ABOUT JPP

The Journal of Pharmacognosy and Phytotherapy (JPP) is published monthly (one volume per year) by Academic Journals.

The Journal of Pharmacognosy and Phytotherapy (JPP) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as ethnobotany, phytochemistry, ethnopharmacology, zoopharmacognosy, medical anthropology etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JPP are peer-reviewed.

Contact Us

Editorial Office: jpp@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JPP
Submit manuscript online http://ms.academicjournals.me/
Dr. Baojun Bruce Xu
Beijing Normal University-Hong Kong Baptist University United International College Zhuhai, Guangdong Province, China

Dr. Hamad H. Issa
Department of Physical Sciences, School of natural Sciences, The University of Dodoma, Tanzania

Dr. Gagan Deep
Department of Pharmaceutical Sciences School of Pharmacy, University of Colorado Denver, Colorado, USA

Dr. Fengguo Xu
Dept of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Dr. Haitao Lv
Medical and Endocrinology, Albert Einstein College of Medicine, Yeshiva University, USA

Hassane MEKHFI
University Mohammed the First, Faculty of Sciences, Department of biology, Laboratory of Physiology and Ethnopharmacology, Morocco

Dr. Subhash C. Mandal
Division of Pharmacognosy Pharmacognosy and Phytotherapy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, India.

Dr. Adibe Maxwell Ogochukwu
Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka Enugu state, Nigeria.

Dr. Odukoya, Olukemi Abiodun
Department of Pharmacognosy, Faculty of Pharmacy University of Lagos, Nigeria.

Dr. Qinxue Richard Ding
Medical Center at Stanford University, Palo Alto, USA

Dr. Sulejman Redžić
Faculty of Science of the University of Sarajevo 33-35 Zmaja od Bosne St., Sarajevo, Bosnia and Herzegovina

Dr. Michal Tomczyk
Medical University of Bialystok, Faculty of Pharmacy, Department of Pharmacognosy, Poland

Dr. Ugur Çakilcioglu
Firat University, Faculty of Science and Arts, Department of Biology, Elazig, Turkey

Prof. Samson Sibanda
National University of Science and Technology Cnr Gwanda Road/Cecil Avenue, Ascot, Bulawayo, Zimbabwe
ARTICLES

Anticancer activities and safety evaluation of selected Kenyan plant extracts against breast cancer cell lines
Onyancha Jared M., Gikonyo Nicholas K., Wachira Sabina W., Mwitari Peter G. and Gicheru Michael M.

Pharmacognosy and phytochemical standardization of Albizia Ferruginea (Guill and Perr) pulps
Rose Ngono Mbala Abondo, Aude P´erine Minyem Ngombi, Joseph Ngoupayo, Bonaventure Ngadjui Tchaleu and Beyeme Fridoline-Victorine

Diterpenes of the pimarane type isolated from Viguiera arenaria: Promising in vitro biological potential as therapeutic agents for endodontics
Anticancer activities and safety evaluation of selected Kenyan plant extracts against breast cancer cell lines

Onyancha Jared M.1*, Gikonyo Nicholas K.2, Wachira Sabina W.3, Mwitari Peter G.3 and Gicheru Michael M.4

1Department of Pharmacy, Kenya Methodist University, P. O. Box 267-60200, Meru, Kenya.
2Department of Pharmacy and Complementary/Alternative Medicine, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya.
3Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, P. O. Box 54840-00200, Nairobi, Kenya.
4Department of Zoological Sciences, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya.

Received 14 July, 2017; Accepted 20 September, 2017

Breast cancer is a leading cause of deaths among women suffering from cancer in Kenya. The current study was done to determine anticancer activities of medicinal plant extracts against breast cancer cell lines (HCC 1395 and 4T1). Vero cells were used for evaluation of safety of extracts. Thiazolyl blue tetrazolium bromide (MTT) assay was used in this study. Reference drugs were 5 fluorouracil and cyclophosphamide. Extract concentrations that inhibited growth of cell growth by half (IC50) were estimated using GraphPad prism version 7 and 90 % of extracts showed anticancer activities. Methanol extracts of Uvariodendron anisatum, Fagaropsis angolensis, Combretum tanaense, Hydnora abyssinica and water extract of F. angolensis exhibited remarkable anticancer activities (IC50 < 30 µg/ml). Methanol extracts of F. angolensis and H. abyssinica demonstrated high selectivity index (SI ≥3). Evaluation for safety, indicated that about 64% of the extracts under this study were non-toxic (CC50 >100 µg/ml). Findings from plants in this study support folklore claims. Phytochemical analysis, bioassay guided fractionation and toxicity studies are underway on extracts of C. tanaense, F. angolensis, H. abyssinica and U. anisatum.

Key words: 4T1, ethnomedicine, HCC 1395, IC50 values, medicinal plants, MTT assay, selectivity index, vero E6.

INTRODUCTION

Breast cancer is the most frequently diagnosed and leading cause of cancer deaths among women. It caused about 522,000 deaths in 2012 worldwide and these estimations are expected to double by the year 2030(WHO, 2014). Of all reported cases of cancer in Kenya, breast cancer has a prevalence of 23.3% and is
the most common among women (Ministry of Public Health and Sanitation and Ministry of Medical Services, 2011-2016). The reduced access to comprehensive cancer care services, high cost of health services and inadequate cancer specialized health personnel further aggravate the cancer burden. Increasing burden of breast cancer cases in Kenya calls for a number of interventions (Policy Brief, 2011).

Furthermore, as a commitment towards realization of vision 2030 in Kenya, policies that address prevention and management of cancers are being implemented. Kenya is also making every effort to reduce pre-mature mortality from non-communicable diseases (NCDs) by one-third as a commitment towards the third goal of sustainable development (ICSU, ISSC, 2015, United Nations (UN), 2015). It is estimated that 80% of world population use traditional medicine (WHO, 2005; Malki, 2013). In connection with traditional medical systems, about 91% of cancer patients seek complementary alternative medicine (CAM) services worldwide and up to 98% of these patients are those suffering from breast cancer (Leung and Fong, 2007; Mazzio and Soliman, 2009). In other regions of the world, CAM has been useful in the discovery and development of drugs and drug derivatives which are useful clinically in the management of breast cancer. Two of these plants used for more than a century now are Catharanthus roseus (first identified in 1950s) as a source of vincristine and vinblastine and Taxus brevifolia is a known source of taxol since 1962 (Evans, 2009). On the other hand, elliptinium isolated from Bleekeria vitensis has also been prescribed for breast cancer treatment for more than ten years now (Shoeb, 2006).

Continued search for plant compounds or products is necessary, for discovery of lead compounds with antitumor activities for breast cancer. Moreover, traditional medicine practices employ plants in treatment, prevention or management of breast cancer (King Saud University, 2016; Prakash et al., 2013). In Kenya, up to 70% of the over 43 million people use traditional medicine in primary health care. Cancer patients use plant based medicines to complement or as alternatives for conventional medicines (Njorge and Kibunga, 2007). A number of plants are used ethnomedically in the management of breast cancer and some have been documented (Kareru et al., 2007; Ochwangi et al 2014). The plant extracts under this study: Combretum tanaense (Combretaceae), Fagaropsis angolensis (Rutaceae), Hydrorna abyssinica (Hydroracae), Launaea cornuta (Asteraceae), Prunus and Uvariodendron anisatum (Annonaceae) have been africana (Rosaceae), Spermacoce princeae (Rubiaceae) reported in the literature to manage cancer (Kareru et al., 2007; Kokwaro, 2009; Jeruto, et al., 2008, 2011; Kigen et al., 2013; Ndwigah et al., 2014).

The objective of the current study was to establish anticancer activities of selected plant extracts using HCC1395 and 4T1 breast cancer cell lines.

MATERIALS AND METHODS

Five of the plants were obtained from Embu County (roots of U. anisatum from Kiangombe forest, rhizomes of H. abyssinica from Ishiara Karuri village, barks of F. angolensis, P. africana and aerial parts of L. cornuta from Irangi forest in Embu). The roots of C. tanaense were collected from Mount Kenya University botanical garden in Thika County, while the aerial parts of S. princeae were collected from Mabarir village, Bornwagamo location in Nyamira County. The collected specimens were identified and authenticated with the aid of a taxonomist at the National Museums of Kenya (East Africa Herbarium) where the voucher specimens were prepared and deposited. The plant voucher specimens were as provided in the parentheses, U. anisatum (JMO-1-2015), Hydrorna abyssinica (JMO-2-2014), F. angolensis (JMO-3-2015), P. africana (JMO-3-2014), L. cornuta (JMO-1-2014), C. tanaense (JMO-2-2015) and S. princeae (JMO-4-2015).

