ABOUT JMPR

The Journal of Medicinal Plant Research is published weekly (one volume per year) by Academic Journals.

The Journal of Medicinal Plants Research (JMPR) is an open access journal that provides rapid publication (weekly) of articles in all areas of Medicinal Plants research, Ethnopharmacology, Fitoterapia, Phytomedicine etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMPR are peer reviewed. Electronic submission of manuscripts is strongly encouraged, provided that the text, tables, and figures are included in a single Microsoft Word file (preferably in Arial font).

Contact Us

Editorial Office: jmpr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JMPR
Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Akah Peter Achunike
Editor-in-chief
Department of Pharmacology & Toxicology
University of Nigeria, Nsukka
Nigeria

Associate Editors

Dr. Ugur Cakilcioglu
Elazig Directorate of National Education
Turkey.

Dr. Jianxin Chen
Information Center,
Beijing University of Chinese Medicine,
Beijing, China
100029,
China.

Dr. Hassan Sher
Department of Botany and Microbiology,
College of Science,
King Saud University, Riyadh
Kingdom of Saudi Arabia.

Dr. Jin Tao
Professor and Dong-Wu Scholar,
Department of Neurobiology,
Medical College of Soochow University,
199 Ren-Ai Road, Dushu Lake Campus,
Suzhou Industrial Park,
Suzhou 215123,
P.R.China.

Dr. Pongsak Rattanachaikunsopon
Department of Biological Science,
Faculty of Science,
Ubon Ratchathani University,
Ubon Ratchathani 34190,
Thailand.

Prof. Parveen Bansal
Department of Biochemistry
Postgraduate Institute of Medical Education and Research
Chandigarh
India.

Dr. Ravichandran Veerasamy
AIMST University
Faculty of Pharmacy, AIMST University, Semeling - 08100,
Kedah, Malaysia.

Dr. Sayeed Ahmad
Herbal Medicine Laboratory, Department of Pharmacognosy and Phytochemistry,
Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062,
India.

Dr. Cheng Tan
Department of Dermatology, first Affiliated Hospital of Nanjing University of Traditional Chinese Medicine.
155 Hanzhong Road, Nanjing, Jiangsu Province,
China. 210029

Dr. Naseem Ahmad
Young Scientist (DST, FAST TRACK Scheme)
Plant Biotechnology Laboratory
Department of Botany
Aligarh Muslim University
Aligarh- 202 002,(UP)
India.

Dr. Isiaka A. Ogunwande
Dept. Of Chemistry,
Lagos State University, Ojo, Lagos,
Nigeria.
Editorial Board

Prof Hatil Hashim EL-Kamali
Omdurman Islamic University, Botany Department, Sudan.

Prof. Dr. Muradiye Nacak
Department of Pharmacology, Faculty of Medicine, Gaziantep University, Turkey.

Dr. Arash Kheradmand
Lorestan University, Iran.

Dr. Sadiq Azam
Department of Biotechnology, Abdul Wali Khan University Mardan, Pakistan.

Prof Dr Cemşit Karakurt
Pediatrics and Pediatric Cardiology Inonu University Faculty of Medicine, Turkey.

Samuel Adelani Babarinde
Department of Crop and Environmental Protection, Ladoke Akintola University of Technology, Ogbomoso Nigeria.

Kongyun Wu
Department of Biology and Environment Engineering, Guiyang College, China.

Dr. Wafaa Ibrahim Rasheed
Professor of Medical Biochemistry National Research Center Cairo Egypt.

Prof Swati Sen Mandi
Division of plant Biology, Bose Institute India.

Dr. Ujjwal Kumar De
Indian Veterinary Research Institute, Izatnagar, Bareilly, UP-243122 Veterinary Medicine, India.
ARTICLES

- Ethno-botanical survey of medicinal plants used for the management of depression by Hausa tribes of Kaduna State, Nigeria
 Aishatu Shehu, Mohammed Garba Magaji, Jamilu Yau and Abubakar Ahmed
 [562]
- Phytochemical standardization of hydroalcoholic extracts of ishpingo, *Ocotea quixos* (Lam.) Kosterm
 Tatiana de los Ángeles Mosquera, Michelle Jazmín Parra, Héctor Ivan Flor and Paco Fernando Noriega
 [568]
Ethno-botanical survey of medicinal plants used for the management of depression by Hausa tribes of Kaduna State, Nigeria

Aishatu Shehu¹, Mohammed Garba Magaji¹, Jamilu Yau¹ and Abubakar Ahmed²

¹Department of Pharmacology and Therapeutics, Ahmadu Bello University, Nigeria.
²Department of Pharmacognosy and Drug Development, Ahmadu Bello University, Nigeria.

Received 4 August, 2017; Accepted 5 September, 2017

The objective of this study is to conduct an ethnobotanical survey of medicinal plants used in management of depression among Hausa tribes in order to establish an informational data base. An ethnobotanical survey was conducted in December 2015 in Zaria, Kaduna State, Nigeria. Data were collected based on an oral interview with the aid of semi structured questionnaire. Only data from willing respondents were obtained and documented. Plant specimens were collected along the line, they were subsequently dried and mounted. It was then taken for identification and authentication in the Herbarium Section of Biological Sciences, Ahmadu Bello University, Zaria where specimen voucher numbers were deposited. Information on sources, safety, methods of preparation and administrations, identity, local and botanical names of medicinal plants used in the management of depression among Hausa tribe of Kaduna State was obtained. An informational database was established and specimen with voucher numbers was deposited in the herbarium.

