>
<th>0.86</th>
<th>1.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all (ref)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Every day</td>
<td>0.99</td>
<td>0.065</td>
<td>0.689</td>
<td>0.90</td>
<td>1.16</td>
</tr>
<tr>
<td>At least once a week</td>
<td>1.03</td>
<td>0.065</td>
<td>0.852</td>
<td>0.87</td>
<td>1.15</td>
</tr>
<tr>
<td>Less than once a week</td>
<td>1.01</td>
<td>0.070</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Ever heard/seen any NAFDAC programme

<table>
<thead>
<tr>
<th></th>
<th>1.00</th>
<th>1.897</th>
<th>0.000*</th>
<th>29.13</th>
<th>36.57</th>
</tr>
</thead>
<tbody>
<tr>
<td>No (ref)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>32.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Community-level factor

<table>
<thead>
<tr>
<th>Location</th>
<th>1.00</th>
<th>0.073</th>
<th>0.000*</th>
<th>1.28</th>
<th>1.56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural (ref)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>1.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Region

<table>
<thead>
<tr>
<th>Region</th>
<th>1.00</th>
<th>0.072</th>
<th>0.210</th>
<th>0.77</th>
<th>1.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Central (ref)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North East</td>
<td>0.91</td>
<td>0.070</td>
<td>0.712</td>
<td>0.83</td>
<td>1.11</td>
</tr>
<tr>
<td>North West</td>
<td>0.97</td>
<td>0.080</td>
<td>0.848</td>
<td>0.86</td>
<td>1.18</td>
</tr>
<tr>
<td>South East</td>
<td>1.02</td>
<td>0.069</td>
<td>0.309</td>
<td>0.79</td>
<td>1.07</td>
</tr>
<tr>
<td>South South</td>
<td>0.93</td>
<td>0.070</td>
<td>0.045</td>
<td>0.71</td>
<td>0.99</td>
</tr>
<tr>
<td>South West</td>
<td>0.848</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Random effects component

<table>
<thead>
<tr>
<th>Level</th>
<th>Std. Dev</th>
<th>ICC (%)</th>
<th>P-value</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community-level</td>
<td>0.623</td>
<td>17.03</td>
<td>0.000*</td>
<td>0.527</td>
</tr>
<tr>
<td>State-level</td>
<td>0.536</td>
<td>7.25</td>
<td>0.000*</td>
<td>0.402</td>
</tr>
</tbody>
</table>

*Significant at p<0.05

Ever heard/seen any advertisement on NAFDAC programme on what people should do when they experience ADRs. ref refers to reference category.

A study to investigate the awareness of pharmacovigilance among healthcare professionals also revealed that the educational level was highly related to the degree of pharmacovigilance awareness (Xu et al., 2009). Furthermore, in the Nigerian general population, awareness of the PP is largely dependent on whether an individual had heard of or has seen any NAFDAC advertisements/campaigns on what people should do when they experience adverse reactions. In fact, in the current study, about 80% of those who claimed to be aware of the NPP were those who had heard or seen NAFDAC advertisements on ADRs in the media at one point or the other. This may be because the NAFDAC advertisements/campaigns are very informative on the pharmacovigilance programme in Nigeria. Also, the type of place of residence influences the awareness of the pharmacovigilance programme in Nigeria. This may be as a result of NAFDAC activities having been more visible in urban communities than in rural communities. For instance, NAFDAC and Your Health Programme being aired on some Nigerian television stations and radio stations may be urban biased. This is coupled with the erratic nature of power supply in most localities in Nigeria. More importantly in rural areas people may not be able to afford an ensuring power supply through their personally-owned generating sets. However, how often an individual listens to a radio or watches the television was not associated with the awareness of the Nigerian Pharmacovigilance Programme. This may be because very few jingles or programmes related to pharmacovigilance are available on Nigerian television and radio stations. It could also be linked to the fact that most NAFDAC jingles are in English rather than the local languages. Finally, even after controlling for individual and community-level characteristics, there was still a considerable inter-community and inter-state heterogeneity in the awareness of the Nigerian Pharmacovigilance Programme. The intra-class correlation at the final model was still considerably high.
This may be due to the effects of some unobserved community-level and state-level factors such as: media concentration of the community, etc.

Conclusion

Awareness of the Nigerian Pharmacovigilance Programme in the general population was low. Also, the NAFDAC campaign on what people should do when they experience adverse reactions has a significant impact on the awareness of the Nigerian pharmacovigilance programme in the general population. Awareness of the Nigerian Pharmacovigilance Programme is further a condition of the level of education, and the place where people live. Awareness of the PP could be enhanced through a more robust NAFDAC campaign on ADRs. Findings from this study will provide NAFDAC's management team with evidence-based regulatory decision making and the opportunity to ensure the need to develop low-literate campaigns, jingles, billboards and hand bills. Further, NAFDAC should ensure and adopt an approach that will intensify its presence in rural areas in terms of its sensitization of the populace.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors will like to appreciate the Federal Ministry of Health in Nigeria for making the data available for further analysis. JOA conceived the study idea. ODA analysed the data and drafted the manuscript. JOA, MOA and OBY supervised statistical analysis and interpretation. AFF, EAB, SBA, IK, PA, OE were involved in the design and data collection of the larger survey from which the data analysed in this paper was extracted. All authors read the final manuscript and made intellectual contribution.

REFERENCES

African Journal of Pharmacy and Pharmacology

Related Journals Published by Academic Journals

- Journal of Medicinal Plant Research
- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- International Journal of Nursing and Midwifery
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Toxicology and Environmental Health Sciences

academicJournals