Extraction and preparation of test extracts

The collected plant samples were air-dried under shade and thereafter they were ground using an electric mill. Methanol extracts were prepared by cold maceration for 48 h, and 250 g of the powders were soaked in 2.5 conical flasks using methanol (1 L). The methanol extracts were filtered and concentrated in vacuo at 50°C and finally dried in an oven at 35°C. Water extracts were obtained by boiling 50 g of the powdered drug in distilled water (0.5 L) for 5 min, the water extracts was then allowed to cool, filtered and then freeze dried. The dry extracts were weighed and stored in a freezer at -20°C. Stock solutions (10 mg/ml) of all extracts were made for anticancer assay, 10 mg of the dry extracts were dissolved in 100 µl of dimethylsulfoxide (DMSO) and then added up to 1000 µl with phosphate buffer solution (PBS). The stock solutions for each extract were then serially diluted by using PBS to obtain working concentrations ranging from 1000 to 0 µg/ml. The preparations were done under sterile conditions and the solutions of extracts were stored at 4°C until use.

Cancer cell lines and cell culture preparations

Human breast cancer cell line (HCC 1395), mouse breast cancer cell line (4TI) and normal kidney epithelial cells from African green monkey (Vero E6) cell line were obtained from the American Type Culture Collection (ATCC) (Rockville, USA). HCC 1395 (ATCC® CRL-2324™) cells were cultured and maintained using Roswell Park Memorial Institute (RPMI-1640). Normal kidney epithelial cells from African green monkey (Vero E6) and 4T1 cells were cultured and maintained using Eagle’s Minimum Essential Medium (EMEM). All cell cultures were supplemented with 100 units/ml penicillin/streptomycin and 10% fetal bovine serum (FBS) and they were maintained at 37°C in a humidified atmosphere of 5% CO₂.

Anticancer activities assay of crude extracts

Standard 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate cell viability in the presence and absence of extract(s). The cells were plated in 96-well plates at a density of approximately 2 x10⁴ cells per well and suspended in 100 µl of media. The plates were then incubated for 24 h at 37°C, 5% CO₂ and relative humidity of 95% to attach. Thereafter, the extracts and standard drugs were added to the wells at concentrations ranging from 1000 to 0 µg/ml. The experiment was designed in such a manner that experimental blanks (wells containing media and test drug) and negative control (wells containing media and cells) were run simultaneously in triplicates.
ure DMSO (100 μl) was
absorbed into wells of each plate. The plates were further incubated for 4 h after which the supernatant was aspirated. Pure DMSO (100 μl) was added to each well to solubilize MTT crystals. The plates were then read for colour absorbance on an ELISA scanning multiwell spectrophotometer (Multiskan Ex, Labsystems) at 562 nm. The standard drugs, 5-fluorouracil and cyclophosphamide were used as positive controls. Percentage cell cytotoxicity was calculated using the following formula:

\[
\text{Cytotoxicity (\%) = } \frac{\text{Absorbance of cells without treatment} - \text{Absorbance of cells with treatment}}{\text{Absorbance of cells without treatment}} \times 100
\]

Selectivity index (SI) which indicates the ability of the drug to discriminate against cancerous cell and in favour of normal cells was calculated using the following formula:

\[
\text{SI} = \frac{\text{CC}_{50} \text{ Value for Vero cells}}{\text{IC}_{50} \text{ Values for Cancer cells}}
\]

Where, CC\(_{50}\) is the concentration of the extracts that exerted cytotoxic effects on half of the population of normal cells and IC\(_{50}\) is the concentration of the extracts that inhibited growth/proliferation of half of the population of cancerous cells. All the cytotoxicity procedures were performed at Kenya Medical Research Institute (KEMRI) after the approval of the institutional Scientific and Ethics Review Unit.

RESULTS

Anticancer activities of extracts against HCC 1395 breast cancer cell line

Investigations of anticancer activities of plant extract against human breast cancer cell line (HCC 1395) gave results as indicated in Table 1. Methanol extracts of the

Table 1. IC\(_{50}\) values (µg/ml) of extracts against HCC 1395 breast cancer cell line.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Extract</th>
<th>HCC 1395 IC(_{50}) (µg/ml)</th>
<th>Vero IC(_{50}) (µg/ml)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uvariodendron anisatum root</td>
<td>Methanol</td>
<td>50.6±2.9</td>
<td>3.3±0.2</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>248.0±5.8</td>
<td>153.5±1.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Hydnora abyssinica rhizome</td>
<td>Methanol</td>
<td>27.20±1.1</td>
<td>84.23±6.3</td>
<td>3.10</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>499.3±1.3</td>
<td>184.00±12.00</td>
<td>0.37</td>
</tr>
<tr>
<td>Launaea cornuta leaf</td>
<td>Methanol</td>
<td>231.7±2.0</td>
<td>384.00±32.5</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>365.0±15.3</td>
<td>>1000</td>
<td>2.7</td>
</tr>
<tr>
<td>Combretum tanaense root</td>
<td>Methanol</td>
<td>193.0±13.2</td>
<td>36.16±4.0</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>>1000</td>
<td>>1000</td>
<td>1</td>
</tr>
<tr>
<td>Fagaropsis angolensis bark</td>
<td>Methanol</td>
<td>59.4±5.6</td>
<td>21.7±6.6</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>553.6±15.4</td>
<td>302.7±16.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Spermacoce princeae aerial</td>
<td>Methanol</td>
<td>533.00±56.6</td>
<td>203.00±4.9</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>940.3±53.3</td>
<td>576.00±36.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Prunus africana bark</td>
<td>Methanol</td>
<td>10.6±0.7</td>
<td>20.5±0.6</td>
<td>1.93</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>81.9±8.04</td>
<td>196.00±6.00</td>
<td>2.39</td>
</tr>
<tr>
<td>5-Fluorouracil (positive control)</td>
<td></td>
<td>38.8±7.56</td>
<td>185.00±75.0</td>
<td>4.79</td>
</tr>
<tr>
<td>Cyclophosphamide (positive control)</td>
<td></td>
<td>32.8±1.1</td>
<td>2.78±1.1</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data is presented as mean±SEM of IC\(_{50}\) (µg/ml) from three independent experiments.
Table 2. IC₅₀ values (µg/ml) of extracts against 4T1 breast cancer cell line.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Extract</th>
<th>4T1</th>
<th>Vero</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IC<sub>50</sub> (µg/ml)</td>
<td>CC<sub>50</sub> (µg/ml)</td>
<td></td>
</tr>
<tr>
<td>Uvariodendron anisatum root</td>
<td>Methanol</td>
<td>1.77±0.06</td>
<td>3.3±0.2</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>150.7±4.9</td>
<td>153.5±1.5</td>
<td>1.02</td>
</tr>
<tr>
<td>Hydnora abyssinica rhizome</td>
<td>Methanol</td>
<td>22.9±0.1</td>
<td>84.23±6.3</td>
<td>3.68</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>79.8±1.0</td>
<td>184.00±12.00</td>
<td>2.3</td>
</tr>
<tr>
<td>Launaea cornuta leaf</td>
<td>Methanol</td>
<td>300.5±5.5</td>
<td>384.00±32.5</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>700.5±14.5</td>
<td>>1000</td>
<td>>1.4</td>
</tr>
<tr>
<td>Combretum tanaense root</td>
<td>Methanol</td>
<td>19.5±0.00</td>
<td>36.16±4.0</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>289.7±2.9</td>
<td>>1000</td>
<td>>3.45</td>
</tr>
<tr>
<td>Fagaropsis angolensis bark</td>
<td>Methanol</td>
<td>12.9±1.2</td>
<td>21.7±6.6</td>
<td>1.68</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>80.0±1.7</td>
<td>302.7±16.6</td>
<td>3.78</td>
</tr>
<tr>
<td>Spermacoce princeae aerial</td>
<td>Methanol</td>
<td>204.00±6.6</td>
<td>203.00±4.9</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>562.00±10.00</td>
<td>576.00±36.7</td>
<td>1.00</td>
</tr>
<tr>
<td>Prunus africana bark</td>
<td>Methanol</td>
<td>4.78±0.96</td>
<td>20.5±0.6</td>
<td>4.30</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>36.77±8.56</td>
<td>196.00±6.00</td>
<td>5.33</td>
</tr>
<tr>
<td>5-Fluorouracil (positive control)</td>
<td></td>
<td>>1000</td>
<td>185.00±75.0</td>
<td>0.19</td>
</tr>
<tr>
<td>Cyclophosphamide (positive control)</td>
<td></td>
<td>>1000</td>
<td>2.78±1.1</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Data is presented as mean±SEM of IC₅₀ (µg/ml) from three independent experiments.

H. abyssinica rhizome and P. africana bark were the most promising with estimates of IC₅₀ values being 27.20±1.1 and 10.6±0.7 µg/ml, respectively. Other extracts that had high activity were U. anisatum root methanol, F. angolensis bark methanol and P. africana bark water (IC₅₀= 50.6±2.9, 59.4±5.6 and 81.9±8.04 µg/ml, respectively). Nine extracts exhibited low anticancer activities against HCC 1395 cell line (100 ≤ IC₅₀ ≤ 1000 µg/ml) as shown in Table 1 and C. tanaense water extract was considered inactive (IC₅₀ > 1000 µg/ml).