Key words: Ethnobotanical survey, depression, botanical names, medicinal plants, safety.

INTRODUCTION

Medicinal plants have always been the source of treatment and prophylaxis (Petrovska, 2012) and the use of plants in curing illness has long history in man (Alfred, 2013). It has been stated severally that traditional medicine often provides culturally familiar techniques that treat both physical and spiritual conditions (Maroyi, 2011). This has prompted researchers to conduct ethnobotanical surveys among African tribes and different parts of the world in search of plants with antibacterial, antimalarial, antifungal and antiviral properties (Khan and Rashid, 2006; Ajaiyeoba et al., 2006; Traore et al., 2013). Ethnobotanical surveys are important in determining the social, cultural and economic factors in regard to ideas and action concerning health and illness. It also helps in gathering information on type of disease and health problems, prevalent among people of certain localities (Lawal et al., 2010). Depressive disorder is a long term relapsing condition associated with high levels of disability.
and mortality (Stein, 2008) and very common in African countries (Ward and Jackson, 2013). In Nigeria, depression was found to be common among people (Chikezie et al., 2013) and was also observed to be more in females than in males during an overview of the socio-cultural and psychiatric aspects of female’s reproductive health (Aina, 2007). Traditional medicinal plants have received recognition and patronage especially in the treatment of mental and psychiatric illnesses (Magaji et al., 2008) where many of them are often toxic (Igoli et al., 2005). Most of the reported poisoning cases from traditional medicines have been attributed to misidentification of the form in which they are identified, prepared and even administration by incompetent personnel (Fennell et al., 2004). In view of the foregoing facts, an ethno-botanical survey of the used medicinal plants in the management of depression among Hausa tribes of Kaduna State, Nigeria was conducted.

MATERIALS AND METHODS

Ethnobotanical survey

An ethnobotanical survey was conducted in December 2015 in order to obtain relevant information about the use of medicinal plants in the treatment of depression in Zaria, Kaduna State, Nigeria. Data were collected based on an oral interview with the aid of semi structured questionnaire. Only data from willing respondents were obtained and documented. Plant specimens were collected along the line; subsequently, dried and mounted (Burkhill, 1985; Solowora, 1996). It was then taken for identification and authentication in the Herbarium Section of Biological Sciences, Ahmadu Bello University, Zaria where specimen voucher numbers were deposited.

Study areas

The survey was carried out in Zaria, Kaduna State, Nigeria. The occupation, tribe and population of the inhabitants of these areas formed part of the bases for selection.

Ethical approval

The objectives of the study were explained to the respondents (traditional herb sellers, traditional medical practitioners and herbalists) and informed consent was obtained from each respondent.

Inclusion criteria

Well known and established traditional herb sellers, traditional medical practitioners and herbalists who are healthy and mentally stable, practicing their jobs at the time of the study were selected.

Exclusion criteria

Unrecognized traditional herb sellers, traditional medical practitioners and herbalists with poor patronage, mentally ill and not practicing their jobs at the time of the study were selected.

Administration of questionnaire

The survey covered a period of one month. Ethno-medicinal information was obtained by consulting traditional medical practitioners, herb sellers and herbalists using semi-structured questionnaire and an oral interview. The questionnaire was divided into three sections.

Section 1 dealt with demographic information such as age, sex, religion, nationality, practice specification, duration of practice and educational background; Section 2 consisted of professional experience on the treatment of depression and included questions like type of depression treated, frequency of treatment, use of herbal therapy alone or otherwise, duration of treatment, accompanied side effects, accompanied verbal instructions, plant part(s) used, availability of plant or plant part(s) and knowledge of treatment; Section 3 focused on plants and recipes used in the treatment of depression and included questions like types of herbal preparation, arrangement of plant part(s) ingredient, traditional solvent of choice, traditional extraction methods or method of preparation and method of administration were all considered.

RESULTS

Demography/Personal information on respondents

There was a total of 10 respondents made up of herb sellers 2 (20%), traditional medical practitioners 6 (60%) and herbalists 2 (20%). Majority of the respondents were males as observed from the demographic information of respondents (Table 1).

Professional experience of the respondents

The survey showed that only 2 of the respondents used incantation and divination to aid the cure of the disease. It was observed that a great percentage (90%) of respondents inherited the knowledge of herbs from their ancestors (Table 2).

Medicinal plants commonly used in management of depression in Zaria, Kaduna State

The survey also showed that a total of 10 medicinal plants species were used by different categories of practitioners. Botanical names, local names, English/ common names, family and plant part(s) mentioned are presented in Table 3.

Plant forms and parts used in the treatment of depression in the survey

Majority of the plant life forms and parts used are trees and root/bark, respectively. Other plant forms and their frequencies were reported (Table 4).

