ABOUT AJB

The African Journal of Biotechnology (AJB) (ISSN 1684-5315) is published weekly (one volume per year) by Academic Journals.

African Journal of Biotechnology (AJB), a new broad-based journal, is an open access journal that was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly, to provide the most rapid turn-around time possible for reviewing and publishing, and to disseminate the articles freely for teaching and reference purposes. All articles published in AJB are peer-reviewed.

Contact Us

Editorial Office: ajb@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/AJB
Submit manuscript online http://ms.academicjournals.me/
Editor-in-Chief

George Nkem Ude, Ph.D
Plant Breeder & Molecular Biologist
Department of Natural Sciences
Crawford Building, Rm 003A
Bowie State University
14000 Jericho Park Road
Bowie, MD 20715, USA

Editor

N. John Tonukari, Ph.D
Department of Biochemistry
Delta State University
PMB 1
Abraka, Nigeria

Associate Editors

Prof. Dr. AE Aboulata
Plant Path. Res. Inst., ARC, PO Box 12619, Giza, Egypt
30 D, El-Karama St., Alf Maskan, P.O. Box 1567,
Ain Shams, Cairo,
Egypt

Dr. S.K Das
Department of Applied Chemistry and Biotechnology, University of Fukui,
Japan

Prof. Okoh, A. I.
Applied and Environmental Microbiology Research Group (AEMREG),
Department of Biochemistry and Microbiology,
University of Fort Hare.
P/Bag X1314 Alice 5700,
South Africa

Dr. Ismail TURKOGLU
Department of Biology Education, Education Faculty, Fırat University,
Elazığ, Turkey

Prof. T.K.Raja, PhD FRSC (UK)
Department of Biotechnology
PSG COLLEGE OF TECHNOLOGY (Autonomous)
(Affiliated to Anna University)
Coimbatore-641004, Tamilnadu, INDIA.

Dr. George Edward Mamati
Horticulture Department,
Jomo Kenyatta University of Agriculture and Technology,
P. O. Box 62000-00200,
Nairobi, Kenya.

Dr. Gitonga
Kenya Agricultural Research Institute,
National Horticultural Research Center,
P.O Box 220,
Editorial Board

Prof. Sagadevan G. Mundree
Department of Molecular and Cell Biology
University of Cape Town
Private Bag Rondebosch 7701
South Africa

Dr. Martin Fregene
Centro Internacional de Agricultura Tropical (CIAT)
Km 17 Cali-Palmira Recta
AA6713, Cali, Colombia

Prof. O. A. Ogunseitan
Laboratory for Molecular Ecology
Department of Environmental Analysis and Design
University of California, Irvine, CA 92697-7070. USA

Dr. Ibrahima Ndoye
UCAD, Faculte des Sciences et Techniques
Departement de Biologie Vegetale
BP 5005, Dakar, Senegal.
Laboratoire Commun de Microbiologie
IRD/ISRA/UCAD
BP 1386, Dakar

Dr. Bamidele A. Iwalokun
Biochemistry Department
Lagos State University
P.M.B. 1087. Apapa – Lagos, Nigeria

Dr. Jacob Hodeba Mignouna
Associate Professor, Biotechnology
Virginia State University
Agricultural Research Station Box 9061
Petersburg, VA 23806, USA

Dr. Bright Ogheneovo Agindotan
Plant, Soil and Entomological Sciences Dept
University of Idaho, Moscow
ID 83843, USA

Dr. A.P. Njukeng
Département de Biologie Végétale
Faculté des Sciences
B.P. 67 Dschang
Université de Dschang
Rep. du CAMEROUN

Dr. E. Olatunde Farombi
Drug Metabolism and Toxicology Unit
Department of Biochemistry
University of Ibadan, Ibadan, Nigeria

Dr. Stephen Bakiamoh
Michigan Biotechnology Institute International
3900 Collins Road
Lansing, MI 48909, USA

Dr. N. A. Amusa
Institute of Agricultural Research and Training
Obafemi Awolowo University
Moor Plantation, P.M.B 5029, Ibadan, Nigeria

Dr. Desouky Abd-El-Haleem
Environmental Biotechnology Department & Bioprocess Development Department,
Genetic Engineering and Biotechnology Research Institute (GEBRI),
Mubarak City for Scientific Research and Technology Applications,
New Burg-Elarab City, Alexandria, Egypt.

Dr. Simeon Oloni Kotchoni
Department of Plant Molecular Biology
Institute of Botany, Kirschallee 1,
University of Bonn, D-53115 Germany.

Dr. Eriola Betiku
German Research Centre for Biotechnology,
Biochemical Engineering Division,
Mascheroder Weg 1, D-38124,
Braunschweig, Germany

Dr. Daniel Masiga
International Centre of Insect Physiology and Ecology,
Nairobi,
Kenya

Dr. Essam A. Zaki
Genetic Engineering and Biotechnology Research Institute, GEBRI,
Research Area,
Borg El Arab, Post Code 21934, Alexandria
Egypt
Prof. Christine Rey
Dept. of Molecular and Cell Biology,
University of the Witwatersand,
Private Bag 3, WITS 2050, Johannesburg, South Africa

Dr. Kamel Ahmed Abd-Elsalam
Molecular Markers Lab. (MML)
Plant Pathology Research Institute (PPathRI)
Agricultural Research Center, 9-Gamma St., Orman,
12619,
Giza, Egypt

Dr. Jones Lemchi
International Institute of Tropical Agriculture (IITA)
Onne, Nigeria

Prof. Greg Blatch
Head of Biochemistry & Senior Wellcome Trust Fellow
Department of Biochemistry, Microbiology &
Biotechnology
Rhodes University
Grahamstown 6140
South Africa

Dr. Beatrice Kilel
P.O Box 1413
Manassas, VA 20108
USA

Dr. Jackie Hughes
Research-for-Development
International Institute of Tropical Agriculture (IITA)
Ibadan, Nigeria

Dr. Robert L. Brown
Southern Regional Research Center,
U.S. Department of Agriculture,
Agricultural Research Service,
New Orleans, LA 70179.

Dr. Deborah Rayfield
Physiology and Anatomy
Bowie State University
Department of Natural Sciences
Crawford Building, Room 003C
Bowie MD 20715, USA
Dr. Marlene Shehata  
University of Ottawa Heart Institute  
Genetics of Cardiovascular Diseases  
40 Ruskin Street  
K1Y-4W7, Ottawa, ON, CANADA

Dr. Hany Sayed Hafez  
The American University in Cairo, Egypt

Dr. Clement O. Adebooye  
Department of Plant Science  
Obafemi Awolowo University, Ile-Ife  
Nigeria

Dr. Ali Demir Sezer  
Marmara Universitesi Eczacilik Fakultesi,  
Tibbiye cad. No: 49, 34668, Haydarpasa, Istanbul,  
Turkey

Dr. Ali Gazanchain  
P.O. Box: 91735-1148, Mashhad,  
Iran.

Dr. Anant B. Patel  
Centre for Cellular and Molecular Biology  
Uppal Road, Hyderabad 500007  
India

Prof. Arne Elofsson  
Department of Biophysics and Biochemistry  
Bioinformatics at Stockholm University,  
Sweden

Prof. Bahram Goliaei  
Departments of Biophysics and Bioinformatics  
Laboratory of Biophysics and Molecular Biology  
University of Tehran, Institute of Biochemistry and  
Biophysics  
Iran

Dr. Nora Babudri  
Dipartimento di Biologia cellulare e ambientale  
Università di Perugia  
Via Pascoli  
Italy

Dr. S. Adesola Ajayi  
Seed Science Laboratory  
Department of Plant Science  
Faculty of Agriculture  
Obafemi Awolowo University  
Ile-Ife 220005, Nigeria

Dr. Yee-Joo TAN  
Department of Microbiology  
Yong Loo Lin School of Medicine,  
National University Health System (NUHS),  
National University of Singapore  
MD4, 5 Science Drive 2,  
Singapore 117597  
Singapore

Prof. Hidetaka Hori  
Laboratories of Food and Life Science,  
Graduate School of Science and Technology,  
Niigata University.  
Niigata 950-2181,  
Japan

Prof. Thomas R. DeGregori  
University of Houston,  
Texas 77204 5019,  
USA

Dr. Wolfgang Ernst Bernhard Jelkmann  
Medical Faculty, University of Lübeck,  
Germany

Dr. Moktar Hamdi  
Department of Biochemical Engineering,  
Laboratory of Ecology and Microbial Technology  
National Institute of Applied Sciences and  
Technology.  
BP: 676. 1080,  
Tunisia

Dr. Salvador Ventura  
Department de Bioquímica i Biologia Molecular  
Institut de Biotecnologia i de Biomedicina  
Universitat Autònoma de Barcelona  
Bellaterra-08193  
Spain

Dr. Claudio A. Hetz  
Faculty of Medicine, University of Chile  
Independencia 1027  
Santiago, Chile

Prof. Felix Dapare Dakora  
Research Development and Technology Promotion  
Cape Peninsula University of Technology,  
Room 2.8 Admin. Bldg. Keizersgracht, P.O. 652, Cape  
Town 8000,  
South Africa
Dr. Geremew Bultosa
Department of Food Science and Post harvest Technology
Haramaya University
Personal Box 22, Haramaya University Campus
Dire Dawa,
Ethiopia

Dr. José Eduardo Garcia
Londrina State University
Brazil

Prof. Nirmhay Kumar
Malaria Research Institute
Department of Molecular Microbiology and Immunology
Johns Hopkins Bloomberg School of Public Health
ES144, 615 N. Wolfe Street
Baltimore, MD 21205

Prof. M. A. Awal
Department of Anatomy and Histplogy,
Bangladesh Agricultural University,
Mymensingh-2202,
Bangladesh

Prof. Christian Zwieb
Department of Molecular Biology
University of Texas Health Science Center at Tyler
11937 US Highway 271
Tyler, Texas 75708-3154
USA

Prof. Danilo López-Hernández
Instituto de Zoología Tropical, Facultad de Ciencias, Universidad Central de Venezuela.
Institute of Research for the Development (IRD), Montpellier, France

Prof. Donald Arthur Cowan
Department of Biotechnology,
University of the Western Cape Bellville 7535 Cape Town, South Africa

Dr. Ekhaise Osaro Frederick
University Of Benin, Faculty of Life Science
Department of Microbiology
P. M. B. 1154, Benin City, Edo State,
Nigeria.

Dr. Luísa Maria de Sousa Mesquita Pereira
IPATIMUP R. Dr. Roberto Frias, s/n 4200-465 Porto Portugal

Dr. Min Lin
Animal Diseases Research Institute
Canadian Food Inspection Agency
Ottawa, Ontario,
Canada K2H 8P9

Prof. Nobuyoshi Shimizu
Department of Molecular Biology,
Center for Genomic Medicine
Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku
Tokyo 160-8582,
Japan

Dr. Adewunmi Babatunde Idowu
Department of Biological Sciences
University of Agriculture Abia
Abia State,
Nigeria

Dr. Yifan Dai
Associate Director of Research
Revivicor Inc.
100 Technology Drive, Suite 414
Pittsburgh, PA 15219
USA

Dr. Zhongming Zhao
Department of Psychiatry, PO Box 980126,
Virginia Commonwealth University School of Medicine,
Richmond, VA 23298-0126,
USA

Prof. Giuseppe Novelli
Human Genetics,
Department of Biopathology,
Tor Vergata University, Rome,
Italy

Dr. Moji Mohammadi
402-28 Upper Canada Drive
Toronto, ON, M2P 1R9 (416) 512-7795
Canada
Prof. Jean-Marc Sabatier
Directeur de Recherche Laboratoire ERT-62
Ingénierie des Peptides à Visée Thérapeutique,
Université de la Méditerranée-Ambrilia
Biopharma inc.,
Faculté de Médecine Nord, Bd Pierre Dramard, 13916,
Marseille cédex 20.
France

Dr. Fabian Hoti
PneumoCarr Project
Department of Vaccines
National Public Health Institute
Finland

Prof. Irina-Draga Caruntu
Department of Histology
Gr. T. Popa University of Medicine and Pharmacy
16, Universitatii Street, Iasi,
Romania

Dr. Dieudonné Nwaga
Soil Microbiology Laboratory,
Biotechnology Center. PO Box 812,
Plant Biology Department,
University of Yaoundé I, Yaoundé,
Cameroon

Dr. Gerardo Armando Aguado-Santacruz
Biotechnology CINVESTAV-Unidad Irapuato
Departamento Biotecnologia
Km 9.6 Libramiento norte Carretera
Irapuato-León Irapuato,
Guanajuato 36500
Mexico

Dr. Abdolkaim H. Chehregani
Department of Biology
Faculty of Science
Bu-Ali Sina University
Hamedan,
Iran

Dr. Abir Adel Saad
Molecular oncology
Department of Biotechnology
Institute of graduate Studies and Research
Alexandria University,
Egypt

Dr. Azizul Baten
Department of Statistics
Shah Jalal University of Science and Technology
Sylhet-3114,
Bangladesh

Dr. Bayden R. Wood
Australian Synchrotron Program
Research Fellow and Monash Synchrotron
Research Fellow Centre for Biospectroscopy
School of Chemistry Monash University Wellington Rd. Clayton,
3800 Victoria,
Australia

Dr. G. Reza Balali
Molecular Mycology and Plant Pathology
Department of Biology
University of Isfahan
Isfahan
Iran

Dr. Beatrice Kilel
P.O Box 1413
Manassas, VA 20108
USA

Prof. H. Sunny Sun
Institute of Molecular Medicine
National Cheng Kung University Medical College
1 University road Tainan 70101,
Taiwan

Prof. Ima Nirwana Soelaiman
Department of Pharmacology
Faculty of Medicine
Universiti Kebangsaan Malaysia
Jalan Raja Muda Abdul Aziz
50300 Kuala Lumpur,
Malaysia

Prof. Tunde Ogunsanwo
Faculty of Science,
Olabisi Onabanjo University,
Ago-Iwoye.
Nigeria

Dr. Evans C. Egwim
Federal Polytechnic,
Bida Science Laboratory Technology Department,
PMB 55, Bida, Niger State,
Nigeria
Prof. George N. Goulielmos  
Medical School,  
University of Crete  
Voutes, 715 00 Heraklion, Crete,  
Greece

Dr. Uttam Krishna  
Cadila Pharmaceuticals limited,  
India 1389, Tarsad Road,  
Dholka, Dist: Ahmedabad, Gujarat,  
India

Prof. Mohamed Attia El-Tayeb Ibrahim  
Botany Department, Faculty of Science at Qena,  
South Valley University, Qena 83523,  
Egypt

Dr. Nelson K. Ojijo Olang’o  
Department of Food Science & Technology,  
JKUAT P. O. Box 62000, 00200, Nairobi,  
Kenya

Dr. Pablo Marco Veras Peixoto  
University of New York NYU College of Dentistry  
345 E. 24th Street, New York, NY 10010  
USA

Prof. T E Cloete  
University of Pretoria Department of Microbiology and Plant Pathology,  
University of Pretoria,  
Pretoria,  
South Africa

Prof. Djamel Saidi  
Laboratoire de Physiologie de la Nutrition et de Sécurité  
Alimentaire Département de Biologie,  
Faculté des Sciences,  
Université d’Oran, 31000 - Algérie  
Algeria

Dr. Tomohide Uno  
Department of Biofunctional chemistry,  
Faculty of Agriculture Nada-ku,  
Kobe., Hyogo, 657-8501,  
Japan

Dr. Ulises Urzúa  
Faculty of Medicine,  
University of Chile Independencia 1027, Santiago,  
Chile

Dr. Aritua Valentine  
National Agricultural Biotechnology Center,  
Kawanda  
Agricultural Research Institute (KARI)  
P.O. Box, 7065, Kampala,  
Uganda

Prof. Yee-Joo Tan  
Institute of Molecular and Cell Biology 61 Biopolis Drive,  
Proteos, Singapore 138673  
Singapore

Prof. Viroj Wiwanitkit  
Department of Laboratory Medicine,  
Faculty of Medicine, Chulalongkorn University,  
Bangkok  
Thailand

Dr. Thomas Silou  
Universit of Brazzaville BP 389  
Congo

Prof. Burtram Clinton Fielding  
University of the Western Cape  
Western Cape,  
South Africa

Dr. Brnčić (Brncic) Mladen  
Faculty of Food Technology and Biotechnology,  
Pierottijevo 6,  
10000 Zagreb,  
Croatia.