The results reveal that two methanolic plant extracts were more potent against HCC 1395 breast cancer cell line as compared to the reference drugs (cyclophosphamide and 5 fluorouracil). H. abyssinica rhizome (IC₅₀=27.20±1.1 µg/ml) and P. africana bark (IC₅₀=0.6±0.7) were more active against HCC1395 human breast cancer cell line. The IC₅₀ for 5-fluorouracil was 32.8±1.1 and that of cyclophosphamide was 38.8±7.56 µg/ml against the same breast cancer cell line.

Anticancer activities of extracts against 4T1 breast cancer cell line

Five extracts demonstrated remarkable activities against mouse breast cancer cell line (4T1); they had IC₅₀ estimates at concentrations below 30 µg/ml and these extracts were all methanolic extracts of U. anisatum root, H. abyssinica rhizome, C. tanaense root, P. africana bark and F. angolensis bark. The water extracts obtained from H. abyssinica rhizome, P. africana bark and F. angolensis bark had activities at concentrations 30≤IC₅₀≤100 µg/ml and was regarded to have high activity. All the other remaining six extracts under this study demonstrated low activity as indicated in Table 2.

The IC₅₀ values for the active extracts against 4T1 cell lines, U. anisatum root methanolic extract (IC₅₀=1.77±0.06 µg/ml), P. africana bark methanolic extract (IC₅₀=4.78±0.96 µg/ml), F. angolensis bark methanolic extract (IC₅₀=12.9±1.2 µg/ml), C. tanaense (IC₅₀=19.5±0.0 µg/ml) and H. abyssinica rhizome methanolic extract (IC₅₀=22.9±0.1 µg/ml) are shown. Interestingly, it was observed that the standard reference drugs (5-fluorouracil and cyclophosphamide) were inactive against 4T1 breast cancer cell line.

Safety of extracts against vero cell line

Nine out of the 14 extracts exhibited CC₅₀ values which were greater than 100 µg/ml; these included, methanol and water extracts obtained from L. cornuta.
leaves and S. princeae aerial part; water extracts of U. anisatum root, H. abyssinica rhizome, F. angolensis bark, C. tanaense root and P. africana bark. Most of the methanol extracts of plants whose water extracts have been depicted as safe were found to be toxic against vero cells; they demonstrated CC50 values ranging from 3.3±0.2 to 84.23 ±6.3 µg/ml as indicated in Table 2. U. anisatum root methanol extract was found to be highly toxic; it demonstrated the lowest CC50 values against vero cell line (CC50=3.3±0.2 µg/ml).

Methanol extracts of P. africana bark (CC50=20.5±0.6 µg/ml), F. angolensis bark (CC50=21.7 ±6.6 µg/ml) C. tanaense root (CC50=36.16±4.0 µg/ml) and H. abyssinica rhizome (CC50=84.23±6.3 µg/ml) were all considered toxic since they had CC50 values at concentrations that were less than 100 µg/ml. The standard reference drugs, 5-fluorouracil and cyclophosphamide had varied toxicity levels against the vero cell line; 5-fluorouracil (CC50>100 µg/ml) was considered nontoxic, while cyclophosphamide was found to be toxic with CC50 values estimated at 2.78±1.1 µg/ml (Table 1).

Selectivity index (SI)

The calculation of selectivity index (SI=CC50/IC50), was used to establish the ability of the extracts to discriminate their effect against normal and cancer cell lines. The calculated SI values are indicated in Tables 1 and 2 for HCC 1395 and 4T1 breast cancer cell lines, respectively. Two methanol extracts, H. abyssinica rhizome (SI=3.10) and P. africana bark (SI=1.93) demonstrated moderate selectivity index following their effect on HCC 1395 breast cancer cell line. All other extracts under this study were non selective in their activity in relation to HCC 1395 breast cancer cell line. L. cornuta leaf water extract was the only water extract that was observed to have high selectivity index (SI=2.75).

However, it had low activity against HCC 1305 cell line. The standard reference drugs demonstrated varying SI values with 5-fluorouracil having high selectivity (SI=4.79), whereas cyclophosphamide was non selective; it had SI values of 0.08 in relation to HCC 1395 breast cancer cell line as shown in Table 1.

Higher selectivity indices were recorded on 4T1 breast cancer cell line, water extracts of F. angolensis bark (SI=3.78) and P. angolensis bark (SI=5.33). Methanol extract also had high activity on this same cell line, H. abyssinica rhizome (SI=3.68) and P. africana bark (SI=4.3) as shown in Table 2. All the other extracts exhibited moderate selectivity indices with values ranging from 1.00 to 2.3; it is also noted that SI values for water extract of C. tanaense root were high (SI=3.345) on 4T1 breast cancer cell line. The SI values for the standard reference drugs as indicated in Table 2 shows that both 5-fluorouracil and cyclophosphamide were non-selective in the case of 4T1 breast cancer cell line.

DISCUSSION

The strength of anticancer activities of the extracts in this study varied in relation to extracts and breast cancer cell line; extracts of H. abyssinica rhizome demonstrated anticancer activities against HCC 1395 and 4T1 breast cancer cell line. A study conducted by Yagi et al. (2012) on cytotoxicity of water and 70% ethanol extracts of Hydorora johannis root, showed that the extracts had anticancer activity against human mouth epidermoid carcinoma (KB) cell line. Low toxicity of H. abyssinica rhizome extracts was reported against vero cell line; this is in agreement with the study done by Koko et al. (2009) and Yagi et al. (2012) which establish the safety of 80% ethanol extract of H. abyssinica against 3T3 mouse fibroblast cell line; 70% ethanol extract of H. johannis root against MRC5 (derived from non-cancer human fetal lung), respectively. Other toxicity studies that were done by Osman (2010) using rats, showed that water extract of H. abyssinica was non-toxic at dose of 1600 mg/kg and the safety studies are consistent with the current studies.

P. africana bark extracts were found to be active against HCC 1395 and 4T1 breast cancer cell line; anticancer activity against HCC 1395 breast cancer cell line is reported for the first time in the current study. Studies done by Nabende et al. (2015) using 4T1 breast cancer cell line showed that methanol extract of P. africana bark was active while the water extract was inactive. Contrastingly, in the current study, water extract was found to be active against 4T1 breast cancer cell line. In other anticancer studies, ethanolic extract of P. africana bark was found to have significant anticancer activities against PC3 and LNCaP human prostate cancer cell lines with IC50 values estimated at about 2.5 µl/ml (Shenouda et al., 2007). The water extract of P. africana bark is reported to be safe in this study; this finding is consistent with that of Karani et al. (2013), where estimated CC50 values of P. africana bark were 104.08 µg/ml. It is known that extracts with CC50 of more than 100 µg/ml are considered to be safe in cytotoxic studies.

The anticancer activities of the remaining five plants in the current study: F. angolensis, C. tanaense, U. anisatum, L. cornuta and S. princeae has not been previously reported. Methanol extracts of two plants: F. angolensis bark and U. anisatum root exhibited considerable anticancer activities on breast cancer cell lines (4T1 and HCC 1395). C. tanaense root methanol extracts were active against 4T1 and inactive against HCC 1395 breast cancer cell lines. Except for water extracts of F. angolensis which had high activity, all the other water extracts demonstrated low activities against the anticancer cell lines. The activities of methanol extracts of L. cornuta and S. princeae were also reported to be low.

The variations in anticancer activities that was observed in different extracts, indicate that methanol was a better solvent for extracting compounds with anticancer
activities. Most of the extracts in this study were non-toxic except for methanol extracts of *U. anisatum* root which was rated highly toxic, followed by *F. angolensis* bark, *H. abyssinica* rhizome and lastly *C. tanaense* root. It was established that the extracts that had high activities against cancer cell lines were toxic to the normal cell lines. The active extracts, *H. abyssinica* rhizome, *U. anisatum* root, *P. Africana* bark, *F. angolensis* bark and *C. tanaense* root exhibit differential selectivity and therefore demonstrated ability to distinguish between cancer and normal cell lines. Previous studies done by Nabende et al. (2015), established that methanol extract of *P. africana* bark distinguished normal vero cell line from 4T1 breast cancer and CT26 human colon cancer cell lines by SI values of 7.26 and 1.11, respectively, this means that the methanol extract of *P. africana* bark had high cytotoxic effect against cancer cell line, on the other hand, it has low toxicity against normal cell line.

Conclusion

The findings of this study provide a scientific justification for the traditional use of these plants. The anticancer activity of 90% of these plants against 4T1 and HCC 1395 breast cancer cell lines is being reported for the first time in the current study. Methanolic extracts of *C. tanaense* (root), *P. africana* (bark), *H. abyssinica* (rhizome), *F. angolensis* (bark) and *U. anisatum* (root) possess high anticancer activities. Out of the five extracts with high potency, the methanol extract of *H. abyssinica* rhizome was considered the safest followed by methanol extracts of *C. tanaense* root, *F. angolensis* bark, *P. africana* bark and *U. anisatum* root in decreasing order of safety. Presently, these extracts are being investigated by bioassay guided fraction to establish the compounds that are responsible for activity against breast cancer cell lines.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors thank the Center for Viral Research (CVR), Kenya Medical Research Institute for provision of the cell lines. They also extend their gratitude to Mr. Muchiri of the Department of Tissue culture at VCR, KEMRI for assisting in the storage and maintenance of the cell lines. Zablom Malago and John Nzivo of Pharmaceutical Chemistry Laboratory, Mount Kenya University, Gervasoni Moriasi of Medical Biochemistry Laboratory, Mount Kenya University and Gilbert Mukindia of Kenyatta University Laboratory are also appreciated for their technical assistance.