Distribution of the ethno-medicinal plants and their recipes

Most of the recipes were obtained from a single plant
Table 1. Demography of respondents.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>N</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practice specification</td>
<td>Herb sellers</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Traditional medical practitioners</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Herbalists</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>9</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Age (years)</td>
<td>20-30</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>31-40</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>41-50</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>51 above</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Religion</td>
<td>Christianity</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Islam</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Traditional</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Nationality</td>
<td>Nigerian</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Non Nigerian</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

N: Number, %: percentage.

Table 2. Professional experience of respondents.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>N</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of treatment</td>
<td>Regular</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Irregular</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Duration of treatment (days)</td>
<td>2-3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4-15</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>6-14</td>
<td>7</td>
<td>70</td>
</tr>
<tr>
<td>Other treatment apart from herb</td>
<td>Divination/oracle/incantation</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>Source of knowledge</td>
<td>Ancestral</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Training</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Ancestral/Training</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Divination</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Availability of plant/plant parts</td>
<td>Forest</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Home garden</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Market</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Accompanied side effects</td>
<td>Nausea/vomiting</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Accompanied verbal instructions</td>
<td>Yes</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

N: Number of respondents; %: percentage of respondents.
source, while others were in combinations with other plants. Infusions and grinding were the most frequently used methods. Only 3 of the recipes were prepared using more than one method (Table 5).

DISCUSSION

Plants are more easily recognized by their local names in every part of the world. These local names play a vital role in ethnobotanical study of a specific tribe or region (Singh, 2008). Respondents interviewed gave local names of plants in recipes for treating depression. The local names mentioned were authenticated with their respective botanical names using standard texts. Although local names are not recommended directly for scientific accounts of plants as they lack uniformity and consistency (Singh, 2008), yet they may certainly be considered as a useful tool for obtaining useful information on plants especially if the information will be derived from local people. Local names provide means of uniformity and consistency (Singh, 2008; Adekunle, 2008; Ajayeoba and Ogbole, 2010; Soladoye et al., 2010; Idowu et al., 2010; Oni, 2010) for other disease conditions. Thus, scientific studies on these plants would provide insights into their potentials and understanding the pharmacological actions of the active compounds found in them (Ramana, 2008). Most of the recipes obtained were from a single plant source, for example Caralluma dalzielli, while others were in combinations with other plants. Infusions and grindings were the most frequently used methods of preparation for the ethno-surveyed plants. Only 2 of the plants were prepared using more than one method because of the fact that they can be used both as fresh and dried. However, researches showed that there are quantitative and qualitative variations in the chemical components of fresh and dry plant materials (Okoh et al., 2008; Fatemeh et al., 2006). Thus, dried plant materials might not be as effective as freshly obtained herbs but even pharmacological experiment in laboratory employs drying techniques of plant parts to prepare plant extracts. There was a variation in solvent of herbal remedy preparation in this study. This could be based on the belief that some solvents are more efficient in eluting the phytoconstituents present in a particular plant than others and depending on the plant parts. Extraction procedures and

Table 3. Medicinal plants commonly used.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Botanical name</th>
<th>Local/Vernacular name</th>
<th>Voucher number</th>
<th>Family name</th>
<th>Part(s) used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Olax manni</td>
<td>Tsadar Biri</td>
<td>1697</td>
<td>Olacaceae</td>
<td>Root</td>
</tr>
<tr>
<td>2</td>
<td>Adansonia digitata</td>
<td>Kuka</td>
<td>2512</td>
<td>Bombaceae</td>
<td>Bark</td>
</tr>
<tr>
<td>3</td>
<td>Acacia seyal</td>
<td>Dumushi</td>
<td>-</td>
<td>Leguminosae</td>
<td>Root</td>
</tr>
<tr>
<td>4</td>
<td>Tapinanthus dodoneifolius</td>
<td>Kaucen Dorawa</td>
<td>2838 (2846)</td>
<td>Lonanthaceae</td>
<td>Whole</td>
</tr>
<tr>
<td>5</td>
<td>Caralluma dalzielli</td>
<td>Karan masallaci</td>
<td>217</td>
<td>Asclepiadaceae</td>
<td>Whole</td>
</tr>
<tr>
<td>6</td>
<td>Senna occidentalis</td>
<td>Rai dore</td>
<td>1047</td>
<td>Leguminosae</td>
<td>Root</td>
</tr>
<tr>
<td>7</td>
<td>Combretum micranthum</td>
<td>Geza</td>
<td>900257</td>
<td>Combretaceae</td>
<td>Leaves</td>
</tr>
<tr>
<td>8</td>
<td>Pancrantum africanaum</td>
<td>Gadali mai nono</td>
<td>1203</td>
<td>Amaryllidaceae</td>
<td>Bulbs</td>
</tr>
<tr>
<td>9</td>
<td>Tapinanthus globiferus</td>
<td>Kaucen Kade</td>
<td>1175 (900072)</td>
<td>Lonanthaceae</td>
<td>Whole</td>
</tr>
<tr>
<td>10</td>
<td>Ficus platyphylla</td>
<td>Gamji</td>
<td>900106</td>
<td>Moraceae</td>
<td>Bark</td>
</tr>
</tbody>
</table>

Table 4. Plant forms, plant parts used and their frequencies.