Dr. Meltem Sesli  
College of Tobacco Expertise,  
Turkish Republic, Celal Bayar University 45210,  
Akhisar, Manisa,  
Turkey.

Dr. Idress Hamad Attitalla  
Omar El-Mukhtar University,  
Faculty of Science,  
Botany Department,  
El-Beida, Libya.

Dr. Linga R. Gutha  
Washington State University at Prosser,  
24106 N Bunn Road,  
Prosser WA 99350-8694
Dr Helal Ragab Moussa
Bahay, Al-bagour, Menoufia, Egypt.

Dr VIPUL GOHEL
DuPont Industrial Biosciences
Danisco (India) Pvt Ltd
5th Floor, Block 4B,
DLF Corporate Park
DLF Phase III
Gurgaon 122 002
Haryana (INDIA)

Dr. Sang-Han Lee
Department of Food Science & Biotechnology,
Kyungpook National University
Daegu 702-701,
Korea.

Dr. Bhaskar Dutta
DoD Biotechnology High Performance Computing
Software Applications Institute (BHSAI)
U.S. Army Medical Research and Materiel Command
2405 Whittier Drive
Frederick, MD 21702

Dr. Muhammad Akram
Faculty of Eastern Medicine and Surgery,
Hamdard Al-Majeed College of Eastern Medicine,
Hamdard University,
Karachi.

Dr. M. Muruganandam
Department of Biotechnology
St. Michael College of Engineering & Technology,
Kalayarkoil,
India.

Dr. Gökhan Aydin
Suleyman Demirel University,
Atabey Vocational School,
Isparta-Türkiye,

Dr. Rajib Roychowdhury
Centre for Biotechnology (CBT),
Visva Bharati,
West-Bengal,
India.

Dr Takui Ohyama
Faculty of Agriculture, Niigata University

Dr Mehdi Vasfi Marandi
University of Tehran

Dr Fügen DURLU-ÖZKAYA
Gazi University, Tourism Faculty, Dept. of
Gastronomy and Culinary Art

Dr. Reza Yari
Islamic Azad University, Boroujerd Branch

Dr Zahra Tahmasebi Fard
Roudehen branche, Islamic Azad University

Dr Albert Magrí
Giro Technological Centre

Dr Ping ZHENG
Zhejiang University, Hangzhou, China

Dr. Kgomotso P. Sibeko
University of Pretoria

Dr Greg Spear
Rush University Medical Center

Prof. Pilar Morata
University of Malaga

Dr Jian Wu
Harbin medical university , China

Dr Hsiu-Chi Cheng
National Cheng Kung University and Hospital.

Prof. Pavel Kalac
University of South Bohemia, Czech Republic

Dr Kürsat Korkmaz
Ordu University, Faculty of Agriculture, Department
of Soil Science and Plant Nutrition

Dr. Shuyang Yu
Department of Microbiology, University of Iowa
Address: 51 newton road, 3-730B BSB bldg. Iowa City,
IA, 52246, USA
Dr. Mousavi Khaneghah
College of Applied Science and Technology-Applied Food Science, Tehran, Iran.

Dr. Qing Zhou
Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University Portland.

Dr Legesse Adane Bahiru
Department of Chemistry, Jimma University, Ethiopia.

Dr James John
School Of Life Sciences, Pondicherry University, Kalapet, Pondicherry
ARTICLES

Technical review of molecular markers and next-generation sequencing technology to manage plant pathogenic oomycetes
Ramadan Ahmed Arafa and Kenta Shirasawa

Genetic structure of indigenous sheep breeds in Nigeria based on electrophoretic polymorphous systems of transferrin and haemoglobin
Osaiyuwu Henry Osamede* and Salako Emmanuel Adebowale

Assessment of genetic diversity of Burkina Faso sweet grain sorghum using microsatellite markers
Nerbéwendé SAWADOGO, Teyoure Benoit Joseph BATIENO, Zakaria KIEBRE, Mahamadi Hamed OUEDRAOGO, Wend-Pagnangdé Marie Serge Félicien ZIDA, Kiswendsida Romaric NANEMA, Baloua NEBIE, Pauline BATIONO-KANDO, Renan Ernest TRAORE, Mahamadou SAWADOGO and Jean-Didier ZONGO

Biodegradation of fenthion and temphos in liquid media by Bacillus safensis isolated from pesticides polluted soil in the Sudan
Review

Technical review of molecular markers and next-generation sequencing technology to manage plant pathogenic oomycetes

Ramadan Ahmed Arafa¹,² and Kenta Shirasawa²*

¹Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt.
²Kazu DNA Research Institute, Chiba 292-0818, Japan.

Received 29 October, 2017; Accepted 15 February, 2018

To feed the world human population which is expected to reach 10 billion in the next three decades, agricultural sustainability is required for stable food production. However, crops always suffer from many biotic and abiotic stresses. Among them, plant pathogens often cause severe yield losses. Plant pathogenic oomycetes are one of the most destructive plant diseases, which include Phytophthora infestans in potato and tomato, Phytophthora capsici in peppers, Phytophthora sojae in soybean, Phytophthora fragariae var. fragariae in strawberry, Plasmopara viticola in grapevine, and Pseudoperonospora cubensis in cucurbits. Therefore, rapid, robust and sophisticated molecular technologies are required for accurate identification and characterization of the oomycetes, to manage crop diseases resistances. In addition, breeding highly disease resistant varieties is also essential for sustainable agriculture. Molecular marker technology, especially recent advanced next-generation sequencing-based methods, would provide helpful information to monitor the pathogen endemicity and to breed the resistant cultivars through a gene pyramiding strategy. In this review, there was focus on both conventional and novel genotyping techniques for oomycete characterization and resistant gene identification in crops, to discuss future outlook for successful disease management.

Key words: Oomycete plant pathogens, vegetable crops, genomics, molecular markers, next-generation sequencing technology.

INTRODUCTION

The world human population is expected to reach approximately 10 billion by 2050 (UN, 2015). To meet the challenges of poverty and the rising population, food production must be increased by at least 70% over the next three decades. Agricultural sustainability is threatened by a number of limiting factors such as water and nutrient deficiencies, infestations of insects and nematodes, and infections of plant pathogenic viruses, bacteria, fungi and oomycetes. Especially, the plant pathogens are responsible for severe yield losses in a wide range of crops throughout the world. Besides, global trade of crops among countries leads to the rapid spread

*Corresponding author. E-mail: shirasaw@kazusa.or.jp.

Author(s) agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
Table 1. Characteristics of selected DNA-based molecular markers.

<table>
<thead>
<tr>
<th>Marker</th>
<th>Dominance</th>
<th>Reproducibility</th>
<th>Precision</th>
<th>Speed</th>
<th>Relative amount of template DNA needed</th>
<th>Prior sequence information needed for primer design?</th>
<th>Restriction enzyme needed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFLP</td>
<td>Co-dominant</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>RAPD</td>
<td>Dominant</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AFLP</td>
<td>Dominant</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>SSR</td>
<td>Co-dominant</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ISSR</td>
<td>Dominant</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SCAR</td>
<td>Co-dominant</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CAPS</td>
<td>Co-dominant</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SNP</td>
<td>Co-dominant</td>
<td>High</td>
<td>High</td>
<td>Very high</td>
<td>Low</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SRAP</td>
<td>Dominant</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DNA sequencing</td>
<td>Co-dominant</td>
<td>High</td>
<td>High</td>
<td>Very high</td>
<td>Low</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

of plant pathogenic microorganisms and unprecedented disease outbreaks in hitherto unaffected croplands.

Molecular markers can be used for identification and taxonomic classification of species across all domains of life (Vignal et al., 2002; Singh et al., 2013). In modern plant breeding programs, a gene pyramiding strategies based on marker-assisted selection (MAS) can facilitate development of new varieties with desirable traits such as disease resistances. In addition, the molecular techniques help in discovering an array of plant disease resistance genes, which have been used for the management of several serious plant pathogens (Gururani et al., 2012). Furthermore, greater understanding of interactions between pathogens and host plants could facilitate disease outbreak forecasting and predictions of yields. In this decade, genome sequencing technology as well as the molecular marker techniques has been greatly advanced due to great advancements of next-generation sequencing (NGS) methods (Davey et al., 2011).

For example, whole-genome sequencing analysis of many microorganisms including plant pathogens has contributed to understanding of pathogenicity, host preferences, secreted effector proteins and fungicide resistances of the pathogens (Grunwald et al., 2016). In this review, genomics of oomycete plant pathogens in important crops are summarized for future breeding, to overcome the disease-derived yield losses.

ADVANCEMENT OF DNA MARKER TECHNOLOGIES

Traditional morphological and biochemical markers are hampered by their reliance on particular factors, for example, developmental stages and environmental conditions. In contrast, DNA markers provide stable results independent of the factors, hence, DNA analysis is the basis of a range of techniques in basic and applied researches (Collard et al., 2005). Since the 1980s, many types of DNA markers have been developed in accordance with advancement of DNA analysis technologies, for example, restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), simple sequence repeat (SSR), inter-simple sequence repeat (ISSR), sequence characterized amplified region (SCAR), sequence related amplified polymorphism (SRAP) and cleaved amplified polymorphic sequence (CAPS) (Table 1). The DNA markers are used to detect polymorphisms between individuals in populations, determine genetic biodiversity among genotypes, and investigate plant-pathogen interactions (Patwardhan et al., 2014).

Due to NGS technology, genome-wide SNP discovery and genotyping have been enabled with high precision and accuracy, high-throughput performance and cost-effectiveness (Yang et al., 2016). This situation has made the classical DNA markers mentioned above (Vos et al., 1995; Jarne and Lagoda, 1996) to suffer from some constraints such as time- and cost-consuming.

In Figure 1, a possible experimental approach for genotyping, SNP discovery, and gene
identification with NGS strategies is presented. Even in non-model organisms in which genome sequences are not available (Baxter et al., 2011), NGS-based genome-wide genotyping technology has been widely applied for studies on SNP discovery, genetic variability, QTL mapping, candidate gene detection and genome-wide association study (GWAS) (Fu et al., 2014). NGS-based methods are suitable for genome-wide genotyping across large numbers of individuals, for example, reduced-representation libraries (RRLs) (Altshuler et al., 2000), complexity reduction of polymorphic sequences (CRoPS) (van Orsouw et al., 2007), restriction site-associated DNA sequencing (RAD-seq) (Baird et al., 2008) and genotyping-by-sequencing (GBS) (Elshire et al., 2011). In RRL sequencing technology, which has been originally developed in the human genome project (Altshuler et al., 2000),
small genomic regions are sequenced for SNP discovery and genotyping. These techniques have been applied in other organisms including plants and animals (Van Tassell et al., 2008; Wiedmann et al., 2008; Gore et al., 2009; Hyten et al., 2010). On the other hand, CRoPS technology, another reduced-representation method, has mitigated the amounts of sequencing data to identify polymorphism in populations (van Orsouw et al., 2007).

In RAD-Seq procedure, genome DNAs are cut with restriction enzymes into short DNA fragments, and sequenced to discover and genotype genome-wide SNPs (Baird et al., 2008). GBS is another approach for genotyping and developing novel molecular markers (Sonah et al., 2013; He et al., 2014). The library preparation is affordable, straightforward, rapid and precise (Elshire et al., 2011; Romay et al., 2013). Furthermore, in the fields of plant pathology and microbiology, through the NGS-based approaches, novel molecular markers associated with resistance genes were broadly identified (Devran et al., 2015). For example, resistance gene enrichment sequencing (RenSeq) is an effective genotyping technique with NGS technologies, in sequence variations of nucleotide binding-site leucine-rich repeat (NB-LRR) genes simultaneously identified (Jupe et al., 2013). Subsequently, the RenSeq approach has been widely applied to identify resistance genes in wheat and potato (Jupe et al., 2013; Steuernagel et al., 2016).