REFERENCES

Pharmacognosy and phytochemical standardization of Albizia Ferruginea (Guill and Perr) pulps

Rose Ngono Mballa Abondo1,5*, Aude P´erine Minyem Ngombi5, Joseph Ngoupayo4, Bonaventure Ngadjui Tchaleu4 and Beyeme Fridoline-Victorine3

1Department of Galenical Pharmacy and Pharmaceutical Legislation, Faculty of Medicine and Biomedical Sciences, University of Yaound`e I, Yaoundé, Cameroon.
2Department of Therapeutical Chemistry and Pharmacognosy, Faculty of Medicine and Biomedical Sciences University of Yaound´e I, Yaoundé, Cameroon.
3Cameroonian Higher Council for Traditional Medicine, (COSMETRAC), Yaounde, Cameroon.
4Department of Traditional Medicine and African therapeutic, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon.
5National Drug Quality Control and Evaluation Laboratory (LANACOME), Yaounde, Cameroon Universit´e de Yaound´e I, Cameroon.

Received 15 September, 2017; Accepted 5 January, 2018

In Africa and Cameroon in particular, people tend to use medicinal plants as the first approach to cure their illness or disease. In order to improve the safety and the progressive integration of those plants in our health systems, it is important to set a system and protocol that would permit an easy characterization, quality and safety control of medicinal plants through a standardization of their recipes. Thus, we develop a Pharmacognosy and phytochemical study of Albizia ferruginea pulps and complete by a monograph for each plant. A macroscopic and microscopic analysis of the drugs is done, followed by a study of the weight loss due to desiccation. Furthermore, the ratio of ashes in the powders was investigated in conformity with the European pharmacopeia. We further extract and perform a phytochemical screening. From the macroscopic analysis, it is observed that the pulp was strong, fibrous crack and powder brown with an aromatic smell. The micrographic analysis shows the presence of various tissues such as suber, fiber, liber, sclerotic cells as well as the calcium oxalate. The ashes percentage of A. ferruginea powder is 1.16%, whereas the weight loss due to desiccation is 7.6 % and inflation indices, 4 mL. The phytochemical screening showed the presence of alkaloids, flavonoid, polyphenols, mucilages, anthocyanins, and saponins. The information gathered throughout this study will contribute to the fast identification, quality control, and characterization of A. ferruginea pulps.

Key words: Standardisation, pulps, quality control, Albizia ferruginea.

INTRODUCTION

According to the World Health Organisation (WHO), infectious diseases are causes for more than 17 million

*Corresponding author. E-mail: princessros@hotmail.fr.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
death per year and causes for more than half the dead casualty occurring in Africa (Organisation Mondiale de la Sant’e, 2006). Those infectious diseases are rapidly spraying and causing more skin conditions in the continent.

Due to the low level of income in Cameroon and the high cost of curing skin conditions, it is necessary to investigate new methods, substances, plants at low cost that could be used to efficiently cure certain types of skin conditions. In order to achieve that goal, it is important to do further investigation into the field of medicinal plants (Kouadio et al., 2015). It is reported that up to 80% of African regularly use traditional medicine (Observatoire de la sant’e en Afrique, Médecine traditionnelle, Revue du bureau régional de l’OMS pour l’Afrique, 2003).

Traditional medicine is widely used in Africa, due to the wide availability of plants, and their low cost. Therefore it is estimated that we have a ratio of one traditional healer per 500 patient compare to one medical doctor for 40,000 patients in average (Organisation Mondiale de la Sant’e, 2006, 2014). Stratégie de l’OMS pour la m’edecine traditionnelle pour (2014-2023). Abondo-Ngono et al. (2015) reported in 2012 on a census of traditional healers in the Centre region of Cameroon. Hence they launched the mapping of Cameroonian traditional healers (Abondo-Ngono et al., 2015).

Subsequently, Abondo-Ngono et al. (2015) have chosen a certain traditional recipe that is actively used to cure ringworms. The recipe contains a medicinal plant locally called "Evouvou" in Ewondo language, scientifically known as Albizia ferruginea (Abbiw, 1990) (Figure 1 and 2). This study seek to improve the quality of the recipe commonly used by traditional healers, in order to make these process much valuable and safe for the patients. This work consists of making a data base and specification of medical materials, in order to build a monography data base for the plant and the recipe. Therefore, the standardization reference of the powdered pulps of A. ferruginea was used.

MATERIALS AND METHODS

Vegetal material

The vegetal material consists of A. ferruginea pulps harvested on February 1, 2016, at Eloundem, located at almost 10 km from the Yaounde city center (add the GIS location of the site). Following the harvesting, a systematic identification of the specimens was made at the Cameroonian herbal data center, then a comparison with the 49871/HNC specimen was made for the A. ferruginea.

Preparation of hydro-alcoholic extracts

The pulps were dry for a week in an ambient environment, followed by a grinding to a granular powdered form. A sample of the powder can be used for macroscopic characterization using the conventional method recommended by the World Health Organization (1998). The microscopic characterization allows us to determine the quality of the medicinal plant. Another sample was used for microscopic study following the process described by Blond et al. (2014). A powder mass of 250 g was used for the extract, using a Soxhlet from BEHR LABOR-TECHNIK. Therefore, a mixture of ethanol-water in a volume ratio of 70/30 was used as a solvent. The extract obtained from this extraction was used as phytochemical screening.

RESULTS

Microscopic characterization

Investigation of foreign elements

A powder of mass 400 g was sprayed on a thin film according to the European Pharmacopeia technique (2008). Throughout this characterization, no foreign element was found nor identified.

Powder description

The color was brown with an aromatic odor.

Microscopic analysis

The microscopic analysis showed the crystal of Calcium Oxalate, the fibers in pericyclic forms, the wooden vessel in the spiral forms, the clusters of sclerotic cells, and the suber (Figures 3, 4, 5). The observation was optimal with potash (Mетодes de pharmacognosie,Pharmacopée europ’eenne 6`eme édition, 2008; P’elissier Y. Travaux pratiques de pharmacognosie micrographie, 2012).

Phytochemical analysis

The loss due to the desiccation of the vegetal drugs, as well as their content in ashes, was evaluated using the 6th edition of the European Pharmacopeia (M’ethodes de pharmacognosie,Pharmacopée europa’enne 6’eeme édition, 2008). We obtained 1.16% in content of total ashes, and 7.6% in term of lost due to desiccation.

Inflation indices

This was determined using the Guedouari (2011; 2012) method, and was found to be 4 mL.

Phytochemical screening

Investigation of flavonoids

Using the method developed in Alzoreky and Nakahara (2003), 2 mL of a solution of soda was added to 2 mL of extract led to an intense yellow coloration.

Investigation of alkaloids

Using the method proposed by Bagre et al. (2007), 0.5 g
of extract was mixed with 0.5 mL of aqueous chlorhydric acid in a steaming bath. After an addition of 3 to 5 drops of a solution of picric acid, we obtained turbidity.

Investigation of polyphenols

Using the method of Bagre et al. (2007), a test tube was used to dissolve 0.1 g of vegetal extract in a mixture of ethanol-water. After adding a drop of a 2% of an alcoholic solution of iron chloride, we observed a change of coloration which changes to a greenish yellow.

Investigation of anthocyanins

Using the method described in Alzoreky and Nakahara (2003), a test tube was used to dissolve a 0.1 g extract in 2 mL of distilled water. The addition of 2 mL of sodium hydroxide led to an orange coloration.

Investigation of coumarins

Using the method described in Alzoreky and Nakahara (2003), a test tube was used to dissolve a 0.1 g extract in 2 mL of distilled water. After adding a drop of 2% of an alcoholic solution of iron chloride, we observed a change of coloration which changes to a greenish yellow.

Investigation of saponins

5 mL of distilled water was used to dissolve 5 mg of extract. We observed the apparition of an important foam with a
Figure 3. (A). Micrographs showing the crystal of calcium oxalate. From top to the bottom we have the fibers, the pericyclic fibers and the clustered sclerotic cells) (B). Micrographs showing the pericyclic fibers (top), and the suber (down).

Figure 4. Micrograph showing spiral wood vessels.
thickness greater than a centimeter.

Investigation of terpenes

Pursuing with the protocol of Ayoola et al. (2008), 0.5 g of extract was mixed with 2 mL of chloroform. After adding 3 mL of a solution of sulfuric acid, we observed an apparition of a ring with a brown-red coloration.