<table>
<thead>
<tr>
<th>Plant life forms</th>
<th>Plant parts used</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree</td>
<td>Root and Bark</td>
<td>6</td>
</tr>
<tr>
<td>Shrub</td>
<td>Whole</td>
<td>1</td>
</tr>
<tr>
<td>Climber</td>
<td>Whole</td>
<td>2</td>
</tr>
<tr>
<td>Creeper</td>
<td>Bulbs</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 5. Method of preparation and administration of the ethno-medicinal plants used in treatment of depression.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Taxa</th>
<th>Traditional solvent of choice</th>
<th>Method of preparation</th>
<th>Method of administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Olat manni</td>
<td>Water/Pure honey</td>
<td>Infusion</td>
<td>Roots boiled, half-cup taken orally</td>
</tr>
<tr>
<td>2</td>
<td>Adansonia digitata</td>
<td>Water</td>
<td>Infusion/Powder</td>
<td>3 finger full powder taken with milk</td>
</tr>
<tr>
<td>3</td>
<td>Acacia seyal</td>
<td>Water</td>
<td>Infusion</td>
<td>Decoction taken 2-3 times daily</td>
</tr>
<tr>
<td>4</td>
<td>Tapinanthus globiferus</td>
<td>Water</td>
<td>Grinding/Powder</td>
<td>Powder taken with pap, fluid are taken orally</td>
</tr>
<tr>
<td>5</td>
<td>Caralluma dalzielli</td>
<td>Water</td>
<td>Grinding</td>
<td>Whole plants squeezed, low quantity taken</td>
</tr>
<tr>
<td>6</td>
<td>Senna occidentalis</td>
<td>Water/Honey</td>
<td>Decoction</td>
<td>Extracts taken twice daily</td>
</tr>
<tr>
<td>7</td>
<td>Combretum micranthum</td>
<td>Water/Alcohol</td>
<td>Powder</td>
<td>Decoction 2-3 times daily</td>
</tr>
<tr>
<td>8</td>
<td>Pancrantium africanum</td>
<td>Water</td>
<td>Infusion</td>
<td>Half a cup, morning and night</td>
</tr>
<tr>
<td>9</td>
<td>Tapinanthus dodeinofolius</td>
<td>Water/Fresh milk</td>
<td>Grinding/ Powder</td>
<td>Powder taken with milk</td>
</tr>
<tr>
<td>10</td>
<td>Ficus platyphylia</td>
<td>Water</td>
<td>Decoction/Maceration</td>
<td>Take decoction in low quantity twice daily</td>
</tr>
</tbody>
</table>

Phytochemistry had confirmed the efficacy of one solvent over another as solvent of extraction in relation to the pharmacological actions (Muthaura et al., 2007).

This study has provided additional information on the relevance of plants in the treatment of various diseases including depression in our society. It is a step forward towards investigating the medicinal plants diversity in Nigerian flora as well as informational data base for the plants. This informational data base developed if merged with scientific knowledge base will serve as a mechanism for accessing, benefit-sharing and documenting traditional knowledge for sustainable socioeconomic development and poverty alleviation in the country as proposed by Olajide (2003). There was high consensus among the respondents as well as the patronage reflecting the significance of medicinal plants to the people which further indicated their effectiveness. In addition, there are laboratory investigations on plant like *Tapinanthus dodoneifolius* that provided evidence to support the antidepressant activity locally (Foyet et al., 2014). Other plants like *Adansonia digitata* have been scientifically validated for several pharmacological activities including nutritional, anti-inflammatory, anti-bacterial and analgesic among others (De Caluwe et al., 2010). The plant *Ficus platyphylia* has been evaluated for other central nervous system and neurological disorders such as epilepsy and sedation (Chindo et al., 2014).

Ethnobotanical survey has been considered as one of the ways to identify, select and develop therapeutic drugs from medicinal plants (Pachter, 1994). Ethnobotanist and natural products chemist were able to link methods of preparation and administration of herbal preparations to efficacy in pharmacological evaluation (Lewis et al., 1998; Albers-Schonberg et al., 1997).

Conclusion

This study has provided information on the relevance of plants in treatment of depression in Kaduna State, Nigeria. It gave bases for the development of informational database for accessing and documenting traditional knowledge of medicinal plants used in management of depression. Further work is ongoing on the plants to validate the claim.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENT

The expertise support of Dr Hadiza Nuhu of Department of Pharmacognosy and Drug Development is highly acknowledged.

REFERENCES

Chikezie UE, Otakpor AN, Kuteyi OB, James BO (2013). Depression among people living with human immunodeficiency virus infection/ acquired Immunodeficiency syndrome in Benin City, Nigeria: A

Phytochemical standardization of hydroalcoholic extracts of ishpingo, *Ocotea quixos* (Lam.) Kosterm

Tatiana de los Ángeles Mosquera*, Michelle Jazmín Parra, Héctor Ivan Flor and Paco Fernando Noriega

Centro de Investigación y Valoración de la Biodiversidad, Universidad Politécnica Salesiana, Quito – Ecuador, Av. Wilson y Av. 12 de Octubre, Ecuador.