### Identification of Key Interactive Genes Between Plants and Oomycete Pathogens

Oomycetes are fungus-like eukaryotic microorganisms, many of which are pathogens to humans, animals and plants. Plant pathogenic oomycetes pose substantial threats to global food security. Among the oomycetes, *Phytophthora* is one of the largest genera containing almost 117 species (Martin et al., 2012), many of which cause severe disease outbreaks in horticultural, fruit, arable crops, forest trees and ornamental plants. In addition, *Plasmopara* and *Pseudoperonospora* also thrive on susceptible hosts and pose substantial risks to agriculture worldwide. To overcome the losses from the diseases, breeding new cultivars with resistance (R) genes to the pathogens is an effective strategy. However, the R-gene-derived resistances sometimes decay because of alterations of the plant pathogenic effector proteins, which suppress plant immunity system and modulate host cell functions (Hogenhout et al., 2009). Therefore, to combat the diseases completely, it there is need to understand molecular mechanisms of disease resistance as well as population dynamics of plant pathogens upon the temporal and spatial levels. The genome sequences of the several oomycete pathogens, sizes of which varied depending on the genera (Figure 2), would be useful for this purpose. In addition, methods to monitor and predict alternations of the effector genes are

![Genome size and assembly of selected plant pathogenic oomycetes.](image-url)
Table 2. List of tomato late blight, Phytophthora infestans resistance genes.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Gene name</th>
<th>Wilde type</th>
<th>Accession</th>
<th>Chromosome</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph-1</td>
<td>Solanum pinnellifolium</td>
<td>West Virginia 19 and 731</td>
<td>7</td>
<td>Peirce (1971)</td>
</tr>
<tr>
<td>2</td>
<td>Ph-2</td>
<td>S. pinnellifolium</td>
<td>West Virginia 700</td>
<td>10</td>
<td>Moreau et al. (1998)</td>
</tr>
<tr>
<td>3</td>
<td>Ph-3</td>
<td>S. pinnellifolium</td>
<td>L3708</td>
<td>9</td>
<td>Chunwongse et al. (2002)</td>
</tr>
<tr>
<td>4</td>
<td>Ph-4</td>
<td>S. habrochaites</td>
<td>LA1033</td>
<td>2</td>
<td>Kole et al. (2006)</td>
</tr>
<tr>
<td>5</td>
<td>Ph-5.1</td>
<td>S. pinnellifolium</td>
<td>PI270443</td>
<td>1</td>
<td>Merk et al. (2012) and Merk and Foolad (2012)</td>
</tr>
<tr>
<td>6</td>
<td>Ph-5.2</td>
<td>S. pinnellifolium</td>
<td>PI270443</td>
<td>10</td>
<td>Merk et al. (2012) and Merk and Foolad (2012)</td>
</tr>
</tbody>
</table>

also essential. Also, genetic and genomic analyses of plant pathogens would lead to new strategies for integrated disease management of high aggressive races, which would breakdown existing resistant varieties. The current status of knowledge on important crops and the corresponding pathogens are summarized as follows.

**Tomato and potato - Phytophthora infestans**

Late blight of tomato (Solanum lycopersicum) and potato (Solanum tuberosum) are caused by the heterothallic oomycete pathogen, *P. infestans* (Mont.) de Bary, also known as a pathogen of the Irish potato famine in the 1840s (Aragaki and Uchida, 2001; Abad and Abad, 2003). *P. infestans* can completely destroy tomato and potato plants within a few days after infection. Unfortunately, pathogenic races of *P. infestans* have been altered in each season and growing areas (Arafa et al., 2017). Therefore, multiple resistance varieties of tomato and potato have been developed by introgression of R genes from the wild relatives. In tomato, six major and race-specific R genes have been identified from the wild relatives, which are Ph-1, Ph-2, Ph-3, Ph-4, Ph-5.1 and Ph-5.2 (Table 2). Among them, Ph-3 derived from *Solanum pinnellifolium* L3708 confers a high level resistance against a broad-spectrum of *P. infestans* genotypes. On the other hand, in potato, eleven resistance genes (R1–R11) were identified from a wild potato relative, *S. demissum*, and R1, R2, R3, R4 and R10 were broadly used in potato breeding programs (Vleeshouwers et al., 2011). Furthermore, new QTLs for *P. infestans* resistance have been reported in *S. pinnellifolium*, *Solanum habrochaites*, and *Solanum phureja* for potato. Moreover, RAD-Seq technology was used to identify SNP markers from a tomato wild relative, *S. pinnellifolium* (Chen et al., 2014). Genetic linkage maps were constructed, and a QTL associated with late blight resistance was detected on chromosome 2. Recently, a resistance locus to an Egyptian isolate of *P. infestans* from *S. habrochaites* (Arafa et al. 2018) was also identified, in which the established analytic pipeline for ddRAD-Seq was employed (Shirasawa et al., 2016). However, most of these resistance genes might be subsequently disrupted by new pathotypes, which have been generated due to the unstableness of the *P. infestans* genomes caused by movements of transposable elements, mitotic recombinations and dispensable chromosomes (Judelson, 2002). Therefore, rapid detection methods and easy monitoring technologies of late blight would be beneficial for pathogen control to reduce yield losses of crops. For example, mitochondrial DNA (mtDNA) haplotypes detected by the RG57 RFLP marker as well as RAPD and AFLP have been used as DNA makers to examine the population diversity of *P. infestans* isolates. Subsequently, SSRs and SNPs have been also applied to investigate population structures and to monitor alterations of effector proteins of *P. infestans*. More recently, NGS-based genotyping methods including reduced representative sequencing techniques and whole-genome shotgun (WGS) approaches are used to characterize *P. infestans* isolates. A GBS approach has also been applied to detect genetic variability within four clonal lineages (US-8, US-11, US-23 and US-24) of *P. infestans*, where 3,774, 4,363, 5,070 and 4,353 SNPs were discovered, respectively (Hansen et al., 2016). These findings are considered a clear indication that the GBS method is adequately a useful method for high-resolution analysis of population structure of *P. infestans*, which would contribute to reduction in epidemiology of late blight globally. Furthermore, whole-genome resequencing strategy has also been used for six genomes of four Phytophthora species (*P. infestans*, *P. ipomoeae*, *P. mirabilis* and *P. phaseoli*) to detect 746,744 SNPs and to estimate genomic evolutionary rates in the genus, *Phytophthora* (Raffaie et al., 2010). This study suggested that the evolutionary level among the tested isolates
fluctuated based on copy number variations (CNVs), frequency of SNPs and the ratio of non-synonymous to synonymous substitutions. Yoshida et al. (2013) also used the genome sequencing approach to compare between ancient and modern populations of P. infestans, to detect 4.5 million SNPs and follow up the historical trajectory of clonal lineages to comprehend the epidemiology of this destructive plant pathogen. They also presented the evolutionary process of P. infestans populations since the occurrence of Irish potato famine.

**Pepper- Phytophthora capsici**

*P. capsici* is a soil-borne plant pathogenic oomycete; this pathogen infects a wide range of host crops. *P. capsici* is considered as a major limiting factor for crop productions (Lamour and Kamoun, 2009; Roy et al., 2009; Zeng et al., 2009). Especially in pepper (*Capsicum annuum*), root, stem and foliar blights are caused by *P. capsici*. In the pepper genome, resistance loci for *P. capsici*, *Phyt-1, Phy-2 and Phy-3* as well as *Phyto.5.2*, have been identified through a QTL mapping research. Recently, a novel resistance gene, *PhR10*, has been identified using NGS technology with Illumina HiSeq 2500 platform (Xu et al., 2016). This race specific gene can be used for breeding programs for resistant varieties to *Phytophthora* root rot with a marker-assisted selection. However, *P. capsici* readily undergoes sexual reproduction to develop new races. The new genotypes adapt to challenging environmental conditions by breakdown of pesticides. Therefore, it is important to assess *P. capsici* population dynamics and to identify new races rapidly. To date, molecular markers based on RFLP (Forster et al., 1990), mtDNA haplotypes (Martin et al., 2012), RAPDs (Yin et al., 2012), AFLPs (Hulvey et al., 2010), SSRs (del Castillo-Múnera et al., 2013) and SNPs (Gobena et al., 2012) have been available. More recently, Fulcher et al. (2014) applied the GBS approach for genotyping of *P. capsici* population to discover 368,356 SNPs. GBS has been also used to investigate population structure and genetic dynamics of *P. capsici* where 23,485 high-quality SNPs tightly linked to temporal dynamics and mating types are identified over the genome of *P. capsici* (Carlston et al., 2017).

**Soybean- Phytophthora sojae**

Root rot in soybean (*Glycine max*) is caused by *P. sojae* Kaufm. and Gerd. *P. sojae* attacks soybean plants at all developmental stages from seedling to harvest across a range of varieties (Malvick and Grunden, 2004; Kato, 2010). Soybean has at least 14 R genes, which have been used to develop *P. sojae* resistant cultivars (Burnham et al., 2003). Two R genes, *Rps8* and *Rps3*, tightly linked to each other can be used to breed new varieties, conferring durable resistance through the gene pyramiding strategy. QTL analyses have shown new resistance gene loci, *Rps1-k* (Kasuga et al., 1997; Salimath and Bhattacharyya, 1999) and *RpsYu25* (Sun et al., 2011), and novel QTLs indicating partial resistance for *Phytophthora* root and stem rot (Lee et al., 2013). The partial resistance loci have been also reported on chromosomes 3, 13 and 19 where seven QTLs were detected (Schneider et al., 2016). Therefore, pyramiding many minor genes as well as usage of R genes are efficacious ways to increase the resistance level to *P. sojae*. On the other hand, an avirulence gene, *Avr1a* in *Phytophthora* has been identified in the genome of *Ph. sojae*. This information would be useful to understand interactions between soybean and *P. sojae* (MacGregor et al., 2002). A whole genome resequencing analysis has been performed to predict effects of sequence variations on the functions of the avirulence genes, *Avr1a* and *Avr1c* (Na et al., 2014). Additionally, this study confirmed that NGS-based methods are workable techniques for breeding programs, and genetic and genomics research could be widely applied in release soybean breeding to increase crop immune system against oomycete pathogens.

**Strawberry- Phytophthora fragariae var. fragariae**

*P. fragariae* Hickman var. *fragariae* Wilcox & Duncan causes red core disease in *Rubus* species (Wilcox, 1989) including strawberry (*Fragaria x ananassa*) (Hickman, 1941), which leads to complete destruction and death of the plants. The genome sequence of *P. fragariae* is available to understand virulence, aggressiveness and evolution of this destructive pathogen (Gao et al., 2015). In strawberry, two R genes, *Rpf1* and *Rpf2*, have been reported as resistance loci (Haymes et al., 1997; Haymes et al., 2000; Gelvonauskiené et al., 2007; Mathey, 2013; Van de Weg, 1997).

**Grapevine- Plasmopara viticola**

In grapevine (*Vitis vinifera*), downy mildew disease is caused by *P. viticola* (Berk. and Curt.) Berl. and de Toni. This pathogen can infect all the green tissues of grapevine, causing substantial losses in crop productivity and quality (Gessler et al., 2011). An R gene, *Rpv3*, is responsible for the hypersensitive response against *P. viticola* in resistant grapevine genotypes (Bellin et al., 2009). Another R gene, *Rpv8*, a major QTL responsible for *P. viticola* resistance, has been identified from a grape wild relative, *Vitis amurensis* Rupr. Pyramiding of two genes, *Rpv3* and *Rpv12*, in one line was an effective strategy to overcome downy mildew disease (Venuti et al., 2013). However, *P. viticola* exhibits extensive genetic variability (Gobbin et al., 2006), and several genotypes
3. Molecular markers used in characterization of oomycete plant pathogens.

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Disease</th>
<th>Number of isolates investigated</th>
<th>Molecular marker</th>
<th>Number of polymorphic molecular markers</th>
<th>Number of groups obtained</th>
<th>Isolate origins</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Phytophthora infestans</em></td>
<td>Late blight</td>
<td>32</td>
<td>RAPD</td>
<td>9</td>
<td>19</td>
<td>Canada</td>
<td>Punja et al. (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>170</td>
<td>AFLPs</td>
<td>135</td>
<td>No data</td>
<td>Mexico</td>
<td>Flier et al. (2003)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>655</td>
<td>RFLP RG-57 probe</td>
<td>1</td>
<td>3 (8)*</td>
<td>Taiwan</td>
<td>Chen et al. (2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>SNP</td>
<td>102 by objective criteria</td>
<td>167 by eye</td>
<td>No data</td>
<td>Abbott et al. (2010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>RFLP RG-57 probe</td>
<td>1</td>
<td>No data</td>
<td>China</td>
<td>Guo et al. (2010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>104</td>
<td>RAPD</td>
<td>6</td>
<td>10</td>
<td>China, Korea and Japan</td>
<td>Xuanzhe and Shengjun (2010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>SSR</td>
<td>9</td>
<td>169</td>
<td>Nordic European countries</td>
<td>Brurberg et al. (2011)</td>
</tr>
</tbody>
</table>

can be discovered from a single field (Gobbin et al., 2003). Therefore, a high-throughput genotyping is required to gain new insight into the genetic structure of *P. viticola* population (Stark-Urnau et al., 2000). For example, SNP and SSR markers have been used for the genetic variation study of *P. viticola* strains (Delmotte et al., 2011). Recently, Yin et al. (2017) employed the whole genome sequencing approach to identify pathogenicity genes and effector proteins that are associated with virulence of *P. viticola*. Moreover, NGS-based methods clarifies the origin and evolution patterns of *P. viticola*, which is completely different from *Hyaloperonospora arabidopsis*, a pathogen for Arabidopsis downy mildew.

**Cucurbitaceae- *Pseudoperonospora cubensis***

The family Cucurbitaceae suffers from approximately 45 diseases caused by viruses, bacteria, fungi, and oomycetes (Lebeda et al., 2006). Among them, *P. cubensis* ([Berk. and Curt.] Rost.) causes downy mildew disease. *P. cubensis* infects approximately 20 cucurbit genera, including cucumber (*Cucumis sativus*), watermelon (*Citrullus lanatus*), pumpkin (*Cucurbita maxima*), squash (*Cucurbita pepo*) and melon (*Cucumis melo*) (Lebeda and Urban, 2007). The GBS technique distinguishes *P. cubensis* from the relative, *Pseudoperonospora humuli* (Summers et al., 2015; Lee et al., 2016). Numbers of QTLs for *P. cubensis* resistance has been identified in cucumber (Pang et al., 2013; Yoshioka et al., 2014), while a resistance locus, *ILdm*, has been found from a wild relative of cucumber, *Cucumis hystrix* (Guo et al., 2011).

**FUTURE DIRECTION OF BREEDING STRATEGIES FOR PLANT DISEASE RESISTANCE**

Plant diseases are one of the main threats to global food security and sustainable agriculture. Identifying and tracking oomycete plant pathogens are critical for breeding programs for disease resistances in a range of crop species. Moreover, identification of resistance genes for crops would be required for effective integrated disease management (Table 3).

The plant disease resistances could be classified into two major categories: (i) qualitative or race-specific resistance (vertical resistance) controlled by single resistance genes (major genes or R genes), and (ii) quantitative resistance or field resistance (horizontal resistance) regulated by multiple minor genes (Poland et al., 2009). Therefore, the gene pyramiding strategy has a potential to develop varieties with durable resistance against multiple plant pathogens.