Investigation of mucilage

Following the protocol of Abayomi (2010), 2 mL of distilled water was added to 0.5 g of extracts. The addition of few drops of an iron chloride led to a brown coloration.

Investigation of "tannins"

Still using the approach from Ayoola et al. (2008), 10 mL of distilled water was added to 0.5 g of extracts. The addition of few drops of an iron chloride led to a brown coloration.

Investigation of steroids

Following the protocol of Surendra et al. (2013), 2
mL of extract was added to 2 mL of chloroform. By adding 1 mL of acetic anhydride associated with 2 drops of sulfuric acids led to a formation of a ring colored orange.

Interpretation

In reference to the African pharmacopoeia, no foreign element was observed (Tables 1 to 3), hence the good quality of the vegetal drugs used. In the microscopic analysis, the powders of Figures 3, 4 and 5 showed the crystal of calcium oxalate and fibers, the pericytic fibers, the spiral wooden vessels, the clustered sclerotic cells and the suber. Using anoptical microscope, we further confirm the presence of a fibrous structure, previously seen with the naked eyes. It became optimal when it is done using potash as shown by Kaur et al. (2015), who observed sclerotic cells, prisms, the calcium oxalates, oily globules, and fibers.

Those are similar to the work presented by Argarwala et al. (2015) on the powdered pulps which justified the presence of vessels, fibers, grains of starch, xylem and oily globules. The difference observed in the structures could be due to the species.

+ Weakly positive reaction
++ Averagely positive reaction
+++ Highly positive reaction
-Negative reaction

The absence of saponins in the various hydro-alcoholic extracts of pulps can be justified with the type of solvent used. According to Drut-Grevoz (Dru-Grevoz and Laubriet, 2007), using a mixture of ethanol/water (70/30) v/v as a solvent during the extraction lead to a reduction of the polarity of the oxygen by an induction effect. This, therefore, affects the solubility of saponins with the hydro-alcoholic mixture, hence the absence of saponins in the hydro-alcoholic extracts. The loss due to desiccation as defined by World Health Organization (1998), was obtained to be 7.6% for the A. ferruginea, this explains the proper conservation of the vegetal drugs. This is in agreement with the results published by Kaur et al. (2015) showed that the loss due to the desiccation of A. ferruginea could be estimated to be 7.05%. We obtained a total percentage of ashes of 1.16% for the powder of A. ferruginea pulps, which is very different to the 7.59% obtained by Kaur et al. (2015) in the pulps of Albizia lebbeck. This show very small quantity of inorganic materials, which could be linked to the species used. From the elements identified in this work, we draw a monograph of the A. ferruginea pulps as shown in Figures 4 and 5.

Conclusion

The standardization is an important step when it comes to the evaluation and purity of a given sample. The
macroscopic and microscopic characterization is amongst the most efficient used to established and identified vegetal drugs. Whereas, the phytochemical analysis help to confirm those finding. The information and data recorded throughout this study will be of capital importance during the establishment of our national pharmacopeia.

CONFICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Méthodes de pharmacognosie. Pharmacopée européenne 6ème édition (2008), Pharmacopée européenne 6ème édition.

Full Length Research Paper

Diterpenes of the pimarane type isolated from *Viguiera arenaria*: Promising in vitro biological potential as therapeutic agents for endodontics

Soraia Marangoni¹, Thais da S. Moraes¹, Susane H. Utrera¹, Luciana A. Casemiro¹, Maria G. M. de Souza¹, Pollyanna F. de Oliveira¹, Rodrigo C. S. Veneziani¹, Sérgio R. Ambrósio¹, Denise C. Tavares¹ and Carlos H. G. Martins²

¹Nucleus of Research in Sciences and Technology, University of Franca, Avenida Armando Salles de Oliveira, 201, Franca 1404-600, Brazil.
²Laboratório de Pesquisa em Microbiologia Aplicada, Universidade de Franca, 14404-600 Franca, São Paulo, Brazil.

Received 21 September, 2017: Accepted 6 December, 2017

Viguiera arenaria, family Asteraceae, is a plant that contains diterpenoids, which make this species potentially applicable in endodontics. More specifically, *V. arenaria* contains diterpenes of the pimarane type, which display various classic biological activities. This study evaluates the antibiofilm activity, the time-kill curve, and the inhibitory concentration index of diterpenes of the pimarane type (*ent*-pimara-8(14),15-dien-19-oic acid, *ent*-8(14),15-pimaradien-3β-ol, and *ent*-8(14),15-pimaradien-3β-19-oic acid sodium salt, designated diterpenes I, II, and III, respectively) toward nine anaerobic bacteria commonly found in endodontic infections; this study also assesses the cytotoxic activity of these diterpenes against human fibroblasts. According to the antibiofilm assay, diterpenes I, II, and III inhibit at least 50% of all the bacteria. On the basis of the time-kill curve experiments, the behavior of these diterpenes depends on the tested bacteria, diterpene concentration, and microorganism sensitivity. Synergism of diterpenes I and II with chlorhexidine (CDH) was higher against *P. gingivalis* (clinical isolate) and Aggregatibacter actinomycetemcomitans (ATCC). As for diterpene III, synergism with CDH is higher against *P. micros*. As revealed by the XTT assay, none of the diterpenes of the pimarane type tested here are cytotoxic. Hence, diterpenes I, II, and III are promising biomolecules and may provide therapeutic solutions in the field of endodontics.

Key words: Antibacterial activity, Asteraceae, cytotoxicity, diterpenes, endodontic infection.

INTRODUCTION

For thousands of years, medicinal plants have been used to treat numerous human diseases worldwide. In rural areas, these plants still constitute the primary source of medicine (Chitme et al., 2004; Palombo, 2011). Natural products derived from medicinal plants have been proven as abundant source of active compounds and have been...
the basis for the development of new chemicals for pharmaceutical products (Palombo, 2011). In this scenario, professionals in the area of dentistry cannot overlook the current perspective of treatment based on compounds originating from novel plant-derived bioactive molecules (Palombo, 2011).

Viguiera arenaria, a herbaceous plant belonging to the family Asteraceae, is native to the Brazilian savannah (Schilling et al., 2000; Ambrosio et al., 2004; Tirapelli et al., 2005; Mizokami et al., 2016). The taxonomic, chemical, and biological features of this plant have been little studied in Brazil. Diterpenes, which are an important class of plant-derived natural products with a wide range of relevant biological activities (Ambrosio et al., 2006; Tirapelli et al., 2008; Veneziani et al., 2017), have been isolated from the V. arenaria root extract (Bohlmann et al., 1981; Meragelman et al., 1996; Da Costa et al., 1996; Vaccarini et al., 1999).

Many reports have shown that this class of secondary metabolites exhibits an array of biological actions such as antiparasite effects (Ambrosio et al., 2008; Batista et al., 2007; Da Costa et al., 1996), vascular smooth muscle contraction inhibition (Ambrosio et al., 2006; Ambrosio et al., 2002; Tirapelli et al., 2008), analgesic and anti-inflammatory activities (Okuyama et al., 1991; Paiva et al., 2002; Suh et al., 2004), and relatively selective cytotoxicity toward cancer cells (Ghisalberti, 1997), among other actions. Diterpenes also display significant antimicrobial activity (Tatsimo et al., 2005; Kuzma et al., 2007; Ndi et al., 2007; Fukumoto et al., 2008; Porto et al., 2009a; Porto et al., 2009b; Carvalho et al., 2011; Andrade et al., 2011; Moreira et al., 2016; Moreti et al., 2017; Veneziani et al., 2017).

Ambrosio et al. (2004) isolated and identified diterpenes of the pimaran type from V. arenaria baker root extracts. These molecules have potential application in dentistry. According to Carvalho et al. (2011), the antimicrobial properties of these compounds could encourage the development of dental materials for use in endodontics, especially in cases that chronic periapical infections treatment is unsuccessful.

Primary endodontic infection is the infection of the necrotic root canal and is the prime cause of apical periodontitis (Siqueira et al., 2002; Roças et al., 2011). This infection is characterized by anaerobic bacteria that constitute a readily mixed biofilm (Roças et al., 2011; Ricucci and Siqueira, 2010) of polymicrobial origin. Gram-negative bacteria are the main bacteria causing this infection (Fabricius et al., 1982; Caetano da Silva et al., 2014).

Despite the promising results regarding the action of diterpenes of the pimarane type against some potentially pathogenic bacteria in the oral cavity, their antimicrobial effects on bacteria that cause endodontic infections are little known. Biological assays on diterpenes of the pimarane type could provide useful information for the development of new biocompatible materials that can inhibit the growth of bacterial biofilms responsible for endodontic infections.

Notwithstanding the extensive literature on diterpenes, there are not many studies on the activity of these compounds. Therefore, the present study aimed to investigate the antibacterial and antibiofilm activity of diterpenes of the pimarane type against bacterial strains that cause endodontic infections. This study also evaluates diterpene cytotoxicity to ensure that these compounds are safe for subsequent application.