Received 10 July, 2017: Accepted 8 September, 2017

Investigations have proved the presence of components such as cinamaldehyde, cinamyl acetate and phenolic compounds in *Ocotea quixos*, these components have been attributed to antimicrobial disinfectants, antifungal and healing activities. It is important to point out that, to evaluate any biological activity, it is necessary to have standardized extracts to obtain reliable and reproducible results. The present investigation consist of standardizer hydroalcoholic extracts of ishpingo, *O. quixos*, evaluating the influence of three experimental variables: vegetal material (fresh and dry), solvent (ethanol and cane ethanol) and solvent concentration (90, 70 and 50% v/v) through an experimental factorial design, from which 12 different extracts with 3 repetitions of each were obtained.

The extracts were obtained through a percolation process considering the variables of the experimental design. A phytochemical screening showed the presence of polyphenols, tannins, catechins, saponins, quinones, coumarins, lactones and alkaloids in the 36 extracts; the Folin-Ciocalteu method was used in order to quantitatively determine the total phenol concentration and, by statistical analysis ANOVA (Tukey 95%), it was proved that there is a significant difference between the 12 established treatments where the extracts with the highest quantity of polyphenols are AMF50:50 (alcohol, fresh material, concentration 50% v/v) and CMF90:10 (cane alcohol, fresh material, concentration 90% v/v) with 12,538 and 13,298 mg of gallic acid / mL of extract, respectively; concluding that, this last combination obtain greater quantity of total polyphenols following the established standardized protocol.

Key words: *Ocotea quixos*, ishpingo, total polyphenols, folin ciocalteu, phytochemical screening, gallic acid.

INTRODUCTION

In recent years, ethnobotanical information has been very useful in the search for new active compounds with possible biological activity present in wild and domesticated plants (Santayana and Pellón, 2002). In addition, there is an increase in interest to know and verify the benefits of medicinal plants, which has led to the development of research to describe the cure of diseases (Martínez, 2006; Carrier et al., 2002).

*Corresponding author. E-mail: tmosquera@ups.edu.ec. Tel: +593995400925.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
Ecuador has a wide variety of plants with pharmacological properties, which can be used as raw material for the preparation of extracts, by extraction, isolation and purification of natural substances (De la Torre et al., 2006). Observation allows a better analytical characterization of the compounds of interest (Sharapin, 2000).

Ocotea quixos is a species with very few studies; however, there are some references about the pharmacological potential of this species (Montealegre, 2011; Bruni et al., 2004; Naranjo et al., 1981). Nonetheless, it is known that interest in *O. quixos* began since 1514, as in that year the Amazonas River was discovered in the expedition commanded by Orellana, Pizarro and Spanish soldiers and some plants with therapeutic properties were found within this group *O. quixos*, which contains cinnamaldehyde and other compounds of pharmacological interest (Gottlieb, 1982; Ballabeni et al., 2007).

According to ethnobotanical knowledge, *O. quixos*, can be used to treat gastric and intestinal complaints, flu, colds, vomiting, diarrhea, wound healing and local anesthetic (Fundación Chankupa, 2014; Alain et al., 1994; Campos et al., 2002). Some investigations attribute the therapeutic properties to components such as cinnamaldehyde, cinnamyl acetate, cinnamyl alcohol and phenolic compounds (Montealegre, 2011). *O. quixos* contains five components of pharmacological importance (α-pinene, β-elemene, β-carophyllene, germacrene-D and δ-cadinene) and the chemical characteristics of *O. quixos* are very different compared to other species of the same family (Takaku et al., 2007; Fréderick et al., 2005).

Recent research has demonstrated the presence of phenolic compounds in extracts of *O. quixos* by a qualitative test (Cárdenas-Tello et al., 2016). Rolli et al. (2014) demonstrated the presence of monoterpenes, sesquiterpenes and polyphenols, to those mentioned above; these has assumed to be the aptitude used to inhibit the microorganisms' growth which could be related to its antibacterial and antifungal activity, demonstrated in the research realized by Noriega and Decarro (2008). These secondary metabolites have been attributed to the ability to inhibit the growth of microorganisms, so that they may in contact with their antibacterial and antifungal activity demonstrated in the research done by Noriega and Decarro (2008).

In few studies, *O. quixos* have use essential oils or extracts of different parts of the plant, to evaluate its therapeutic properties (Mosquera and Veloz, 2011; Noriega and Samaniego, 2006; Cazorla, 2013; Julkumen-Tittoo, 1985). Nevertheless, to evaluate any biological activity, it is important to count with phytochemically standardized extracts because this allows in the reduction of variables used in the investigation of the different biological activities and facilitating the reproducibility of the results (Miño, 2007). Also, it helps to secure a natural product which has been proven effective. The standardization of an extract generates specifications of percentage of groups' phytochemicals (Sharapin, 2000). This is why the present research seeks to obtain hydroalcoholic extracts of *O. quixos* phytochemically characterized taking as a reference the total polyphenols, to give scientific value to the traditional use of this species.

The extract will act as a chemical marker from which future research can be carried out reducing the variability of the results and improving its reproducibility, since it has a raw material with proven effectiveness. In addition, a protocol will be provided to obtain the extract, in which the optimal parameters are established in drying, grinding, percolation, concentration and clarification processes.