To understand molecular mechanisms of plant disease infection, responses of plants, and the interaction from both aspects of pathogens and hosts would be essential to control plant disease and maintain stability of food productions. Advancement of NGS technology enables analyzing genetic variations of pathogens and crops at whole genome level. The information would provide a beneficial knowledge in both evolutionary researches on oomycete pathogens.
and the interactions between the pathogens and their hosts (Yin et al., 2017). Also, NGS-based genotyping techniques would confer diagnosis methods to monitor new diseases. Unambiguously, NGS technology is expected to provide useful information on adequate plant breeding programs for desirable traits such as resistance genes discovery. The plants are deeply nested with plausible future perspectives to overcome plant disease challenges in different host species. Interactive, integrative and comparative researches on plant pathology, breeding, genetics and genomics would pave way for successful disease management.

### CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

---

**Table 3. Contd.**

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Marker</th>
<th>Population</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Phytophthora capsici</em></td>
<td>mtDNA</td>
<td>117</td>
<td>Not available</td>
</tr>
<tr>
<td></td>
<td>SSR</td>
<td>134</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>SSR</td>
<td>119</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>RAPD</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>SNP</td>
<td>41</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>ISSR</td>
<td>51</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>SSR</td>
<td>98</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>RAPD and RFLP</td>
<td>400</td>
<td>250</td>
</tr>
<tr>
<td><em>Phytophthora sojae</em></td>
<td>SSR</td>
<td>119</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>RAPD</td>
<td>55</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>RFLP</td>
<td>99</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>AFLP, CAP and RAPD</td>
<td>558</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>SSR</td>
<td>96</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SSR</td>
<td>97</td>
<td>4</td>
</tr>
<tr>
<td><em>Plasmopara viticola</em></td>
<td>AFLP and SSR</td>
<td>54</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>SSR</td>
<td>93</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SSR</td>
<td>96</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>AFLP</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td><em>Pseudoperonospora cubensis</em></td>
<td>SSR</td>
<td>262</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>ISSR and SRAP</td>
<td>78</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>No data</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

*Numerical values in parentheses indicate subgroups and sub-genotypes; F2 populations of two crosses (200 individuals for each cross) between different races of *Phytophthora sojae*; F2 populations generated from two avirulent (48FP18 and P6497) and two virulent (25MEX4 and P7064) *P. sojae* parents.*

---

**REFERENCES**


Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J,


Mathey MM (2013). Phenotyping diverse strawberry (Fragaria spp.) germplasm for aid in marker-assisted breeding, and marker-trait association for red stele (Phytophthora fragariae) resistance marker RpFl1. USA. Oregon State University, Master’s thesis P 144.


Scherer E, Gisi U (2006). Characterization of genotype and mating type


Full Length Research Paper

Genetic structure of indigenous sheep breeds in Nigeria based on electrophoretic polymorphous systems of transferrin and haemoglobin

Osaiywu Henry Osamede* and Salako Emmanuel Adebowale

Animal breeding and Genetics Unit, Department of Animal Science, University of Ibadan, Ibadan, Oyo State, Nigeria.

Received 21 April, 2015; Accepted 10 May, 2016

The study used 100 indigenous sheep comprising 25 Balami, 25 Uda, 25 Yankassa and 25 West African Dwarf breeds reared extensively. The blood samples were taken from Vena Jugularis, processed according to standard procedure and transferrin and haemoglobin examined using cellulose acetate electrophoresis. The observed allele frequencies and genotypes (%) were tested with Hardy-Weinberg’s Equilibrium (χ²). Seven alleles Tf⁴, Tf⁵, Tf⁶, Tf⁷, Tf⁸, Tf⁹, and Tf¹⁰ controlling 23 genotypes were observed at the transferrin locus while two haemoglobin alleles (Hb⁴ and Hb⁵) controlling three phenotypes- Hb⁴A, Hb⁴B, and Hb⁴B were detected. Except for the West African Dwarf sheep, all the samples indicated genetic equilibrium revealed by significant difference between observed and expected genotypes at both loci. The observed significant difference between the frequencies of alleles and genotypes at the two studied loci in the West African Dwarf sheep can be used as a source of genetic diversity during selection for improvement. The phylogenetic analysis as viewed by the tree topology suggests that the Balami and Uda may have had the same migration route or may have been the same breed which had only just recently branched off through adaptive. Also, the West African Dwarf sheep may have been the first to branch off the path of migration and thus had more clearly defined migration route or origin.

Key words: Transferrin, haemoglobin, genetic structure, genetic diversity, Balami.

INTRODUCTION

Indigenous animal breeds in developing countries are constantly being replaced by their high-producing exotic counterparts in spite of their excellent adaptation to prevailing environmental conditions. This poses the danger of losing valuable genes for adaptation to extreme environments and disease which are of value in developing countries. Therefore, there is the need to understand the diversity of these indigenous breeds in order to develop strategies for improvement, sustainable use and conservation of the domestic animal biodiversity.

Blood protein and enzyme system have been found to exhibit heterogeneity in different farm animals (Elmaci, 2001). Polymorphic blood traits are useful in studies of relationship between populations, genetic structure of
Breeds and their evolution. Information on genetic variations of blood proteins and enzymes has also been used as an aid to parentage determination and indirect selection (Elmaci, 2001). Information on inherent genetic diversity is important in the design of breeding programmes for improvement, rational decision making on sustainable utilization and conservation of animal genetic resources. The genetically determined polymorphous systems in sheep blood and the opportunity for using them as genetic markers make it possible to conduct studies that are related to breed structure as well as changes that may have occurred in them in the process of introduction and selection (Slavov et al., 2004).

Polymorphism of blood proteins first offered the possibilities to study genetic differentiation before the advent of molecular markers. Consequently, several livestock breeds including the domestic sheep have been characterized for variations in blood proteins (Di Stasio, 1995; Mwancharo et al., 2002; Ibeagha-Awemu and Erhardt, 2004). This study therefore aims to quantify genetic diversity at the transferrin and haemoglobin loci in Balami, Uda, Yankassa and West African Dwarf (WAD) sheep breeds and to estimate the genetic distance between them.

MATERIALS AND METHODS

The four sheep populations indigenous to Nigeria, namely, Balami, Uda, Yankassa and West African Dwarf were sampled from small holder flocks and markets in Ibadan, Okene, Zaria, Iwo and Lokoja. A total of 100 blood samples comprising 25 healthy individual sheep of both sexes per breed were collected. Samples were collected from the jugular vein and emptied into 5 ml heparinised tubes using disposable needles and syringes and then preserved in ice boxes and transported to the Animal breeding and genetics laboratory for analysis.

The blood samples were centrifuged at 3000 rpm for 5 min. The plasma supernatant was decanted into clear plain tubes and stored until needed for transferrin analysis. The erythrocyte fraction was washed three times with physiological saline. After each centrifugation, the washing solution was removed by decanting. After the third washing, three parts distilled water was added to the erythrocyte fraction to release haemoglobin through lysis and the lysed samples were stored in a refrigerator until needed for further analysis. The cellulose acetate electrophoresis conditions were as described by RIKEN (2006) with minor modifications to suit the samples used in this study.

Red blood cells were lysed in 8 part dH2O 0.3 μl, for haemoglobin analysis with Tris EDTA as buffer while undiluted plasma was used to run transferrin with Tris glycine as running buffer. Electrophoresis lasted for 25 to 35 min and staining was done using ponceau S while destaining was with 5% acetic acid. The bands were scored visually based on their migratory pattern as described by RIKEN (2006).

Statistical analysis

Allelic variants for haemoglobin and transferrin locus were scored in order of increasing mobility, “A” being the allele with the slower of the two. Allele and genotype frequencies for each locus were computed by direct gene counting method and tested for fit to Hardy-Weinberg’s Equilibrium (HWE) using χ2 goodness-of-fit-test. The observed and expected heterozygosities were calculated according to Nei (1973). The genetic differentiation among populations and fixation indices (Fis, Fit and Fst) were calculated according to the method of Wright’s (1978). The genetic distance (D) and genetic identity (I) were calculated according to Nei (1978). The Unweighted Pair Group Method of Algorithm (UPGMA; Sneath and Sokal, 1973) was used to view the tree topology of the dendrogram showing the relationship between populations. All computations were performed using Popgene (Yeh and Yong., 1999) and Tools for Population Genetic Analysis (TFPGA; Miller, 1997).

RESULTS

Gene frequencies

The two studied loci were polymorphic for all the breeds with nine allelic variants. Allele frequencies are given in Table 1. The highest number of alleles occurred at the transferrin (Tf, seven alleles) locus while Hb had two alleles. Except for the Tf which was very polymorphic, Hb alleles were present in the four breed populations studied at varying frequencies. The most frequent allele was HbA for Balami (0.72), Uda (0.72) and Yankassa (0.60), while HbB was most frequent in WAD (0.86).

Only seven alleles were found in this present study out of the twelve Transferrin alleles known in sheep breeds (Erhardt, 1986). Six alleles were detected in each of the populations at the Tf locus. The TfA allele was most frequent in the Balami while the TfA allele was the most frequent in the Uda population. The TfA and TfC alleles

Table 1. Allele frequencies of transferrin (Tf) and haemoglobin (Hb) for the breeds.

<table>
<thead>
<tr>
<th>Breeds</th>
<th>Transferrin (Tf) Alleles</th>
<th>Haemoglobin (Hb) Alleles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nTf</td>
<td>TfA</td>
</tr>
<tr>
<td>Balami</td>
<td>25</td>
<td>0.12</td>
</tr>
<tr>
<td>Uda</td>
<td>25</td>
<td>0.30</td>
</tr>
<tr>
<td>Yankassa</td>
<td>25</td>
<td>0.30</td>
</tr>
<tr>
<td>WAD</td>
<td>25</td>
<td>0.12</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>0.21</td>
</tr>
</tbody>
</table>

WAD, West African Dwarf Sheep, HB, haemoglobin, TF, transferrin; A, B, C, D, E, F, G, P and S – alleles.
had equal frequencies which was the highest value in the Yankassa population while the Tf\(^{G}\) was the most frequent in the WAD population. Tf\(^{G}\) was absent in the Balami population but present in all other breeds while Tf\(^{P}\) was present only in the Balami and absent in all other breeds.

### Genotype frequencies

The distribution of the genotypes and their frequencies are presented in Tables 2 and 3.

#### Table 2. Genotype frequencies at the transferrin locus of the sheep populations and goodness of fit test of Hardy-Weinberg’s equilibrium.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Balami</th>
<th>Uda</th>
<th>Yankassa</th>
<th>WAD</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>AB</td>
<td>0.04</td>
<td>0.08</td>
<td>0.24</td>
<td>0.04</td>
<td>0.18</td>
</tr>
<tr>
<td>AC</td>
<td>0.08</td>
<td>0.4</td>
<td>0.12</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>AD</td>
<td>0</td>
<td>0.08</td>
<td>0.12</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>AE</td>
<td>0.08</td>
<td>0.12</td>
<td>0.04</td>
<td>0.08</td>
<td>0.03</td>
</tr>
<tr>
<td>AG</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0.08</td>
<td>0.03</td>
</tr>
<tr>
<td>AP</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>BB</td>
<td>0.12</td>
<td>0.04</td>
<td>0.04</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>BC</td>
<td>0.12</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
</tr>
<tr>
<td>BD</td>
<td>0.04</td>
<td>0</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>BE</td>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
<td>0.04</td>
<td>0.11</td>
</tr>
<tr>
<td>BG</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
<td>0.12</td>
<td>0.04</td>
</tr>
<tr>
<td>CC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>CD</td>
<td>0.04</td>
<td>0</td>
<td>0.12</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>CE</td>
<td>0.2</td>
<td>0</td>
<td>0.08</td>
<td>0</td>
<td>0.07</td>
</tr>
<tr>
<td>CF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.12</td>
<td>0.03</td>
</tr>
<tr>
<td>CG</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>DD</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>DE</td>
<td>0</td>
<td>0</td>
<td>0.12</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>DF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>EE</td>
<td>0</td>
<td>0.12</td>
<td>0</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>EF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.12</td>
<td>0.03</td>
</tr>
<tr>
<td>FF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(\chi^2\) 11.28\(\text{ns}\) 12.02\(\text{ns}\) 21.34\(\text{ns}\) 29.61\(\text{*}\)

Ns = Not Significant (P>0.05); * = Significant (P<0.05).

#### Table 3. Genotype frequencies and chi squared (\(\chi^2\)) test of Hardy-Weinberg’s equilibrium at the haemoglobin locus.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Balami</th>
<th>Uda</th>
<th>Yankassa</th>
<th>WAD</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0.72</td>
<td>0.19</td>
</tr>
<tr>
<td>AB</td>
<td>0.56</td>
<td>0.56</td>
<td>0.72</td>
<td>0.28</td>
<td>0.53</td>
</tr>
<tr>
<td>BB</td>
<td>0.44</td>
<td>0.44</td>
<td>0.24</td>
<td>0</td>
<td>0.28</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\(\chi^2\) 0.66\(\text{ns}\) 3.78\(\text{ns}\) 3.78\(\text{ns}\) 6.25\(\text{*}\)

Ns = Not Significant (P>0.05); * = Significant (P<0.05).

### Transferrin

The Tf locus was the most polymorphic with twenty-three genotypes controlled by seven codominant alleles. In Balami, the most common genotypes were Tf\(^{BB}\) and Tf\(^{BC}\) with a value of 0.12; the most common genotype in the Uda population was Tf\(^{AC}\) with a frequency of 0.24 (highest genotype frequency); in the Yankassa populations, the Tf\(^{AD}\), Tf\(^{CD}\) and Tf\(^{DE}\) were the most frequent genotypes with the same value of 0.12 while in the WAD population, the genotypes Tf\(^{BG}\), Tf\(^{CG}\) and Tf\(^{EG}\)
were most frequent with a constant value of 0.12. Among all the breeds studied Ti²P, Ti²CC, Ti²CP, Ti²DG, and Ti²GG were rare. All others were observed with varying frequencies.

Haemoglobin

Three genotypes of Hb (Hb²AA, Hb²AB and Hb²BB) determined by two codominant alleles were observed in Yankassa, whereas only Hb²AB and Hb²BB were observed in Balami and Uda, while the WAD had only Hb²AA and Hb²AB. The frequencies of Hb²AB and Hb²BB in Balami and Uda population were the same (0.56 and 0.44, respectively) with the frequency of Hb²AB being the highest. The frequency of Hb²AA was the highest (0.72) in the WAD while Hb²AB was 0.28. The frequency of Hb²AA was the lowest (0.04) in Yankassa while Hb²AB was the highest (0.72) and 0.24 for Hb²BB.