MATERIALS AND METHODS

Obtaining ent-pimarane diterpenes from Viguiera arenaria

Ent-pimara-8(14),15-dien-19-oic acid (I) and ent-8(14),15-pimaradien-3β-ol (II) were isolated from V. arenaria. Ent-pimara-8(14),15-dien-19-oic acid sodium salt (III) was obtained by semi synthesis from I. All the isolation, identification, and semi synthetic procedures are detailed in Carvalho et al. (2011). Figure 1 shows the chemical structures of compounds I-III. Carvalho et al. (2011) reported the in vitro antibacterial activity of diterpenes obtained from V. arenaria. Here, we decided to expand the in vitro assays to confirm the potential action of said diterpenes.

Assayed bacteria

The bacteria were obtained from the American Type Culture
Experiments were conducted in triplicate. The procedures described by Sarker et al. (2016) were followed. The blue and red colors represent...respectively. After the incubation time, the viable colonies were counted, and time kill curves were constructed by graphical representation of Log10 CFU/mL as a function of time, with the aid of the software Prism (versão 5.0; GraphPadV). CDH at concentrations ranging from 0.922 to 7.38 µg/mL was added as the positive control. An inoculum was included...as the minimum antibacterial agent concentration that is able to inhibit 50% or more of biofilm formation (Wei et al., 2006). MICB50 was determined as described in international guidelines (CLSI, 2007) with some modifications. To determine MICB50 of the three diterpenes, serial dilutions were accomplished in a polystyrene tissue 96-well plate (TPP, Trasadingen, Switzerland) containing Brucella (Difco) broth supplemented with hemin (5 mg/mL, Sigma, St. Louis, MO, USA) and menadione (1 mg/mL, Sigma) for the anaerobic bacteria (medium 1), and Brain Heart Infusion (BHI, medium 2) broth for A. actinomycetemcomitans. The final diterpene concentrations varied from 0.195 to 400 µg/mL. Chlorhexidine dichlorohydrate (CDH, Sigma) was used as positive control, at concentrations ranging from 0.115 to 59 µg/mL. Bacterial strains in the absence of antimicrobials were used as negative controls. After incubation at 36°C for 72 h in anaerobic chamber containing 5-10% H2, 10% CO2, and 80-85% N2 (atmosphere 1) for the anaerobic bacteria, and at 37°C for 24 h for A. actinomycetemcomitans in microaerophilia (atmosphere 2), the well contents were removed. Then, each well was washed three times with 200 µL of sterile Milli Q water and fixed with 200 µL of methanol for 15 min. MICB50 was determined in triplicate.

Following the procedures described by Sandberg et al. (2008), optical density (OD) quantification in the biofilm was conducted by adding 200 µL of crystal violet (0.1%) to the microplate wells. After 10 min at room temperature, excess dye was removed with tap water and dried in air at room temperature. Next, 200 µL of ethanol 95% was slowly added to each well, to re-solubilize the dye bound to the cells. The microtitration plate was covered with a lid and kept at room temperature for at least 30 min, to minimize evaporation. The OD of each well was measured at 595 nm with a microtitration plate reader, and the inhibition percentage was calculated by using the equation (Wei et al., 2006):

\[(1 - \frac{A_{595}}{A_{595}^{0}}) \times 100 \]

Where, A595 nm and A5950 nm are the absorbances of the well treated with a diterpene and the control, respectively.

The best incubation time and inoculum concentration for the antibiofilm activity assay were selected by standardizing biofilm formation (data not presented).

Diterpenes of the pimarane type bactericidal kinetics (“time-kill curve”) The time-kill curves were constructed, in triplicate, to determine the time that was necessary for the diterpenes and CDH to inhibit bacterial growth completely (D’Arrigo et al., 2010), as previously described by Moraes et al. (2016). The tubes containing 1 mL of medium 1 for the anaerobic bacteria or 1 mL of medium 2 for the microaerophilic bacterium and one of the diterpenes at their minimum bactericidal concentration (MBC, from 1.0 to 60.0 µg/mL) were inoculated with the assayed microorganisms and incubated in atmosphere 1 or 2 for 72 or 24 h in the case of anaerobic and microaerophilic bacteria, respectively. After incubation, 100-µL aliquots were removed from the tubes at zero, 6, 24, 48, and 72 h for the anaerobic bacteria and at zero, 30 min, and 6, 12, and 24 h for A. actinomycetemcomitans.

Seven decimal serial dilutions were then prepared, and 50 µL of each concentration was spread on supplemented Schaedler agar and blood agar for the anaerobic and microaerophilic bacteria, respectively. After the incubation time, the viable colonies were counted, and time-kill curves were constructed by graphical representation of Log10 CFU/mL as a function of time, with the aid of the software Prism (versão 5.0; GraphPadV). CDH at concentrations ranging from 0.922 to 7.38 µg/mL was added as positive control.

Biofilm formation inhibition as assessed by minimum inhibitory concentration of biofilm (MICB50) The minimum inhibitory concentration of biofilm (MICB50) is defined as the minimum antibacterial agent concentration that is able to inhibit 50% or more of biofilm formation (Wei et al., 2006). MICB50 was determined as described in international guidelines (CLSI, 2007) with some modifications. To determine MICB50 of the three diterpenes, serial dilutions were accomplished in a polystyrene tissue 96-well plate (TPP, Trasadingen, Switzerland) containing Brucella (Difco) broth supplemented with hemin (5 mg/mL, Sigma, St. Louis, MO, USA) and menadione (1 mg/mL, Sigma) for the anaerobic bacteria (medium 1), and Brain Heart Infusion (BHI, medium 2) broth for A. actinomycetemcomitans. The final diterpene concentrations varied from 0.195 to 400 µg/mL. Chlorhexidine dichlorohydrate (CDH, Sigma) was used as positive control, at concentrations ranging from 0.115 to 59 µg/mL. Bacterial strains in the absence of antimicrobials were used as negative controls. After incubation at 36°C for 72 h in anaerobic chamber containing 5-10% H2, 10% CO2, and 80-85% N2 (atmosphere 1) for the anaerobic bacteria, and at 37°C for 24 h for A. actinomycetemcomitans in microaerophilia (atmosphere 2), the well contents were removed. Then, each well was washed three times with 200 µL of sterile Milli Q water and fixed with 200 µL of methanol for 15 min. MICB50 was determined in triplicate.

Following the procedures described by Sandberg et al. (2008), optical density (OD) quantification in the biofilm was conducted by adding 200 µL of crystal violet (0.1%) to the microplate wells. After 10 min at room temperature, excess dye was removed with tap water and dried in air at room temperature. Next, 200 µL of ethanol 95% was slowly added to each well, to re-solubilize the dye bound to the cells. The microtitration plate was covered with a lid and kept at room temperature for at least 30 min, to minimize evaporation. The OD of each well was measured at 595 nm with a microtitration plate reader, and the inhibition percentage was calculated by using the equation (Wei et al., 2006):

\[(1 - \frac{A_{595}}{A_{595}^{0}}) \times 100 \]

Where, A595 nm and A5950 nm are the absorbances of the well treated with a diterpene and the control, respectively.

The best incubation time and inoculum concentration for the antibiofilm activity assay were selected by standardizing biofilm formation (data not presented).

Diterpenes of the pimarane type bactericidal kinetics (“time-kill curve”) The time-kill curves were constructed, in triplicate, to determine the time that was necessary for the diterpenes and CDH to inhibit bacterial growth completely (D’Arrigo et al., 2010), as previously described by Moraes et al. (2016). The tubes containing 1 mL of medium 1 for the anaerobic bacteria or 1 mL of medium 2 for the microaerophilic bacterium and one of the diterpenes at their minimum bactericidal concentration (MBC, from 1.0 to 60.0 µg/mL) were inoculated with the assayed microorganisms and incubated in atmosphere 1 or 2 for 72 or 24 h in the case of anaerobic and microaerophilic bacteria, respectively. After incubation, 100-µL aliquots were removed from the tubes at zero, 6, 24, 48, and 72 h for the anaerobic bacteria and at zero, 30 min, and 6, 12, and 24 h for A. actinomycetemcomitans.

Seven decimal serial dilutions were then prepared, and 50 µL of each concentration was spread on supplemented Schaedler agar and blood agar for the anaerobic and microaerophilic bacteria, respectively. After the incubation time, the viable colonies were counted, and time-kill curves were constructed by graphical representation of Log10 CFU/mL as a function of time, with the aid of the software Prism (versão 5.0; GraphPadV). CDH at concentrations ranging from 0.922 to 7.38 µg/mL was added as positive control.
Fraction inhibitory concentration index (FICI) determination for CDH and diterpenes of the pimarane type

The checkerboard assay was derived from the standard procedure established by the CLSI (2007) to investigate the antimicrobial efficacy of the in vitro association of the diterpenes with CDH that provided the most satisfactory results. The assays were performed according to the protocol previously described by Chaturvedi et al. (2008). The synergy tests were evaluated in triplicate, and the concentrations of diterpenes I, II, and III and CDH were combined in the MIC standard format. To evaluate the synergism effect (FIC), index values were calculated as previously published in the literature, according to Chaturvedi et al. (2008). The combination was algebraically calculated to determine the fractional inhibitory concentration (FIC) index. FIC\(_A\) was calculated as the MIC of drug A in the combination/MIC of drug A alone; FIC\(_B\) was determined as the MIC of drug B in the combination/MIC of drug B alone. The FIC summation (ΣFIC) was calculated as ΣFIC index= FIC\(_A\) + FIC\(_B\) (Chaturvedi et al., 2008).