MATERIALS AND METHODS

Experimental design

From the experimental design, the research was based on a totally randomized factorial design model for three experimental variables: “type of vegetal material” (dry and fresh), “type of solvent” (potable ethanol and cane ethanol) and “percentage alcoholic solvent” (50, 70 and 90%) v/v.

Obtaining and identifying vegetal material

The vegetal material was collected in the Province of Morona Santiago, Canton Macas, in August and September, 2016 during the winter. A total of 6 kg vegetal material was obtained; once in the laboratory, it was washed, identified and stored in hermetic containers, keeping it in refrigeration at 5°C for later use. The identification was taken by comparison with vegetal species of *O. quixos* from Salesian Polytechnic University herbarium. To prepare the extracts, the leaves of *O. quixos* were used.

Hydroalcoholic extracts

The process of obtaining hydroalcoholic extracts was carried out by percolation, following the methodology of the United States Pharmacopeia 30. The percolation process consists of: milling and wetting of the plant material, percolation for 48 h, concentration on rotates, clarification by filtration and centrifugation and maintenance of the extract on 4°C, to control it stability.

Quality control of fluid extracts

The organoleptic characteristics of the state, color, smell and taste of the 36 extracts were determined by means of a sensorial analysis; physical-chemical tests carried out are: pH, refractive index, density and total solids. The microbiological analysis consists in determining the presence of total aerobes, total coliforms and molds and yeasts in culture in 3M Petrifilm plates. All these tests were carried out by triplicate for each extract.

Phytochemical screening

The phytochemical groups present in the hydroalcoholic extracts
were determined by means of qualitative tests; allow to describe the presence or not of these. The metabolites analyzed were: polyphenols and tannins (5% ferric chloride test), saponins (foam test), catechins, coumarins and lactones (Baljet assay), quinones (Borntrager assay) and alkaloids (Dragendorff, Wagner and Mayer tests) (Miranda and Cuellar, 2001).

Quantification of total polyphenols

The quantification of the total polyphenols of the extract was performed by the Folin-Ciocalteu method, in a UV-VIS spectrophotometer at 765 nm wavelength, from a calibration curve with gallic acid.

The method of Folin Ciocalteu consist of 3950 uL of distilled water, 250 uL of the reagent Folin Ciocalteu and 750 uL of carbonate of sodium (20% v/v) for 2 h, with spectrophotometer which obtained the content of total polyphenols.

Statistical analysis

A statistical descriptive analysis of the absorbance values of each of the 36 extracts of O. quixos was carried out, using SPSS 24 software (Statistical Product and Service Solutions) as well as an ANOVA test, to determine significant differences in treatments as a function of the experimental variables: types of solvents, type of vegetal material and solvent concentration followed by a Tukey HSD test among the 12 treatments, to determine the presence of subgroups between them.

RESULTS AND DISCUSSION

Experimental design

The experimental design based on the three variables was an image design in a 2x2x3 type factorial design, obtaining 12 treatments with three replicates of each unit, with a total of 36 experimental units. The variables considered in the experimental design are based on previous research related to the percolation extraction process.

In the case of the type of solvent, two options are presented: cane ethanol and potable ethanol. According to Cárdenas et al. (2016), the solvents that best extract the secondary metabolites are cane ethanol and potable ethanol, when compared with other solvents such as water and hexane.

Another factor to consider in the solvent extraction process is the characteristic of the plant material (dry and fresh). It is recommended to use dry plant material to prevent processes of microbial contamination (Naveda, 2010). However, the content of polyphenols is usually affected during the drying processes and for this reason, it is necessary to establish a temperature that does not denature the secondary metabolites of interest (Gil, 2012).

Quality control of vegetal material

The percentages of foreign matter, humidity, total ash, insoluble ash in hydrochloric acid and water-soluble ash are presented in the Table 1, compared with the World Health Organization (WHO) limit values for phytochemicals, as well as the values of microorganism test by culture in plate and maximum permissible values in vegetal drugs.

As shown in Table 1, the values obtained in the evaluation of plant material do not exceed the limits established by the American Pharmacopoeia 33. The values reported in the microbiological control show absence of microbial contamination. For this reason, there is a good hygiene of plant material.

In the percentage of foreign material, the value was 0.24%, below the limit and this refers to the presence of material not belonging to the study species (sand, stones, parts, of other plants, etc.). The total ash helps to determine adulterations in plants, as well as the presence of sandy materials from the harvest (Montesdeoca, 2010).

Obtaining fluid extracts

A total of 36 fluid extracts were obtained, corresponding to the 36 treatments of the experimental design which consider the proposed variables; type of vegetal material (fresh and dry) and type of solvent (potable ethanol and cane ethanol); solvent percentage (50, 70, 90%) v/v.

Each extract was identified by the following coding: 1) Type of solvent: “A” or “C” for potable ethanol or cane ethanol; type of vegetal material: “MS” for dry material or “MF” for fresh material; 3) repetition number: 1, 2 or 3 and 4) solvent percentage: 90:10, 70:30 or 50:50 according to solvent: water ratio.