Chi square (χ²) test of Hardy-Weinberg Equilibrium

Hardy-Weinberg equilibrium (HWE) test for single locus was conducted for the populations within the two protein loci. Results shown in Tables 2 and 3 revealed that all the breeds had no significant deviation from HWE except WAD which deviated from the HWE at both protein loci.

F-Statistics and gene flow

Population differentiation revealed by fixation indices F₁S, F₁T and F₁ST for each of the loci studied across four Nigerian sheep population are shown in Table 4. The global heterozygosity deficit (F₁S) was estimated at -0.047 and the within-breed deficit in heterozygote evaluated by F₁S was -0.388 for Hb and -0.097 for Tf with a total mean of -0.193 for both loci. Global breed differentiation evaluated by F₁ST, was estimated at 0.123. The gene flow values for each of the loci studied was 0.836 for Hb and 4.092 for Tf. The mean gene flow over all loci was 1.791.

Genetic distance and genetic identity

The distance between populations ranged from 0.034 to 0.640. The smallest genetic distance was observed between Uda and Balami populations while the farthest distance was observed between WAD and Balami populations. Results of genetic identity are presented in Table 5. It showed that the Uda and Balami populations are more genetically alike (0.966) while the Balami and WAD populations were the least genetically identical (0.527).

Dendrogram

The genetic distance estimates were used to construct dendrogram based on individual locus and the pooled distances for the four loci. When the Dendrogram of genetic distance was viewed at the haemoglobin locus, the topology differentiated two sub clusters. The sub clusters were Balami - Uda at node 1 with no distance and Yankassa with a distance of 0.0238 at node 2 (including Balami Uda and Yankassa). The WAD was totally separated from the two sub clusters with a distance of 0.5802 at node 3 (including all four populations) (Figure 1). The tree topology of the dendrogram of genetic distance between Balami, Uda, Yankassa and WAD sheep populations at the Transferrin locus revealed two sub clusters; Balami-Uda at node 1 corresponding to a distance of 0.1258, and Yankassa at node 2 having a distance of 0.3045 (including Balami, Uda and Yankassa) while the WAD separated completely at node 3 with a distance of 0.4347 (including all four populations) (Figure 2).

The Phylogenetic tree of the genetic distances pooled for the two loci supports the genetic distance estimates where the Balami population is the most genetically distant from the WAD population. The Balami and Uda populations formed a different cluster at node 1, indicating a closer relationship between the two populations, whereas the WAD separated completely at node 3, the Uda formed a sub cluster with the Balami-Yankassa group at node 2 (Figure 3).

DISCUSSION

Haemoglobin

All of the breeds in this study were polymorphic for Hb
Figure 1. Dendrogram of genetic distance between four Nigerian indigenous sheep populations at the haemoglobin locus.

Figure 2. Dendrogram of genetic distance between four Nigerian indigenous sheep populations at transferrin locus.

Figure 3. Dendrogram of genetic distance between four Nigerian indigenous sheep based on haemoglobin and transferrin.
with frequencies of Hb\textsuperscript{B} considerably higher than those of Hb\textsuperscript{A} in Balami, Uda and Yankassa. Similar results have been obtained by Bunch and Foote (1976), Zanotti et al. (1988), Clarke et al. (1989), Bunge et al. (1990), Mwacharo et al. (2002), Boujenane et al. (2008), and Shahrbabak et al. (2010) who reported that Hb\textsuperscript{B} is generally the most occurring allele in most sheep breeds. However, in contrast, the Hb\textsuperscript{A} was higher for the WAD population in this study; this variation may be attributed to the selective advantages of Hb in different geographical regions. The WAD being predominant in the wet humid regions may have Hb\textsuperscript{A} conferred on it for survival, while the Balami and Uda breeds may have need of Hb\textsuperscript{B} for survival in the drier savannah regions where they are found. The Yankassa however is most widely spread and had about 60.0% of its members having Hb\textsuperscript{B} while the other 40.0% were found to have Hb\textsuperscript{A}. This may have given it the advantage of survival in the regions between the extremes of the wet humid regions and the drier savannah regions. Similar results of predominance of Hb\textsuperscript{A} had been reported for other sheep populations. Buis and Tucker (1983) found that in some Dutch breeds (Friesian, Schoonebeker, Drente and Kempen), Hb\textsuperscript{A} was the more common allele compared to Hb\textsuperscript{B}. In France, Nguyen et al. (1992) also made the same observations in Rambouillet breed. Tella et al. (2000) in a study of West African Dwarf and Yankassa sheep in South West Nigeria reported that Hb\textsuperscript{A} occur at higher frequency in the two breeds with Hb\textsuperscript{B} occurring in 98.8% of the WAD population and 78.78% of the Yankassa population sampled. However, Schillhorn and Folaranmi (1978) reported that haemoglobin allele types have selective advantages in different geographical regions, while Hb\textsuperscript{A} has been shown to have advantage in sheep at higher altitudes; Hb\textsuperscript{B} occurs more commonly in lowland breeds. In Nigeria, Hb\textsuperscript{B} type has a very high frequency in sheep of the northern savannah zone, the region in which the Balami and Uda breeds are predominantly found. This predominance appears to be of adaptive significance in the arid regions to which these breeds demonstrated fitness. This is due to the decreased haematocrit values, lower blood viscosity and more availability of water associated with Hb\textsuperscript{B} blood types compared to Hb\textsuperscript{A} types. This is buttressed by the reports of Tsunoda et al. (2006) that Hb\textsuperscript{A} allele has a high affinity for oxygen and is important for survival in mountain areas at altitudes over 3000 m and Pieragostini et al. (2006) who reported that the Hb\textsuperscript{B} is more frequent in sheep living in areas above 40\(^{\circ}\)C latitude. Furthermore, Ordas (2004) reported that Hb\textsuperscript{A} has a higher affinity for molecular oxygen than Hb\textsuperscript{B} because of differences in oxygen dissociation rates. The higher availability of molecular oxygen in erythrocytes with Hb\textsuperscript{A} may be responsible for the higher incidence of parasitism. This may be due to the fact that the Hb\textsuperscript{A} erythrocytes may support parasite establishment and propagation more than those with Hb\textsuperscript{B} which have lower diffusible intra erythrocytic oxygen. Thus, Altaif and Dargie (1978) and Buvanendran et al. (1980) reported a possible correlation between haemoglobin polymorphism and genetic resistance to helminth infection in sheep and goats. The results obtained in this study demonstrates that extreme temperatures (acute cold or sultry heat), extreme relief forms (desert or mountain), precarious nutrition and breeding conditions favour the fixing of the Hb\textsuperscript{A} allele and that the temperature situated in the biological comfort zone, moderate relief forms (forest, steppe hill) or the breeding techniques or methods are correlated with a more emphasized fixing of the Hb\textsuperscript{B} allele. Thus, in the biological respect, the allele Hb\textsuperscript{A} is characterised by a great selection advantage in comparison with the allele Hb\textsuperscript{B}. In a great measure, the selective advantage of Hb\textsuperscript{A} is due to the biophysical, biochemical and physiological peculiarities of the haemoglobin molecule type A (saturation capacity with oxygen, dissociation curve of oxyhaemoglobin, erythrocyte load with haemoglobin and metabolic profile of the erythrocyte) (Raushenbach and Kamenek, 1978).

**Transferrin**

The seven alleles observed at the Tf locus were dispersed, in terms of their frequencies and number within each breed, and in respect of their distributions among breeds. The differences observed at the Tf alleles indicate clear genetic differentiation between the Nigerian breeds studied. The Tf\textsuperscript{D} allele is a rare allele exclusively found in the Balami breed at very low frequency and the Tf\textsuperscript{C} was found only in three of the four breeds studied (Uda, Yankassa and WAD). Manwell and Baker (1977) suggested that electrophoretic variants with low frequencies may represent, in many cases, relative recent mutations occurring after divergence of the breeds; this could be the case with the Balami breed. Akinyemi and Salako (2012) also reported Tf\textsuperscript{B} in Balami breed and the same was also reported for SardiandBeni Ashen sheep breeds in Morocco (Boujenane et al., 2008), and it is reported to be more widely distributed in European sheep breeds (Buis and Tucker, 1983; Zanotti et al., 1990).

The gene frequencies at Tf locus were compared with those reported by other researchers to obtain information on the degree of divergence between breeds. Ashton and Ferguson (1962) reported the frequencies of alleles Tf\textsuperscript{A}, Tf\textsuperscript{B}, Tf\textsuperscript{C}, Tf\textsuperscript{D}, Tf\textsuperscript{E} and Tf\textsuperscript{G} in three different populations of Australian Merino. Stormont et al. (1968) reported the frequencies of these alleles in Mailliard Merino and Nguyen et al. (1992) published results on these alleles in Spanish Merino.

Higher frequency of Tf\textsuperscript{B} and Tf\textsuperscript{C} in Yankassa is supported by the report of Ibeagha-Awemu and Erhardt (2004) on the same breed, where Tf\textsuperscript{C} was reported to have the highest frequency in Yankassa and by the
report of Akinyemi and Salako (2012), who reported the Tf\(^a\) allele as the highest in the Yankassa. The presence of Tf\(^g\) and Tf\(^e\) alleles in this study was also reported by Ibeagha-Awemu and Erhardt (2004). The occurrence of Tf\(^g\) in Yankassa in this study was also reported by Akinyemi and Salako (2012) and was observed in some Moroccan sheep breeds (Boujenane et al., 2008) but was not reported by Ibeagha-Awemu and Erhardt (2004). The presence of the alleles Tf\(^g\), Tf\(^d\) and Tf\(^b\) in the studied breeds were also reported by Akinyemi and Salako (2012) in similar breeds but were totally absent in a report on Kenyan breeds (Mwacharo et al., 2002). Ibeagha-Awemu and Erhardt (2004) posited that the absence of these alleles may not totally exclude their occurrence in the breeds but may have exposed the limitation of the method of starch gel electrophoresis in separating Tf variants.

Observation at Transferrin locus are generally difficult to compare with the result obtained in other studies because of the different electrophoresis media used by other researchers and subsequently different resolution power, that is, starch gel and poly acrylamide gel electrophoresis (Akinyemi and Salako, 2012). However, significant deviations of allele frequencies may occur owing to crossing and linking, inbreeding, sample error, population bottlenecks and random genetic drift. The genetic differences between the breeds are to be expected for breeds studied since they are found in separate locations throughout Nigeria, where little or no gene flow occurs.

**Hardy-Weinberg equilibrium**

The significant deviations from HWE (\(P<0.05\)) observed for both locus within the WAD breed could be attributed to unobserved null alleles, excess of heterozygote individuals than homozygote individuals, migration, high mutation rate and artificial selection in the breeds (Aminafshar et al., 2008). Significant deviations of allele frequencies may occur owing to crossing and linking, inbreeding, sample error, population bottlenecks and random genetic drift. Ideal Hardy-Weinberg’s populations do not actually occur in nature owing to various factors, which can shift the equilibrium and disrupt the stability of a population, giving rise to change in the genetic structure (Sargent et al., 1999). Deviation from HWE at protein loci have also been reported in studies such as in Southern Africa sheep (Sargent et al., 1999). Since on the overall data set, there were no significant deviations from HWE, it may be suggested that there are no biological phenomena or sampling error biases with a net effect for sufficient differences between observed and expected proportions.

**Gene flow and F-statistics**

F-Statistic values of \(F_{ST}\) and \(F_{IT}\) are measures of deviation from Hardy-Weinberg’s proportions and total populations respectively. Positive values indicate a deficiency in heterozygotes and negative values indicate an excess of heterozygotes. \(F_{IS}\) can be interpreted as a measure of inbreeding (the measure of allelic fixation of individuals relative to the subpopulations). Thus, the negative values of \(F_{IT}\) observed at the two loci in the four breeds studied and the overall negative value of -0.047 and the negative value of \(F_{IS}\) showed the deficiency of homozygotes in the populations and that mate were less related in comparison with the average relationship of the population. This observed excess of heterozygotes could be due to non-random mating and genetic exchange between populations.

Estimated \(F_{ST}\), which corresponds to the proportion of genetic variability accounted for by the differences among breeds, was 0.123. Thus, a large part of the total genetic diversity can be explained by the variation within breeds (0.877) and to a smaller extent by the variation among breeds. This result indicates that genetic diversity quantified by allozyme markers shows little genetic differentiation among Nigerian sheep breeds studied. The magnitude of differentiation observed between the Nigerian sheep breeds could be due to geographic proximity, similarities in environment and breeding practices, but most likely due to past genetic exchange among them since mean gene flow over all loci was 1.791.

**Genetic distance and genetic identity**

Nei (1972) standard genetic distance (\(D\)) obtained in this study (0.034-0.640) indicates the level of genetic differentiation between the breeds. Buis and Tucker (1983) reported \(D\) values of 0.181 to 0.308 between different sheep breeds and an average \(D\) value of 0.248. Different authors have reported different values of \(D\) in different sheep breeds. Ordas and Primitivo (1986) estimated the genetic distance between Spanish dairy sheep breeds and reported 0.009-0.055 using data from 8 loci. Zanotti et al. (1990), using data from four blood groups and six protein loci, reported genetic distance ranging between 0.012 and 0.060 in five Italian sheep breeds. Mwacharo et al. (2002) obtained a closer estimate of genetic distance between Kenyan sheep breeds (0.044 - 0.169) than between Kenyan and the exotic Merino sheep (0.044 - 0.283) in a study using data on five protein-coding loci. Among six Moroccan local sheep, namely, D’man, BeniAhsen, Sardi, Timahdite, BeniGuil and Boujaud, Boujenane et al. (2008) reported a genetic distance range of 0.006 to 0.026. Distances obtained in this study between breeds were higher than those by Akinyemi and Salako (2012) who reported a range of 0.003 to 0.015. The distances obtained from this current study indicate that that the Balami and Uda which are predominantly northern breed are more closely related to each other than they are to the WAD which is a southern breed. The Yankassa however has adaptive
Dendrogram

The phylogenetic tree constructed separated the WAD from other indigenous sheep, suggesting either early prehistoric separation of the WAD sheep or separate historical origin. The close genetic relationship between the Balami and Uda breed may be attributed to possible interbreeding between these two populations which are predominantly Northern breeds to form a homogenous population separated by administrative boundaries. Furthermore, the close genetic relationship between the breeds may also be attributed to similarity in ecological zones and production systems as well as the incidents of cross border livestock rustling contributing to the migration and movement of livestock and subsequent interbreeding between such livestock (Mwacharo et al., 2002). Based on the highest value of Nei's genetic distance (0.640), breeding programs involving the crossing of the Balami and WAD is recommended, since the crosses between breeds which are homogenous but distinctly different in their relationship would produce more hybrid vigour in the crossed progeny.