The FICI values were analyzed as follows: FICI ≤ 0.5, synergism; FICI > 0.5 and < 1.0, additive; FICI ≥ 1.0 and < 4.0, indifferent; and FICI ≥ 4, antagonism (Lewis et al., 2002).

Cytoxic activity of diterpenes of the pimarane type to human fibroblasts as assessed by the XTT assay

The cell line GM0749-A, corresponding to normal human lung fibroblasts, was employed in this assay. The GM0749-A cells were stored in liquid nitrogen at -195°C. The aliquots contained 1 x 10^6 cells/mL of a freezing solution consisting of 50% culture medium (HAM F10 + DMEM at 1:1 ratio, Sigma), 40% fetal bovine serum (Nutricell), and 10% DMSO.

For the experiments, the cells were thawed and placed in culture medium (HAM F10 + DMEM at 1:1 ratio) supplemented with 10% fetal bovine serum (Nutricell), 1.2 g/mL sodium bicarbonate, 0.1 g/mL streptomycin (Sigma), and 0.06 g/mL penicillin (Sigma).

Cell monolayers were cultured in 10 mL of culture medium by using disposable flasks with 25-cm² area (Corning) at 37°C in a BOD incubator. Every 2-3 days, the cells were sub-cultured by using PBS (for washing) and ATV (Instituto Adolfo Lutz, at ATV/PBS 1:1 ratio) to release the cells adhered to the culture flask internal surface. After the cells were released, about 1.5 mL of complete culture medium was added to the flask to inactivate ATV, which was followed by homogenization. A small amount of the cells was then placed in culture flasks containing 5 mL of culture medium and incubated at 37°C.

Table 1. In vitro antibacterial activity (MIC and MBC - μg/mL) of diterpenes from Viguiera arenaria against endodontic anaerobic bacteria.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Diterpene I</th>
<th>Diterpene II</th>
<th>Diterpene III</th>
<th>CDH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC</td>
<td>MBC</td>
<td>MIC</td>
<td>MBC</td>
</tr>
<tr>
<td>P. gingivalis (ATCC 33277)</td>
<td>1.25</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>P. gingivalis (clinical isolate)</td>
<td>2.0</td>
<td>10.0</td>
<td>10.0</td>
<td>40.0</td>
</tr>
<tr>
<td>P. nigrescens (ATCC 33563)</td>
<td>2.0</td>
<td>2.0</td>
<td>10.0</td>
<td>40.0</td>
</tr>
<tr>
<td>P. intermedia (clinical isolate)</td>
<td>1.0</td>
<td>1.0</td>
<td>7.5</td>
<td>40.0</td>
</tr>
<tr>
<td>P. buccae (clinical isolate)</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>14.0</td>
</tr>
<tr>
<td>B. fragilis (ATCC 25285)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>A. naeslundii (ATCC 19039)</td>
<td>1.25</td>
<td>10.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>P. micros (clinical isolate)</td>
<td>0.5</td>
<td>1.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>A. actinomycetemcomitans (ATCC 43717)</td>
<td>4.0</td>
<td>4.0</td>
<td>10.0</td>
<td>60.0</td>
</tr>
</tbody>
</table>

The cells were sub-cultivated, and approximately 10^4 cells were seeded in microplates containing 100 μL of culture medium (HAM F10 + DMEM at 1:1 ratio). The cells were treated with diterpene I or II at concentrations varying from 0.3125 to 640 μg/mL, or with diterpene III at concentrations ranging from 0.218 to 448 μg/mL. They were then dissolved in DMSO (0.25%) and incubated at 37°C for 24 h. The negative control (culture medium only), solvent control (DMSO 0.25%), and positive control (DMSO 25%) were included. After treatment, the cells were washed with PBS, which was followed by addition of 100 μL of medium culture HAM F10 without phenol red and 25 μL of XTT (sodium 3-[1-(phenylamino)-carbonyl]-3,4-tetrazolium)-bis(4-methoxy-6-nitro) benzene-sulfonic acid hydrate). After incubation at 37°C for 17 h, the absorbances were read at 450 and 620 nm on a microplate reader. The cytotoxic activity was evaluated by using the inhibition parameter of 50% cell line growth (IC\(_{50}\)). To compare the different treatments, statistical analyses of the results were accomplished by analysis of variance (ANOVA) followed by the Tukey test.

RESULTS

Minimum Inhibitory Concentration (MIC) and minimum bactericidal concentration (MBC) determination

The MIC and MBC values obtained for diterpenes I, II, and III against the tested bacteria varied from 0.5 to 10, 2.5 to 60, and 1.0 to 14 μg/mL, respectively (Table 1).

Diterpene I exhibited MIC and MBC values of 1.0 μg/ mL against *P. intermedia*, 2.0 μg/ mL against *P. nigrescens* and *B. fragilis*, and 4.0 μg/ mL against *P. buccae* and *A. actinomycetemcomitans*, which represented a bactericidal effect. Diterpene II demonstrated a bactericidal effect against *P. gingivalis* (ATCC), *B. fragilis*, *A. naeslundii*, and *P. micros* with MIC/MBC values of 10.0, 2.5, 5.0, and 6.0 μg/mL, respectively. Diterpene III only exerted a bactericidal effect against *A. naeslundii*, with MIC/MBC values of 5.0 μg/mL (Table 1).

Diterpene I, II, and III exerted a bacteriostatic effect against the other bacteria. The control drug chlorhexidine afforded MIC values ranging from 0.92 to 7.38 μg/mL (Table 1).
Biofilm formation inhibition as assessed by minimum inhibitory concentration of biofilm (MIC₅₀)

Table 2 lists the results obtained during the antibiofilm assays. The minimum inhibitory concentration of biofilm (MIC₅₀) varied from 6.25 to 25 µg/mL for diterpenes I, II, and III and from 1.844 to 14.75 µg/mL for CDH. All the evaluated diterpenes inhibited biofilm formation by 50% or more.

As for the antibiofilm activity of diterpene I, MIC₅₀ was 6.25 µg/mL against P. nigrescens, P. intermedia, P. micros, and A. actinomycetemcomitans; 12.5 µg/mL against P. gingivalis (clinical isolate), P. buccae (clinical isolate), B. fragilis (ATCC) and A. naeslundii (ATCC); and 25 µg/mL against P. gingivalis (ATCC) (Table 2).

Diterpene II afforded MIC₅₀ of 6.25 µg/mL against P. gingivalis (ATCC), P. nigrescens, P. buccae, A. naeslundii, and A. actinomycetemcomitans; 12.5 µg/mL against P. gingivalis (clinical isolate), B. fragilis, and P. micros; and 25 µg/mL against P. intermedia (Table 2). Diterpene III provided CIMB₅₀ of 6.25 µg/mL against B. fragilis, A. naeslundii, and P. micros; 12.5 µg/mL against P. gingivalis (ATCC and clinical isolate), P. nigrescens, P. intermedia, and A. actinomycetemcomitans; and 25 µg/mL against P. buccae (Table 2).

Diterpenes of the pimarane type bactericidal kinetics (“time-kill curve”)

Figure 2A to I illustrates the bactericidal kinetics for the evaluated bacteria considering colony forming units (CFU/mL) as a function of time.

We considered that the antibacterial action corresponded to a decrease of over 3 Log₁₀ in the number of microorganisms. Diterpenes III, III, and I provided a decrease of over 3 Log₁₀ in the case of P. gingivalis (clinical isolate; Figure 2B), P. nigrescens (Figure 2C), and A. naeslundii (Figure 2G), respectively, after 6 h of incubation. Diterpene II led to a decrease of over 3 Log₁₀ for A. naeslundii (Figure 2G) and P. micros (Figure 2H) after 24 and 48 h of incubation, respectively.

Diterpenes I and III gave a decrease of over 3 Log₁₀ in the case of P. nigrescens (Figure 2C) and P. micros (Figure 2H) after 24 and 48 h of incubation, respectively.

Fraction inhibitory concentration index (FICI) determination for CDH and diterpenes of the pimarane type

Regarding the combination of CDH with diterpenes I, II, or III against P. gingivalis (clinical isolate), the effects were synergic, synergic, and additive, respectively (Figure 3B).

As for the combination of CDH with diterpenes II and III against A. naeslundii (Figure 3G), the effects were additive in both cases. CDH combined with diterpene II or III against P. micros (Figure 3H) elicited additive and synergic effects, respectively.