Quality control of fluid extract

The average of physicochemical characteristics is pH 6.605±0.5429. This value is beneficial because in therapeutic products of external use, it is recommended that the product has a pH similar to the pH of the skin (Ferraro et al., 2016). The refractive index of 1.35 ± 0.007 “Brix is close to that of water (1.33°Brix), the highest value in the extracts indicates the presence of compounds extract by the solvent (Urquizo, 2010), the density is of 0.95 ± 0.03 g/cm3, in this case the value obtained is intermediate between the density of the ethanol (0.789 g/cm3) and the density of the water (1 g/cm3), which is logical because the extracts are constituted by one part of ethanol and other part of water. And total solids of 1.9870 ± 0.7661 g.

In the microbiological control, the total absence of the evaluated microorganisms (total aerobes, total coliforms and molds and yeasts) was evidenced.

Phytochemical screening

Phytochemical screening was performed to qualitatively
Table 1. Quality control of vegetal material.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reported mean value (%)</th>
<th>Limit value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign matter</td>
<td>0.2375</td>
<td>10</td>
</tr>
<tr>
<td>Humidity</td>
<td>48.606</td>
<td>-</td>
</tr>
<tr>
<td>Total ash</td>
<td>1.9197</td>
<td>12</td>
</tr>
<tr>
<td>Water soluble ash</td>
<td>0.4755</td>
<td>7</td>
</tr>
<tr>
<td>Insoluble ash in hydrochloric acid</td>
<td>0.1108</td>
<td>5</td>
</tr>
</tbody>
</table>

Test | UFC / g (Reported) | UFC / g (Limit) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total aerobes</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Total coliforms</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Molds and yeasts</td>
<td>2</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: The limit value for the parameter of quality control for vegetal material and UFC limit were established by World Health Organization (WHO), 1998 and UPS 33, respectively.

Table 2. Phytochemical screening.

<table>
<thead>
<tr>
<th>Metabolites</th>
<th>AMF 90:10</th>
<th>AMS 70:30</th>
<th>AMS 50:50</th>
<th>CMF 90:10</th>
<th>CMF 70:30</th>
<th>CMF 50:50</th>
<th>CMS 90:10</th>
<th>CMS 70:30</th>
<th>CMS 50:50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyphenols</td>
<td>** ** ***</td>
</tr>
<tr>
<td>Tannins</td>
<td>** ** ** *</td>
</tr>
<tr>
<td>Catechins</td>
<td>** ** ** *</td>
</tr>
<tr>
<td>Saponins</td>
<td>** ** ** *</td>
</tr>
<tr>
<td>Quinones</td>
<td>** ** ** *</td>
</tr>
<tr>
<td>Coumarins</td>
<td>** ** ** *</td>
</tr>
<tr>
<td>Alkaloids Alcaloides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Dragendorff)</td>
<td>** ** ** *</td>
</tr>
<tr>
<td>(Wagner)</td>
<td>** ** ** *</td>
</tr>
<tr>
<td>Mayer</td>
<td>** ** ** *</td>
</tr>
</tbody>
</table>

***, High presence; **, present; *, low presence; -, absent.

identify the presence of certain secondary metabolites in each extract. The results are shown in Table 2.

These agree with those obtained by Cárdenas-Tello et al. (2016), which conclude the qualitative analysis. Cane ethanol extracts completely the metabolites of interest with exception of coumarins.

Quantification of phenolic compounds

The gallic acid calibration curve was obtained with the absorbance values at 765 nm as shown in Table 3. The calibration curve with gallic acid as a reference standard in the quantification of phenols serves as a reference for calculating the concentrations of total phenols present in each extract. The absorbance values reported in the Table 3 allowed producing a curve of calibration absorbance vs. concentration (Figure 1).

The analysis of variance of ANOVA of the experimental design allows in determining the significant difference among the 12 treatments, a result concordant with the significance obtained from the analysis of the interaction of the three variables. Tukey's post-hoc test allows the identification of three subgroups of treatments where: the treatment with the lowest concentration of gallic acid corresponds to the AMS50:50 treatment, a
Table 3. Gallic acid concentrations and their respective absorbance.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Concentration of gallic acid (mg/mL)</th>
<th>Absorbance at 765 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanco</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C1</td>
<td>0.001</td>
<td>0.007</td>
</tr>
<tr>
<td>C2</td>
<td>0.002</td>
<td>0.112</td>
</tr>
<tr>
<td>C3</td>
<td>0.02</td>
<td>0.4064</td>
</tr>
<tr>
<td>C4</td>
<td>0.05</td>
<td>1.0572</td>
</tr>
</tbody>
</table>

Figure 1. The gallic acid calibration curve (Absorbance vs concentration).

It is important to mention that the second treatment with the highest amount of total phenols is AMF50:50, which is an indication that the concentration could be influenced when extracting the phenols from the leaves. As Caldás (2012) mentions, the use of high concentrations of the solvent can extract compounds that inhibit the extraction of the metabolite of interest; whereas too low concentrations fail to extract the metabolites. This is verified by the results of this research where the treatments AMS50:50 and CMF50:50 had the lowest concentrations of total phenols.

It should be noted that, the alcoholic strength of drinking ethanol is 96°GL while that of cane ethanol is 58°GL and when combined with water, the alcohol content decreased. For the case of plant material there was no significant difference, that is, fresh or dry material
Table 4. Tuckey post – hoc test (95%).