Conclusion

The populations were characterized by the presence of 7 transferrin alleles Tf, Tf, Tf, Tf, Tf, Tf, and Tf, controlling 23 genotypes, 6 of which were homozygous and 17 heterozygous. Two haemoglobin alleles, Hb and Hb, controlling 3 genotypes were found. Two of the haemoglobin genotypes were homozygous. According to the transferrin system all the breeds were in genetic equilibrium as revealed by the χ² test of Hardy Weinberg Equilibrium. All other breeds were in genetic equilibrium at the haemoglobin system. The presence of differences between the frequencies of the alleles by categories could be a source of genetic diversity.

Conflict of Interests

The authors have not declared any conflict of interests.

REFERENCES


Schilhorn van Veen TW, Folaramii DOB (1978). The haemoglobin
Assessment of genetic diversity of Burkina Faso sweet grain sorghum using microsatellite markers

Nerbéwendé SAWADOGO1*, Teyoure Benoit Joseph BATIENO2, Zakaria KIEBRE1, Mahamadi Hamed OUEDRAOOGO1, Wend-Pagnangdé Marie Serge Félicien ZIDA2, Kiswendsida Romaric NANEMA1, Baloua NEBIE3, Pauline BATIONO-KANDO1, Renan Ernest TRAORE1, Mahamadou SAWADOGO1 and Jean-Didier ZONGO1

1Université Ouaga I Pr Joseph KI-ZERBO, Burkina Faso.
2Institut de l'Environnement et de Recherches Agricoles (INERA) Kamboinsé, Burkina Faso.
3International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Mali.

Received 28 November, 2017; Accepted 23 February, 2018

Sweet grain sorghum [Sorghum bicolor (L.) Moench] is an under-harvested crop produced mainly for its sweet grains in the pasty stage. Little is known of its genetic diversity remains. This study aims to determine the level and structure of the genetic diversity of sweet grain sorghum from Burkina Faso. Thus, 93 accessions were evaluated using 15 polymorphic microsatellite markers. The analysis revealed 49 alleles in total, 6 rare alleles, an average of 3 alleles per locus, a moderate Nei diversity of 0.474, a low level of heterozygosity (0.031) in the collection and very high Wright's fixation index (Fis) of 0.934. The accessions were organized into three genetic groups: A, B and C. Groups A and B were the farthest, with an Fst and a genetic distance of 0.37 and 0.22, respectively, whereas Groups B and C were the closest, with an Fst (genetic differentiation) of 0.279 and a genetic distance of 0.142. This diversity could be exploited in Burkina Faso sweet grain sorghum breeding programs.

Key words: Burkina Faso, neglected culture, sorghum, simple sequence repeats (SSR) markers, genetic variability.

INTRODUCTION

Traditional varieties are an important source of genetic diversity whose conservation contributes to the maintenance of genetic diversity (Ahmadi et al., 1988). Knowledge of the level and structure of their genetic diversity is an important asset in defining strategies for conservation and varietal improvement (Adoukonou-Sagbadja et al., 2007).

Previous studies on sweet grain sorghum with phenotypic markers have shown an important agromorphological variability in the collection from Burkina Faso (Sawadogo et al., 2014). However, the observation of morphological characters can lead to a biased estimation of genetic diversity because they are influenced by the environment. Indeed, phenotypic diversity may be increased but genetic diversity remains stable (Lallemand, 2004). For a better estimate of the

*Corresponding author. E-mail: nerbewende@yahoo.fr.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
genetic diversity of sweet grain sorghum from Burkina Faso, it is imperative to evaluate it using molecular markers.

The development of genome mapping techniques and their associated attempts to link molecular variability with phenotypic variability are likely to become increasingly acute (Pham et al., 1992). Nuclear molecular markers, in particular microsatellites, otherwise called simple sequence repeats (SSR) are very polymorphic (Doldi et al., 1997; Schug et al., 1998), with Mendelian transmission (Saghai-Maroof et al., 1994). They are codominant and abundant in the genome, easy to use and highly effective in the studying of genetic diversity (Lagercrantz et al., 1993).

The present study was conducted to get a better knowledge of the genetic diversity of the Burkina Faso sweet grain sorghum. The objectives are to: (i) determine the level and (ii) structure of the molecular genetic diversity of sweet grain sorghum from Burkina Faso.

### MATERIALS AND METHODS

#### Plant and molecular markers

The plant materials consisted of 93 accessions of sweet grain sorghum from Burkina Faso obtained by self-fertilization in 2010. Fifteen simple sequence repeat (SSR) markers were selected based on their polymorphism revealed in previous studies on sorghum (Barro-Kondombo, 2010; Nebié, 2014), and their distribution on all the chromosomes of the sorghum genome (Table 1) were used for characterization.

#### Extraction of total DNA

The total genomic DNA of the 93 accessions was extracted from young freshly picked leaves of 15 days. Flinders Technology Associates (FTA) card method was used for the extraction of DNA. The method works faster from DNA extraction to DNA amplification by polymerase chain reaction (PCR). It consists of taking the fresh young leaves and crushing them on the rough side (square) of the FTA card. The samples were dried in 30 min; then disks of 1 mm diameter were punched, which were placed in Eppendorf tubes. 200 µl of FTA buffer was then added to the punched disks. The whole was incubated at a room temperature for 5 min. This operation was repeated three times by renewing the buffer. After that, the disks were rinsed with 200 µl of TE (Tris-EDTA) buffer (10 mM Tris-HCl, 0.1 mM EDTA, pH 8.0) and then dried for 5 min before transferring directly each disk into an Eppendorf tube for polymerase chain reaction (PCR).

#### PCR amplification of genomic DNA

DNA amplification was performed with the thermocycler Eppendorf Master Cycler Gradient in a total volume of 25 µl containing 18 µl of ultrapure water for each sample, 5 µl of premix (with 1 U of Taq (Thermus aquaticus) DNA polymerase, 250 mM of dNTPs, 10 mM Tris-HCl, 30 mM KCl, 1.5 mM MgCl2), 1 µl of each primer microsatellite F (Forward) and R (Reverse) and one disk of FTA card (0.25 to 0.5 ng/µl genomic DNA) for each sample. A marker of molecular weight of reference of 50 bp (base pairs) and a control without DNA were used. The PCR amplifications were performed in an Eppendorf Master cycler: it comprises an initial denaturation phase at 94°C for 4 min followed by 35 cycles of denaturation step at 94°C for 45 s, annealing at 50 to 55°C for 1 min and an extension at 72°C for 1 min 30 s and final extension at same temperature for 4 min.

The PCR products were separated for 1 h 30 min at 100 V on 2% agarose gel in TBE (Tris-Borate Ethidium) 0.5x and 15 µl of BET 5% (ethidium bromide), using fluorescent developer. The revelation of the amplification products was visualized on an UV transilluminator and photographed with a camera brand Canon Power Shot A620, 7.1 Mega Pixels. The size of DNA bands in base pairs was determined using the 1 kb DNA standard ladder (Invitrogen, Carlsbad, CA, USA).

#### Statistical analysis

Genetix 4.03 (Belkhir et al., 2002) was used to determine the

<table>
<thead>
<tr>
<th>S/N</th>
<th>Locus</th>
<th>Number of nucleotide repeats</th>
<th>Chromosome</th>
<th>TM (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gpsb123</td>
<td>(CA) 7 (GA) 5</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>gpsb151</td>
<td>(CT) 12</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>xtpx10</td>
<td>(CT) 14</td>
<td>9</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>xcup14</td>
<td>(AG) 10</td>
<td>3</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>xcup53</td>
<td>(TTTA) 5</td>
<td>1</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>xcup07</td>
<td>(CCA) 8</td>
<td>10</td>
<td>54</td>
</tr>
<tr>
<td>7</td>
<td>xtpx320</td>
<td>(AAG) 20</td>
<td>1</td>
<td>54</td>
</tr>
<tr>
<td>8</td>
<td>xtpx15</td>
<td>(TC) 16</td>
<td>5</td>
<td>55</td>
</tr>
<tr>
<td>9</td>
<td>xtpx145</td>
<td>(AG) 22</td>
<td>6</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>xtpx295</td>
<td>(TC) 19</td>
<td>7</td>
<td>55</td>
</tr>
<tr>
<td>11</td>
<td>xtpx136</td>
<td>(GCA) 5</td>
<td>5</td>
<td>55</td>
</tr>
<tr>
<td>12</td>
<td>sbagb02</td>
<td>(AG) 35</td>
<td>7</td>
<td>55</td>
</tr>
<tr>
<td>13</td>
<td>sb5-206</td>
<td>(AC) 13 (AG) 20</td>
<td>9</td>
<td>55</td>
</tr>
<tr>
<td>14</td>
<td>sb6-84</td>
<td>(AG) 14</td>
<td>2</td>
<td>55</td>
</tr>
<tr>
<td>15</td>
<td>sb4-72</td>
<td>(AG) 16</td>
<td>6</td>
<td>55</td>
</tr>
</tbody>
</table>
Table 2. Level of genetic diversity of each markers tested.

<table>
<thead>
<tr>
<th>Locus</th>
<th>No d'alleles</th>
<th>He</th>
<th>Ho</th>
<th>PIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>gpsb123</td>
<td>5</td>
<td>0.653</td>
<td>0.425</td>
<td>0.648</td>
</tr>
<tr>
<td>gpsb151</td>
<td>3</td>
<td>0.562</td>
<td>0.000</td>
<td>0.555</td>
</tr>
<tr>
<td>sb4-72</td>
<td>3</td>
<td>0.366</td>
<td>0.000</td>
<td>0.362</td>
</tr>
<tr>
<td>sb5-206</td>
<td>3</td>
<td>0.598</td>
<td>0.000</td>
<td>0.592</td>
</tr>
<tr>
<td>sb6-84</td>
<td>3</td>
<td>0.493</td>
<td>0.000</td>
<td>0.486</td>
</tr>
<tr>
<td>sbagb02</td>
<td>2</td>
<td>0.044</td>
<td>0.000</td>
<td>0.043</td>
</tr>
<tr>
<td>xcup07</td>
<td>3</td>
<td>0.437</td>
<td>0.000</td>
<td>0.433</td>
</tr>
<tr>
<td>xcup14</td>
<td>4</td>
<td>0.485</td>
<td>0.011</td>
<td>0.48</td>
</tr>
<tr>
<td>xtxp136</td>
<td>2</td>
<td>0.498</td>
<td>0.000</td>
<td>0.493</td>
</tr>
<tr>
<td>xtxp10</td>
<td>3</td>
<td>0.533</td>
<td>0.000</td>
<td>0.528</td>
</tr>
<tr>
<td>xtxp145</td>
<td>5</td>
<td>0.668</td>
<td>0.000</td>
<td>0.661</td>
</tr>
<tr>
<td>xtxp15</td>
<td>3</td>
<td>0.579</td>
<td>0.000</td>
<td>0.573</td>
</tr>
<tr>
<td>xtxp295</td>
<td>2</td>
<td>0.087</td>
<td>0.000</td>
<td>0.086</td>
</tr>
<tr>
<td>xtxp320</td>
<td>5</td>
<td>0.653</td>
<td>0.013</td>
<td>0.646</td>
</tr>
<tr>
<td>xtxp57</td>
<td>3</td>
<td>0.484</td>
<td>0.000</td>
<td>0.478</td>
</tr>
</tbody>
</table>

No d’alleles: Number of alleles per locus, He: expected heterozygosity, Ho: observed heterozygosity, PIC: polymorphic information content.

observed heterozygosity (Ho). The total number of alleles \( A^t \), mean number of alleles per locus \( A \), number of rare alleles \( A^r \), the polymorphic information content (PIC) and the expected heterozygosity (He) were known using Fstat software V2.9.3.2 (Goudet, 2002).

The dissimilarity coefficients were used to generate an unweighted neighbor-joining tree with Jaccard’s similarity coefficient and a bootstrapping value of 1,000 using the DARwin V5.0 software (Perrier et al., 2006). Wright’s fixation index (Fis), genetic differentiation between genetic groups based on Fst (Weir and Cockerham, 1984) and minimum distance of Nei between pairs of genetic groups were estimated using Fstat software V2.9.3.2. To verify the significance of the differences in these values, permutation (1000 to 3000 permutations) was carried out. From the Fis value, the allofecondation rate \( t \) was estimated using the formula \( Fis = (1-t) / (1 + t) \).

RESULTS

Genetic diversity of sweet grain sorghum

Results (Table 2) revealed that the number of alleles per locus varied from 2 for markers sbagb02, xtxp136 and xtxp295 to 5 for gpsb123, xtxp145, xtxp320 markers (Figure 1). Sbagb02 and xtxp145 markers have the extreme value of expected heterozygosity. The results indicate that only the locus: gpsb123, xtxp320 and xcup14 have observed heterozygosity values with an average of 0.03. The markers sb6-84 and xtxp145 showed extreme PIC values of 0.046 and 0.661, respectively.

A total of 49 alleles were detected in the collection with a low number of rare alleles (6), an average of 3 alleles per locus, and relatively low observed (0.031) and expected (0.474) heterozygosity. Results also show a very high value of Wright’s fixation index (0.934) and a very low allofecondation rate \( t \) of 06.04%.

Organization of genetic diversity and description of genetic groups

Sweet grain sorghum from Burkina Faso is divided into three genetic groups: A, B and C (Figure 2) consisting of 40, 43 and 09 accessions, respectively. The characteristics of the three genetic groups are shown in Table 3. Group A has the highest number of alleles (43) including 6 private alleles, highest expected heterozygosity (0.42), and lowest observed heterozygosity (0.0107). Group B has the highest value of rare alleles (18), observed heterozygosity (0.051), and lowest expected heterozygosity (0.30). Group C has low number of alleles (34) and mean values for other genetic diversity parameters.

Genetic distance between genetic groups

The genetic distances between the three genetic groups revealed by the minimum distance of Nei and the genetic differentiation by pair of genetic groups (Table 4) show that the three genetic groups differed very significantly from one another. Groups A and B are the most remote while groups B and C are the closest.

DISCUSSION

The markers xtxp145 and xtxp320 that showed 5 alleles were the most polymorphic. But, they revealed more
Figure 1. Picture of the migration profile of some polymorphic markers. MC, Molecular weight marker; Te, negative control without DNA.
Figure 2. Radial representation of the dendrogram of the 93 accessions of sweet grain sorghum constructed from the dissimilarity matrix according to the Neighbor-Joining method.