Finally, the effect synergic was obtained for A. actinomycetemcomitans (Figure 3I). For the other bacteria, combination of CDH with diterpenes I, II or III promoted indifferent or antagonistic actions.

Cytotoxic activity of diterpenes of the pimarane type to human fibroblasts as assessed by the XTT assay

We evaluated the antiproliferative effects of diterpenes I, II, and III, at different concentrations, by using the GM0749-A cell line and the XTT assay. None of the diterpenes were cytotoxic at the assayed concentrations (Figure 3A to I).

Only at higher concentrations (Table 3, IC₅₀ values of 321.60, 202.30, and 61.26 µg/mL for diterpenes I, II, and III, respectively) were the diterpenes cytotoxic, especially diterpene III, which reduced GM0749-A cell growth during the XTT assay.

DISCUSSION

The results reported by Carvalho et al. (2011) motivated our investigation into diterpenes of the pimarane type:
Figure 2. Time kill curves against diterpenes I, II and III. Positive control: Chlorhexidine (CDH).
Figure 3. Results for the combination of diterpenes I, II, or III with CDH by the fraction inhibitory concentration index (FICI) method.
these authors found that eight diterpenes had minimum inhibitory concentration (MIC) lower than 10 μg/mL against bacteria that cause endodontic infections. According to the criteria of Rios and Recio (2005), compounds with such MIC values should be promising antibacterials. The plant kingdom is an important source of new and effective antimicrobial agents because plants have the ability to produce natural products for chemical defense against microorganisms present in their own environment (Gibbons, 2004; Hemaíswarya et al., 2008; Gibbons, 2008).

Ambrosio et al. (2006) stated that medicinal plant derivatives like diterpenes of the pimarane type could serve as lead compounds, drugs, or linking structures during the development of synthetic molecules. Furthermore, according to Bakri and Douglas (2005), a new drug can only be considered a therapeutic agent for oral infections if it is active against biofilms. As part of this scenario, the present paper points out the significant antimicrobial activity displayed by diterpenes isolated from *V. arenaria* against bacteria that cause endodontic infection.

Moreti et al. (2017) evaluated ent-kaurenoic acid against endodontic pathogens, to find MIC and MBC values ranging from 3.12 to 400 μg/mL. Souza et al. (2011) investigated copal acid, a labdane-type diterpene isolated from the *Copaifera langsdorffii* oleoresin, against anaerobic bacteria, to obtain MIC values spanning from 3.1 to 200 μg/mL. In our study, diterpenes I, II, and III afforded MIC values between 0.5 and 10 μg/mL, which agreed with the claim by Rios and Recio (2005) that compounds that can inhibit microorganisms at concentrations close to 10 μg/mL are promising antimicrobials.

Table 3. IC50 values obtained for the GM0749-A cell line after 24 h of incubation with different concentrations of diterpenes I, II, and III.

<table>
<thead>
<tr>
<th>Diterpene</th>
<th>IC50 (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>321.60</td>
</tr>
<tr>
<td>II</td>
<td>202.30</td>
</tr>
<tr>
<td>III</td>
<td>61.26</td>
</tr>
</tbody>
</table>

The larger bacterial resistance to the diterpenes evaluated herein (MICB50 values were higher than MIC values) may have been due to the presence of the extracellular polysaccharide (EPS) matrix, which serves as a barrier to drug penetration (MOLVEN ET AL., 1991; LOMÇALI ET AL., 1996; STEWART AND COSTERTON, 2001; RICUCCI AND SIQUEIRA, 2010). Another factor is that biofilm formation inhibition may also inhibit bacterial growth when biofilm formation and bacterial growth are evaluated simultaneously (WEI ET AL., 2006), as in the case of this work. According to KHEMLEELAKUL ET AL. (2006), microorganisms residing in biofilms are protected against the toxic effect of antimicrobials via inactivation by enzymes and other metabolites that degrade or neutralize the antimicrobial agent. Here, diterpenes I, II, and III inhibited biofilm formation by the studied endodontic bacteria in vitro. Therefore, Wei et al. (2006) believe that avoiding biofilm formation might be more important than destroying the biofilm because the former action should prevent biofilm maturation.

Moreti et al. (2017) evaluated the biofilm activity of the major compound ent-kaurenoic acid, a diterpene isolated from *Mikania glomerata* extract, against *A. actinomyctelemcomitans* (ATCC 43717), *P. nigrescens* (ATCC 33563), and *P. gingivalis* (clinical isolate), to obtain 3.12, 6.25, and 200 μg/mL, respectively.

In the present study, the sodium salt of pimaradienoic acid (diterpene III) displayed antibiofilm activity against all the tested microorganisms: MICB50 was 12.5 μg/mL against most of the assayed anaerobic species. This bacterial sensitivity to diterpene III is relevant because microbial arrangement in the biofilm mode provides higher bacterial resistance to the root canal chemical-mechanical preparation, especially because the biofilm is located in inaccessible areas of the necrotic pulp in root surfaces and cement gaps (LOMÇALI ET AL., 1996; STEWART AND COSTERTON, 2001; SIQUEIRA JR ET AL., 2010).

Souza et al. (2011) examined the bactericidal kinetics of copal acid, a diterpene of the labdane type isolated from the oleoresin of *Copaifera langsdorffii*, against *P. gingivalis* (ATCC 33277). Copal acid at 3.1 μg/mL presented bactericidal action within 24 h of incubation.

Moreti et al. (2017) also evaluated the time kill curve assay, to detect a bactericidal bactericidal action within 24 h of incubation for *A. actinomyctelemcomitans*, 6 h of incubation for *P. nigrescens* and 72 h of incubation for *P. gingivalis* (clinical isolate). Bactericidal effect is evident when the number of microorganisms decreases by 3 Log10 CFU/mL or 99% cell death relative to the initial inoculum occurs within a certain period (MAY ET AL., 2000; SHELBRUNE ET AL., 2004). In the present study, the number of microorganisms diminished by 2 to 3 Log10 for some of the assessed bacteria, attesting to the bactericidal effect of the tested diterpenes at the assayed concentrations and time.

Based on the criteria of LEWIS ET AL. (2002), here, the combination of a diterpene with CDH revealed distinct results regarding the interaction between CDH and the tested diterpenes against each of the bacteria. Investigation into standard strains and clinical isolates of the same bacterial species was valid because the biological assays evidenced different behavior between
the strains, as in the case of \textit{P. gingivalis} (ATCC 33277 and clinical isolate). Indeed, combination of CDH with one of the diterpenes was indifferent against the \textit{P. gingivalis} standard strain (ATCC 33277) but synergistic (diterpenes I or III) or additive (diterpene II) against the clinical isolate. Irrespective of the associations tested herein, antagonism was more frequent than synergism for all the diterpenes, indicating that their combination with CDH could in fact limit their action and culminate in undesirable effects.

The results provided by the cytotoxic activity investigation might be as clinically relevant as previous findings for other dose- and time-dependent compounds like CDH (Lessa et al., 2010) and sodium hypochlorite (Pashely et al., 1985; Sabala and Powell, 1989). The \textit{in vitro} cytotoxicity of diterpenes I, II, and III against human fibroblasts might not be the same as the cytotoxicity of these compounds in dental materials or in other experimental conditions, which would require additional \textit{in vitro} and \textit{in vivo} assays. The cytotoxicity of plants, extracts, fractions, and isolated compounds has often been reported to depend on concentration and contact time (Gursoy et al., 2009; Vargas et al., 2010). This toxicity is many times moderate (More et al., 2008; Signoretto et al., 2011) or even uncapable of causing deleterious effects (Seneviratne et al., 2011), but further drug safety assessment is essential before diterpenes of the pimarane type are introduced into the market for use in humans.

Conclusion

Our MIC and MBC results confirmed the data reported by Carvalho et al. (2011). On the basis of the antibiofilm action of diterpenes I, II, and III, these compounds can inhibit at least 50% of the tested bacteria. The bactericidal kinetic assay evidenced that the behavior of diterpenes I, II, and III against the assayed bacteria varied as a function of diterpene concentration and microorganism sensitivity. Antagonism was the most frequent interaction between CDH and diterpenes of the pimarane type, followed by indifferent, synergistic, and additive interactions.

The cytotoxicity assays demonstrated that diterpenes I, II, and III at different concentrations were not cytotoxic. Diterpene III displayed the most pronounced antiproliferative effect, but this effect emerged at higher concentrations than the ones used during evaluation of the antimicrobial activity of this same diterpene. In conclusion, diterpenes of the pimarane type isolated from plants native to the Brazilian savannah are promising biomolecules and may provide innovative therapeutic solutions in the field of endodontics.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

Marangoni thanks the University of Franca and for a PhD scholarship. The authors are grateful to the National Council for Scientific and Technological Development (CNPq) for the granted fellowships. This work was supported by São Paulo Research Foundation (FAPESP) [grant numbers 2009/18278-0].

REFERENCES

resistant *Staphylococcus aureus*, produced by *Streptomyces* sp. K04-0144. II. Biological activities. J. Antibiot. 61:7-10.