<table>
<thead>
<tr>
<th>Treatments</th>
<th>mg gallic acid / mL extract</th>
<th>Number</th>
<th>Subset 1</th>
<th>Subset 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS50:50</td>
<td></td>
<td>3</td>
<td>6.239444</td>
<td>-</td>
</tr>
<tr>
<td>CMF50:50</td>
<td></td>
<td>3</td>
<td>8.008815</td>
<td>8.008815</td>
</tr>
<tr>
<td>CMS90:10</td>
<td></td>
<td>3</td>
<td>8.938539</td>
<td>8.938539</td>
</tr>
<tr>
<td>CMS70:30</td>
<td></td>
<td>3</td>
<td>9.511171</td>
<td>9.511171</td>
</tr>
<tr>
<td>AMF70:30</td>
<td></td>
<td>3</td>
<td>9.670415</td>
<td>9.670415</td>
</tr>
<tr>
<td>CMF70:30</td>
<td></td>
<td>3</td>
<td>10.365295</td>
<td>10.365295</td>
</tr>
<tr>
<td>AMS90:10</td>
<td></td>
<td>3</td>
<td>11.129341</td>
<td>11.129341</td>
</tr>
<tr>
<td>AMF90:10</td>
<td></td>
<td>3</td>
<td>11.545947</td>
<td>11.545947</td>
</tr>
<tr>
<td>AMS70:30</td>
<td></td>
<td>3</td>
<td>11.803310</td>
<td>11.803310</td>
</tr>
<tr>
<td>CMS50:50</td>
<td></td>
<td>3</td>
<td>11.968988</td>
<td>11.968988</td>
</tr>
<tr>
<td>AMF50:50</td>
<td></td>
<td>3</td>
<td>-</td>
<td>12.538403</td>
</tr>
<tr>
<td>CMF90:10</td>
<td></td>
<td>3</td>
<td>-</td>
<td>13.297624</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>-</td>
<td>0.065</td>
<td>0.113</td>
</tr>
</tbody>
</table>

HSD Tukey is the means for each groups in which homogeneous subsets are visualized. It’s base on the averages observed. The error term is the quadratic mean (Error) = 4.066. (a) Uses the simple size of the harmonic mean = 3.000, (b) α = 0.05.

Figure 2. Histogram of averages of mg gallic acid/mL extract with the different treatments.

can be used and the final content of total phenols will not vary significantly as evidenced in the ANOVA statistical tests. In this case, it is advisable to use dry material to facilitate grinding processes and avoid microbial contamination (Pérez, 2009).

Although, one of the great advantages of *O. quixos*
extracts is the high content of phenols and as explained above, phenols have proven antimicrobial and antifungal activity (Noriega and Decarrollo, 2008). In addition, ethanol has been used as solvent, which is considered a growth inhibitory agent of microorganisms (Sánchez and Sáenz, 2005).

Finally, as evidenced by the statistical test of Tukey, there is no significant difference when analyzing each of the variables independently, but rather at the moment in which the variables interact, significant changes in the concentration of total phenols can be reported.

Conclusions

The 36 hydroalcoholic extracts had significant amounts of total phenylpropanoids. However, in the statistical analysis of the results, it was possible to conclude that the interaction between the variables considered in the experimental design (soil type, plant material status and solvent concentration) influences the final result of total phenylpropanoids.

The best treatment was CMF90:10, with a total of 1,330 mg gallic acid/mL extract; while the treatment with the lowest concentration of total polyphenols was AMS50:50, in which 6,239 mg gallic acid/mL extract was obtained. It is important to mention that there was no significant difference when the variables were analyzed independently, whereas for the interactions variables, it can be concluded by means of the statistical analyses which confirm that there are significant differences in the content of total polyphenols.

The content of total polyphenols in the extracts was the parameter that allowed standardizing each one of the extracts. Thus, the reproducibility of O. quixos hydroalcoholic extracts is guaranteed, which can be used in future investigations.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGMENTS

The authors are grateful to the Salesian Polytechnic University for funding and supporting this research.

REFERENCES

Gottlieb O (1982). Ethnopharmacology versus chemosystematics in the search for biologically active principles in plants. J. Ethnopharmacol. 6(2):227-238.

Montealegre Pinzón C (2011). Etnobotanica preliminar del Espin go (Ocotea quixos (Lam.) Kosterm.) en la medicina tradicional indígena Inga, pruebas fotoquímicas y evaluación de la actividad antimicrobiana (Bachelor’s thesis). Available at: https://repository.javeriana.edu.co/handle/10554/8875

Urquizo Robalino FP (2013). Comparación del Efecto Adelgazante de las Hojas de Pata de Vaca (Bauhinia sp.) en el Extracto Hidroalcohólico, Medicamento Homeopático y Microdosis en Personas con Sobrepeso (Bachelor’s thesis). Available at: http://dspace.esPOCH.edu.ec/handle/123456789/2578

Journal of Medicinal Plant Research

Related Journals Published by Academic Journals

- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- International Journal of Nursing and Midwifery
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Toxicology and Environmental Health Sciences