Table 3. Characteristics of genetic groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>A'</th>
<th>A'^r</th>
<th>A'^p</th>
<th>A</th>
<th>He</th>
<th>Ho</th>
<th>Fst</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>40</td>
<td>49</td>
<td>12</td>
<td>6</td>
<td>2.87</td>
<td>0.42</td>
<td>0.01</td>
<td>0.35</td>
</tr>
<tr>
<td>B</td>
<td>43</td>
<td>39</td>
<td>18</td>
<td>3</td>
<td>2.6</td>
<td>0.30</td>
<td>0.05</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>09</td>
<td>34</td>
<td>15</td>
<td>0</td>
<td>2.27</td>
<td>0.38</td>
<td>0.02</td>
<td>-</td>
</tr>
</tbody>
</table>

N: Number of accessions, A': total number of alleles, A'^r: number of rare alleles, A'^p: number of private alleles, A: mean number of alleles per locus, He: expected heterozygosity, Ho: observed heterozygosity, Fst = genetic differentiation index.

Table 4. Genetic distance between pair of genetic groups of sweet grain sorghum.

<table>
<thead>
<tr>
<th>Group</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0.3702**</td>
<td>0.3093**</td>
</tr>
<tr>
<td>B</td>
<td>0.220</td>
<td>0</td>
<td>0.2794**</td>
</tr>
<tr>
<td>C</td>
<td>0.215</td>
<td>0.142</td>
<td>0</td>
</tr>
</tbody>
</table>

The upper diagonal is the comparison of Fst by pair of genetic group and the lower diagonal (bold) is the minimum distance of Nei. **Significant at 1%.

alleles in the sweet stalk sorghum of Burkina Faso, such as 12 for xtxp145 locus and 10 alleles for xtxp320 locus (Nebié, 2014). The PIC of SSR marker that takes into account the number of alleles detected and the relative frequencies of these alleles constitute an important estimate of the discriminating capacity of this marker (Smith et al., 2000). The relatively high value of the PIC of the SSR markers used shows that they have had a undifferentiated. These results indicate that the diversity observed was lower than those of several previous studies (Nebié, 2014; Missihoun et al., 2015; Al-Issawi, 2017). The SSR polymorphism, the level of diversity of accessions in the collection, and the sensitivity of DNA fragment separation systems could explain these strong discriminating capacity for these genetic studies. The markers xtxp145, xtxp320 and gpsb123 were therefore
the most discriminating with PIC greater than 0.6. But the maximum value of PIC per marker was lower than the value obtained by Amelework et al. (2015) and Gyalyoun et al. (2016): 0.88 and 0.89, respectively.

The 49 alleles detected show that the collection of sweet grain sorghum from Burkina Faso is relatively similar. In addition, the very low proportion of rare alleles (12%) in the collection may be related to the small sample size and the much smaller geographic origin of accessions or to a low microsatellite marker mutation rate. However, rare alleles may be of great interest if they are related only to a few particular genotypes. They can be used to identify particular genotypes or specific genome regions related to a particular type of sorghum (Agrahama and Tuinstra, 2003). Indeed, Casa et al. (2005) and Salih (2011) detected 64 and 59% of rare alleles in more extensive collections.

The collection is relatively poor in heterozygotes due to the mean observed heterozygosity rate and the very high Wright’s fixation index (Fis). The Fis index was higher than the value of Barnaud et al. (2007), but similar value was obtained by Ouedraogo et al. (2017), which was 0.68 and 0.97, respectively. The observed heterozygosity rate was lower than the value of Salih (2011) but higher than the results obtained by Nebié (2014) (0.016) and Ouedraogo et al. 2017 (0.012). These results are probably related to the preferentially autogamous reproduction regime of species, the racial difference and the fact that accessions were obtained by self-pollination. The collection contains a large proportion of accessions close to the guinea whose glumes are open, which favors the allogamy whose rate can reach 24%, according to Barro-Kondombo (2010).

SSR markers are commonly used as a tool to examine the dynamics of differentiation in the population (Matsuoka et al., 2002) and for specific analyses (Liu et al., 2003; Barkley et al., 2006; Kwak and Gepts, 2009). The three genetic groups identified reveal a lower genetic diversity of sweet sorghum compared to sorghum in center and west of Burkina where Barro-Kondombo (2010) obtained 6 genetic groups. This low genetic diversity may be related to the more restricted range of these sorghum crops. The result is similar to those of Missihoun et al. (2015) who have obtained three groups with 61 accessions and 20 SSRs, while Muiu et al. (2016) have obtained four groups with 20 SSRs and 44 accessions.

The study showed a weak genetic polymorphism in Burkina Faso sweet grain sorghum and a distribution of accessions into three genetic groups. The gspb123, xtp145, and xtp320 markers were the most informative on the diversity of sweet grain sorghum and most discriminating. These results show that the molecular markers used were appropriate for the assessment of the genetic diversity of Burkina Faso sweet grain sorghum. A study of the phylogeny of these sorghums could allow to position them in relation to other sorghum and to complete the results of this study.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES


Full Length Research Paper

Biodegradation of fenthion and temphos in liquid media by *Bacillus safensis* isolated from pesticides polluted soil in the Sudan

Azhari Omer Abdelbagi¹, Adam Ishag Abdallah Wady¹, Abd Elaziz Sulieman Ahmed Ishag¹*, Ahmed Mohammed Ali Hammad¹, Mohamed Abdalla Omer Abdalla² and Jang-Hyun Hur³

¹Department of Crop Protection, Faculty of Agriculture, University of Khartoum, Sudan.  
²Department of Botany, Faculty of Agriculture, University of Khartoum, Sudan.  
³Department of Biological Environment, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.

Received 5 September, 2017; Accepted 26 January, 2018

The objective of this study was to evaluate the capability of the bacteria *Bacillus safensis* strain FO-36bT isolated from pesticide-polluted soil in degrading fenthion and temphos in mineral salt media (MSM). Fenthion and temphos were incubated with the isolated bacteria. Samples were drawn at 0, 3, 7, 14, and 30 days to analyze residual fenthion and temphos content with gas chromatography (GC) and high-performance liquid chromatography (HPLC), respectively. The loss of the initial pesticide concentration (400 mg/L) over time was determined and used to compute the half-lives using a biphasic model. Gas chromatography-mass spectrometry (GC-MS) was used to identify the major metabolites as well as to re-confirm the identity of starting material (fenthion). The results showed that the bacterium was still viable at the end of each incubation period. The biodegradation of fenthion and temphos followed a biphasic model. The half-lives of fenthion in the first and in the second phase were 0.29 and 3.69 days, respectively, whereas the corresponding values for temphos were 0.11 and 1.15 days. Only one metabolite "iso-fenthion" (O, S-dimethyl O-[3-methyl-4-(methylthio)phenyl] phosphorothioate) was detected in fenthion culture, while no metabolites were detected in temphos culture. Based on the half-lives, this bacterium was able to degrade temphos at a faster rate than fenthion.

**Key words:** Biodegradation, fenthion, temphos, bacteria, pesticides-contaminated soil, Sudan.

INTRODUCTION

Fenthion and temphos are organophosphorus insecticides used as larvicides in fresh and polluted waters, under urban malaria schemes (UMS). The use of the same larvicide for a long-time may, however, cause resistance in mosquito larvae (Mittal et al., 1999). Fenthion and temphos are used in Sudan to control...
larvae of malaria vectors (Bashir et al., 2012). Fenthion is available as dusts, emulsifiable concentrate, granules, liquid concentrates, spray concentrates, ultra-low volume (ULV) and wettable powder formulations (Meister, 1992). The frequent and extensive field use of temphos has caused the development of resistance in Chironomus yoshimatsui in the Kanda River, Tokyo (Ohno and Okamoto, 1980).

Fenthion is moderately toxic to mammals if ingested, inhaled, or absorbed through skin (Smith 1993) and highly toxic to birds. Based on its high toxicity to birds, fenthion is used in various parts of the world for weaver bird control as well as for the control of pigeons around public buildings. It has contact action and it is readily absorbed through skin. It is applied as a paste to roosting areas when utilized for such purposes (McEwen and Stephenson, 1979). Fenthion is classified by the U.S. Environmental Protection Agency (EPA) as a Restricted Use Pesticide (RUP) due to the special handling warranted by its toxicity (VanDrieshe, 1985).

Temphos is considered as a basic larvicide for immature stages of mosquito (Jamal et al., 2011). Its aerial application over aquatic sites may contaminate surface and drinking waters. The human population may be exposed to temphos via ingestion of some fish/seafood, drinking water, and dermal contact with consumer products containing this compound.

In water, temphos might be adsorbed to organic matter and slowly released to achieve steady state. Remediation of some elements pollutant using sorption process by various source materials of natural organic matter in aqueous solution was reported (Butnariu et al., 2015). Temphos adsorption to sediment steadily increased to a maximum after two days of exposure, but temphos degradation products were shown to adsorb less strongly to soils. Absorption would be expected to be less than 3% of applied dose. In mammals, elimination of mainly unchanged temphos is in the feces and urine. It might also be released to the environment through various waste streams (CASRN, 2015). US EPA concluded that there was no evidence of carcinogenicity of temphos. Temphos formulations were classified as slightly toxic end-use products (EPA toxicity class III) (US EPA, 2001).

Biodegradation is a common mechanism for fenthion and temphos degradation in the environment (HSDB, 2003). The potential use of Sudanese soil microorganisms in cleaning pesticides polluted soils in Sudan and dump sites was first argued by Abdelbagi et al. (2000, 2003).

Strains of microorganisms isolated from pesticides polluted soils in Sudan were reported to have great capability for the degradation of some pesticides such as malathion, chlorpyrifos, dimethoate, benomyl, thiram, oxyfluorfen, lindane, endosulfan pendimethalin, atrazine, and azoxystrobe (Ishag et al., 2017, 2016; Elsalahi et al., 2015; Abdurruhman et al., 2015; Shaer et al., 2013; Elhussein et al., 2011; Mohamed et al., 2011; Elsaid et al., 2009; Elsaid and Abdelbagi, 2010; Osman, 2006). Their degradation capability can be enhanced by many activators such as farm manure and synthetic fertilizers (El said et al., 2009). This study was initiated to evaluate the potential capability of the indigenous bacteria Bacillus safensis isolated from pesticides polluted soils in degrading fenthion and temphos under the condition of mineral salt media. To study the biodegradation of fenthion and temphos, the specific objectives were: (1) to characterize biodegradation rates on mineral salt media and (2) to identify bio-degradation products especially of toxicological concern.

MATERIALS AND METHODS

Chemicals and reagents

Analytical standards of the organophosphorus insecticides temphos (94.9% pure) and fenthion (95.5% pure) were obtained from the Agricultural Research Corporation, Sudan. Solvents (99.8% pure; acetone, n-hexane, ethanol, dichloromethane and other solvents) were obtained from Fischer, company, UK.

Isolation and identification of microorganisms from pesticides polluted soils

Surface soil samples were randomly collected from pesticides polluted storage soil in Hasahisa, (Gezira scheme) using a soil auger (10 cm length × 5 cm diameter). Five augers were taken and mixed thoroughly to make the composite sample (1 kg). The collected samples were placed in labeled paper bags and immediately transported to the pesticides laboratory, Crop Protection Department, Faculty of Agriculture, University of Khartoum, and then sent to the Microbiology Laboratory, Faculty of Veterinary Medicine, University of Khartoum for isolation and identification of the types of bacteria present. Isolation and identification were done according to the methods described by Cowan and Steele (1993). The identified isolate have been reconfirmed by molecular biotechnology (Ishag et al., 2016, 2017). The identified bacterial strain was subcultured on meat peptone agar for 24 h prior to their use in biodegradation study using mineral salt media (almost organic carbon free media).

Preparation of media

**Meat peptone agar (MPA)**

This media was prepared by adding 5 g meat, 7.5 g of peptone, 5 g NaCl, and 15 g agar to 1 L distilled water according to the methods of Tepper et al. (1993) and kept in a refrigerator at 5°C for further use.

**Mineral salt medium (MSM)**

MSM was prepared following the method described by Tepper et al. (1993); 1 g K₂HPO₄, 0.5 g MgSO₄, 7H₂O, 0.5 g NaCl, 0.001 g FeSO₄·7H₂O, 0.01 g MnSO₄·4H₂O, and 0.05 g CaCO₃ were added to a conical flask (1500 mL) and then, the volume was completed to 1 L by adding distilled water. The media were autoclaved for 20 min at 121°C and then allowed to cool at room temperature and kept in a refrigerator at 5°C for further use.
Preparation of the microbial inoculums

Two hundred milliliters of MPA were taken and placed in a 250 mL conical flask and inoculated with bacteria using sterilized loops. Inoculated flask was then closed with sterilized cotton and kept in an incubator (thermostatic cabinet, Austria) at 25°C for 24 h prior to use in biodegradation experiment.

Microbial degradation of fenthion and temphos in mineral salt media

The aim of this experiment was to evaluate the capability of the isolated bacteria B. safensis in degrading fenthion and temphos in mineral salt media. A total of 30 clean test tubes were sterilized in an oven for 3 h at 180°C. Ten milliliters of mineral salt media (MSM) were taken from the stock flask into each test tube. One milliliter of inoculum was added to each test tube. The inoculated test tubes were incubated at 25°C with 400 mg/L temphos and fenthion for 0, 3, 7, 14, and 30 days. The experimental units were arranged in a Completely Randomized Design (CRD) with two replicates. Control sets without bacterial inoculums were incubated under the same conditions. The recovery sets were immediately extracted and kept in the refrigerator for analysis by Gas Chromatograph (GC) for fenthion and High-Performance Liquid Chromatography (HPLC) for temphos.

Effect of temphos and fenthion on cultured bacteria

One milliliter of culture was taken by sterilized pipette from each test tube at the end of each period of 3, 7, 14, and 30 days and placed in a Petri dish containing sterilized meat peptone agar (MPA). The inoculated plates were then incubated at 37°C for 72 h.

Extraction of fenthion and temphos from the culture

Treated cultures were centrifuged at 800 rpm for 10 min to separate the microorganisms from the media. The supernatant was removed by careful decanting and placed in 100 ml separatory funnel and 10 ml of dichloromethane, and 10 ml saturated sodium chloride solution were added. The contents were vigorously shaken for 5 min and allowed to stand for 3 min until separation of layers. The dichloromethane layer was collected in a clean test tube and the aqueous layer was re-extracted twice with 10 ml dichloromethane. Dichloromethane fractions were recombined in a clean test tube and dried up by passing through anhydrous sodium sulfate on a filter paper. The solvent was stripped off by rotary evaporator at 70°C till dryness and the residues were reconstituted in 10 ml n-hexane and stored in the refrigerator at 5°C for Gas Chromatograph (GC) and High-Performance Liquid Chromatography (HPLC) analysis. The identity of starting materials and breakdown products were confirmed by GC-MS.

Gas chromatographic analysis

A Shimadzu GC Qp2010 system (Japan) Gas chromatograph (GC) equipped with flame ionization detector (FID) and DB-5 splitless injection fused silica capillary column of 30 m length and 0.25 mm ID was used for fenthion analysis extracts. The stationary phase (0.25 mm thickness) was 5% phenyl, methylpolysiloxane. Detector and injection temperatures were 330 and 300°C, respectively. Nitrogen was used as carrier gas at a flow rate of 4.23 ml min⁻¹. The oven temperature was programmed as follows: initial temperature was 50°C for 1 min, increased at 5°C min⁻¹ until 75°C, held for 2 min, increased again at 10°C min⁻¹ until 160°C, held for 6 min, and finally increased by 5°C min⁻¹ until 180°C and then held for 3 min, and finally increased by 3°C min⁻¹ until the final temperature which was 240°C, with holding time of 10 min. Flow rates of the makeup gas (helium), hydrogen, and air were 30, 40, and 400 mL min⁻¹, respectively. Analysis of sample was done by duplicate injections of 1 µL each. Three concentrations (62.5, 125 and 250 mg/L) of the analytical standard of fenthion (95.5% pure) was injected under the same condition and response was used for the construction of the standard curve. Data was processed by GC solution software version 2.3. The limit of detection (LOD) of fenthion was 1.8 mg/L. The recovery of fenthion from the media was greater than 98%.

Gas chromatography with mass spectrometry (GC-MS) instrumentation

Three representative samples were reanalyzed using Shimadzu GC-MS Qp2010 system (Japan) with an AOC-5000 autosampler. The gas chromatograph was fitted with RSS-MS capillary column of 30 m × 0.25 mm ID, 0.25 µm film thicknesses from Restek (UK). Helium (purity ≥ 99.999%) was used as a carrier gas at a flow rate of 1.22 ml min⁻¹. The splitless injection temperature was 200°C. The oven temperature was programmed from an initial temperature of 100°C, held for 3 min, then increased to 180°C at 16°C min⁻¹, held for 6 min, and finally, increased by 16°C min⁻¹ to 240°C at which it was held for 3 min. The mass spectrometer was operated with electron impact (EI) source in the scan mode. The electron energy was 70 eV, and the interface temperature was maintained at 200°C. The solvent delay was set to 2 min.

High-performance liquid chromatography analysis

A Shimadzu (Kyoto, Japan) CLASS-VP, Version 5.22 High-Performance Liquid Chromatography (HPLC) equipped with a UV/Visible detector was used for analysis of extracts of temphos. Separation was performed on a Luna C18 column. The instrument system consisted of LC-10 ADvp binary pump, DGU-14 An online degasser, SPD-M10-Avp Luna absorbance detector, Sil-10 ADvp auto-injector, CTO-10 ASvp column oven fitted with Shim- Pack VP-ODS (150 × 4.6 mm, 10 µm) column and a similar pre-column (4 × 4 mm. ID). Samples were auto-injected. The detector was connected to the computer for data processing. The working condition of the HPLC was a binary gradient, with the mobile phase being acetonitrile: water (60:40), the flow rate was 1 ml min⁻¹. Injection volume was 10 µL and the wavelength of the UV/Vis detector was fixed at 210 nm. Analyses of samples were done by duplicate injections of 10 µL each. Five concentrations (10, 20, 40, 80 and 100 mg/L) of the analytical standard of temphos (94.9 pure) were injected under the same condition and response was used for the construction of the standard curve. The limit of detection (LOD) of temphos was 1.58 mg/L. The recovery of temphos from the media was greater than 98%.

Statistical analysis

The data were subjected to the analysis of variance (ANOVA) and means were separated by the LSD. The probability of 0.05 or less was considered significant (SAS 2004). A biphasic model was assumed in order to calculate the loss of fenthion and temphos from the media inoculated with the bacteria. Calculations were done according to the following equation:

\[ R = A e^{-\alpha t} + B e^{-\beta t} \]  (1)

Where, \( R \) is amount of fenthion and temphos at t days, \( A \) and \( B \) are the concentrations of fenthion and temphos at t=0, \( \alpha \) and \( \beta \) are the
Table 1. Main concentrations (±SD) of fenthion and temphos (mg/L) following incubation with *Bacillus safensis* in mineral salt medium (MSM).

<table>
<thead>
<tr>
<th>Time (days)</th>
<th>Fenthion (mg/L)</th>
<th>Temphos (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>400±0.000</td>
<td>400±0.000</td>
</tr>
<tr>
<td>3</td>
<td>372±0.0039</td>
<td>307±0.0060</td>
</tr>
<tr>
<td>7</td>
<td>50±0.111</td>
<td>261±0.003</td>
</tr>
<tr>
<td>14</td>
<td>34±0.001</td>
<td>152±0.002</td>
</tr>
<tr>
<td>30</td>
<td>275±0.009</td>
<td>89±0.004</td>
</tr>
<tr>
<td>LSD</td>
<td>21.5</td>
<td>12.036</td>
</tr>
</tbody>
</table>

Means followed with the same letter(s) in the same column are not significantly different at p=0.05 according to LSD.

**RESULTS**

Biodegradation of fenthion and temphos in mineral salt media (MSM)

The indigenous bacteria *B. safensis* strain FO-36bT showed capability in degrading fenthion and temphos in mineral salt media (MSM). Data in Table 1 indicates that the concentrations of fenthion and temphos declined with the increase in the incubation periods. The concentration of fenthion (400 mg/L) was found to be 400, 372.8, 350.8, 334.6, and 275.5 mg/L after 0, 3, 7, 14, and 30 days of incubation, respectively, while the concentration of temphos (400 mg/L) was found to be 400, 307.7, 261.9, 152.4, and 89.3 mg/L following the same order. Generally, the rate of fenthion disappearance was high up to day 14 and slow thereafter while that for temphos was from day 7 onward (Table 1 and Figures 1 and 2). There were significant differences between the levels of fenthion and temphos at various time intervals. Less than 68% of the initial concentration was recorded at 30 days after the incubation of fenthion with the bacteria, whereas 22% of the initial amount was found after 30 days of incubation of temphos with the bacteria. Despite the significant drop in the starting material, only one metabolite was detected "iso-fenthion" (O, S-dimethyl O-[3-methyl-4-(methylthio) phenyl] phosphorothioate) in fenthion (Figures 3, 4 and 5). The recovery of the
fenthion and temphos from the media was greater than 98%. There was no change in the cultured bacteria after each incubation period. Generally, the results in Table 3 show that the degradation constant decreased with increase in the incubation period, while the mean lifetime is directly proportional to the incubation period.

**Biodegradation kinetics**

The data in Table 2 indicates that there was a faster rate of disappearance in the first phase than in the second. This is clearly reflected in the half-life values obtained. The half-life of fenthion and temphos in the first phase were estimated at 0.29 d and 0.11 days, respectively, while the corresponding values for the second phase were 3.69 and 1.15 days.

**DISCUSSION**

The results of biodegradation of fenthion and temphos by the bacteria *B. safensis* strain FO-36bT isolated from
pesticides polluted soil in Sudan was studied under mineral salt medium (MSM). Results indicate that the isolated organism is capable and efficient in degrading fenthion and temphos. The bacteria reduced the half-life of fenthion to 0.29 days in the first phase ($t_{1/2}$) and 3.69 days in the second phase ($t_{1/2}$) while for temphos it was reduced to 0.11 days in the first and 1.15 days in the second phase.

This reduction can be considered very significant compared to the reported fenthion half-lives 14 to 40 days. The degradation of temphos was followed by first-order kinetics, with a half-life of 17.2 days in the soil (CASRN, 2015). Bacillus cereus, Bacillus mycoides, and Pseudomonas aerginosa were reported as degrades of organic compounds such as petroleum products (Okerentugba and Ezeronye, 2003; Dhanarani et al., 2016) while B. safensis strain CFA-06 was reported to degrade aromatic compounds and petroleum aromatics (Francie et al., 2015). B. safensis Gram-positive and it has environmental relevance in biocatalysis and bioremediation studies (Kothari et al., 2013). Lateef et al. (2015) reported that B. safensis has promising biotechnological applications due to its ability to produce various industrial enzymes and industrially applicable secondary metabolites. Abiotic factors such as pH and temperature were found to have effects on biodegradability of chlorpyrifos by test microorganism (EPA, 1997). The current result agrees with those of Shaer et al. (2013) who showed that bacterial strains (B. cereus, B. mycoides, and P. aerginosa) isolated from pesticide-polluted soil are capable of degrading pendimethalin under the condition of mineral salt media. Further, this study agrees with Abdurruhman et al. (2015) who mentioned that bacteria Psedomonas pickettii isolated from pesticides polluted soil in the Sudan are capable and efficient in degrading pendimethalin and
Table 2. Statistical parameters of fenthion and temphos bacterial dissipation in mineral salt medium (MSM).

<table>
<thead>
<tr>
<th>Statistical parameter</th>
<th>Fenthion</th>
<th>Temphos</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_0$</td>
<td>372</td>
<td>333</td>
</tr>
<tr>
<td>$B_0$</td>
<td>350</td>
<td>261.8</td>
</tr>
<tr>
<td>$\alpha$ (days$^{-1}$)</td>
<td>0.0236</td>
<td>0.0874</td>
</tr>
<tr>
<td>$\beta$ (days$^{-1}$)</td>
<td>0.0187</td>
<td>0.0604</td>
</tr>
<tr>
<td>$t_{1/2\alpha}$ (days)</td>
<td>0.2925</td>
<td>0.0604</td>
</tr>
<tr>
<td>$t_{1/2\beta}$ (days)</td>
<td>3.694</td>
<td>1.1457</td>
</tr>
<tr>
<td>Regression coefficient</td>
<td>0.559</td>
<td>0.8333</td>
</tr>
</tbody>
</table>

$A_0$ and $B_0$ are the concentration of fenthion and temphos at $t = 0$ and $\alpha$, $\beta$ are the disappearance rate constants for the first and second phase model, respectively.

Table 3. Mean lifetimes (days) and decay constants of fenthion and temphos following incubation with the B. safensis.

<table>
<thead>
<tr>
<th>Incubation period (days)</th>
<th>Mean lifetime</th>
<th>Decay constant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Fenthion</td>
<td>41.34</td>
<td>52.42</td>
</tr>
<tr>
<td>Temphos</td>
<td>11.34</td>
<td>16.40</td>
</tr>
</tbody>
</table>

atrazine under the condition of mineral salt media.

Temphos, when incubated in water with isolates from a sewage treatment lagoon or a farm pond, was found to slowly degrade after a 7 day lag period, forming products arising from the oxidation of the sulfide group and hydrolysis of the phosphate group (Daorai and Menzer, 1977). In soil, fenthion degradation ranges from 4 to 6 weeks and it occurs through photodegradation as well as anaerobic or non-photolytic organisms. However, soil particles strongly absorb fenthion that makes it less susceptible to percolate with water through the soil (ATSDR, 2005). Recently, Ishag et al. (2016, 2017) reported at the first time degradation of chlorpyrifos, dimethoate, malathion, pendimethalin, and endosulfan by newly isolated bacterial strains form pesticides polluted soils. They obtained encouraging results with degradation of different pesticides and also found that the concentration of chlorpyrifos was sharply reduced in culture of B. safensis strain FO-36b$^T$ than the other tested pesticides. The current study agrees with the argument of Abdelbagi et al. (2000, 2003) that indigenous soil microorganisms could be of great potential in reducing the level of contamination by pesticides in highly polluted storage soil in the Sudan. Their suggestion is in line with Elzorgani (1982) who mentioned that irrespective of a large amount of dichlorodiphenyltrichloroethane (DDT) and other pesticides applied in Gezira scheme, Sudan, yet their soil level is not high which indicate a possible and efficient degradation factors in these soils. This argument was later confirmed by Ali (2005) and Elsaid et al. (2011, 2010, 2009), who demonstrated the capability and efficiency of indigenous soil microorganisms (bacteria, actinomycetes, and fungi) in degrading soils. They suggested that the formation of isomalathion is due to oxidation of malathion by cytochrome P-450. The absence of detectable levels of breakdown products on pesticides biodegradation studies involving bacteria and fungi was reported by many authors (Khaled et al., 2008; Ishag et al., 2016, 2017).

Despite the drop in the starting material of temphos, no metabolites were detected. However, one metabolite “iso-fenthion” (O, S-dimethyl O-[3-methyl-4-(methylthio) phenyl] phosphorothioate) was detected in fenthion culture (Figures 3, 4 and 5). The detected fenthion metabolite (Figure 6) could be formed by rearrangement of sulfur and oxygen atom. Kouichi and Yasuo (2006) reported that the formation of isomalathion is due to oxidation of malathion by cytochrome P-450.
incubation period and even after the end of the whole experiment (30 days). The current results of *B. safensis* indicate its ability to live in such media.

The current results indicate that the strain of the bacteria *B. safensis* isolated from pesticides polluted soil was capable of degrading both fenthion and temephos under the conditions of mineral salt media. Based on this finding and those of previous studies (Ishag et al., 2016, 2017; Abdurruhman et al., 2015; Shaer et al., 2013; Elsaid and Abdelbagi, 2010; Elsaid et al., 2011, 2010, 2009; Osman, 2006; Ali, 2005), one can argue the significant of carrying further studies on this topic such as effects of environmental factors on soil media on the rate of degradation. Isolation and characterization of the responsible enzymes in this bacterium also deserve to be included in future work. Studies of the role of other indigenous microorganism deserve future work.

**CONFLICT OF INTERESTS**

The authors have not declared any conflict of interests.

**REFERENCES**


Environmental Protection Agency (1997). Review of Chlorpyrifos poisoning data, Washington, DC, USA.


Jamil AE, Nugud AD, Abdalmagid MA, Bashir AIM, Brair I, Elnasim H (2011). Susceptibility of *Culex quinquefasciatus* Say (Diptera Culicidae) in Khartoum locality (Sudan) to Malathion, Temephos,

![Figure 6. Degradation pathway of fenthion by *B. safensis* in MSM.](attachment://fenthion_degradation_pathway.png)
Related Journals:

- International Journal of Genetics and Molecular Biology
- Journal of Microbiology and Antimicrobials
- African Journal of Biotechnology
- Journal of Biophysics and Structural Biology
- Journal of Cell and Animal Biology
- Biotechnology and Molecular Biology Reviews
- Journal of Bioinformatics and Sequence Analysis
- African Journal of Biochemistry Research