ABOUT IJNM

The International Journal of Nursing and Midwifery (IJNM) is published monthly (one volume per year) by Academic Journals.

International Journal of Nursing and Midwifery (IJNM) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as family practice, women's health care, emergency nursing, psychiatry, geriatrics, pediatrics etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in IJNM are peer-reviewed.

Contact Us

Editorial Office: ijm@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/IJNM
Submit manuscript online http://ms.academicjournals.me/
Editors
Dr. Alleene M. Ferguson Pingenot
California State University, Stanislaus
One University Circle DBH 260, Turlock, CA 95382
USA

Prof. Helen McCutcheon
University of South Australia, School of Nursing & Midwifery
GPO Box 2471, Adelaide, South Australia, 5001,
Australia

Dr. Andrew Crowther
Charles Sturt University
Leeds Parade, Orange, New South Wales 2800,
Australia

Dr. Panagiotis Christopoulos MD,MSc,PhD,IFEPAG
2nd Dept. Ob/Gyn
Medical School, University of Athens
1 Hariton street,
14564, N. Kifissia, Athens,
Greece.

Dr. Jacinta Kelly
School of Nursing & Midwifery
24 Dolier St, Dublin 2
Ireland

Dr. Arun Kumar
Manipal College of Medical Sciences
Department of Biochemistry, Pokhara, Nepal
India

Dr. Jafar Alasad
College of Nursing, King Saud bin Abdulaziz
University for Health Sciences
(MC 3105)
King Abdulaziz Medical City - National Guard
Health Affairs
P.O. Box 22490, Riyadh 11426,
Saudi Arabia

Dr. Harunor Rashid
Barts and the London Queen Mary’s School of Medicine and Dentistry, London
The Blizard Building, 4 Newark Street, London E1
2AT,
United Kingdom

Dr. Fintan Sheerin
School of Nursing and Midwifery, Trinity College Dublin,
24 D’Olier Street, Dublin 2.
Ireland
<table>
<thead>
<tr>
<th>Editorial Board</th>
</tr>
</thead>
</table>
| **Dr. Sawsan Majali**
Dar Al Hekma College
P.O.Box 34801, Jeddah 21478
Saudi Arabia |
| **Dr. Patricia L. Riley**
US Centers for Disease Control and Prevention (CDC)
1600 Clifton Road, NE
Mail Stop E-41
Corporate Square Bldg 1, Rm 2409
Atlanta, GA
30329-1902
USA |
| **Dr. Lucille van der Westhuizen**
University of Namibia
P/B 13301 Windhoek,
Namibia |
| **Dr. Imtiaz Wani**
S.M.H.S Hospital, Srinagar
Amira Kadal, Srinagar
India |
Comparative study of general with Spinal Anesthesia on maternal outcomes for caesarean delivery among preeclamptic women at Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia

Tsehay Terefe, Yohannes Tekalegn and Abraham Irena
Comparative study of general with Spinal Anesthesia on maternal outcomes for caesarean delivery among preeclamptic women at Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia

Tsehay Terefe1*, Yohannes Tekalegn2 and Abraham Irena1

1Tikur Anbessa Specialized Hospital, College of Health Sciences, Addis Ababa University, Ethiopia.
2Gobba Referral Hospital, College of Health Sciences, Madda Walabu University, Ethiopia.

Received 1 September, 2017; Accepted 13 February, 2018

Anesthetic management of preeclamptic patients remains a challenge. Although general anesthesia can be used safely in pre-eclamptic women, it is fraught with greater maternal morbidity and mortality. The added risks associated with general anesthesia include airway difficulties due to edema (often aggravated by tracheal intubation) and the pressure response to laryngoscope and intubation. However, several studies support the use of spinal anesthesia as first choice reasoning less post-operative morbidity and mortality. To compare maternal outcome among preeclamptic women after caesarian delivery under general and spinal anesthesia in Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia. Hospital based retrospective comparative cross sectional study was used to compare maternal outcomes. All preeclamptic mothers that underwent Caesarian Section in Obstetrics and Gynecology Ward, Tikur Anbessa Specialized Hospital from October 2014 to October 2016 was included in the study. Data collection was carried out by using structured questionnaire. Data entry and analysis was done on SPSS version 20. Independent sample T-test and logistic regression was conducted to compare the outcome in both groups of spinal and general anesthesia, 95% confidence interval (CI) and p value < 0.05 is set as cut off point for statistical significance. The mean age of study subjects were 28.18 years and SD= ± 4.66 years, the median age is 28 years (IQR: 25-30 years). Majority 152 (91%) of the cesarean sections (C/S) was emergency C/S and the rest 15 (9%) were elective C/S. 78 (46.7%) of parturient operated under general anesthesia, and 89 (53.3%) were operated under spinal anesthesia. None of the mothers developed post-op complication, and none of the maternal death were documented until discharge from the hospital in both groups of parturient. The present finding shows that statistically significant higher intra operative blood pressure and pulse rate was observed among GA group when compared with SA group. In conclusion, SA is safer than GA in terms of stable intra operative vital signs among preeclamptic women.

Key words: Preeclampsia, caesarean section, general anesthesia, spinal anesthesia, Ethiopia.

INTRODUCTION

Preeclampsia is a multi-systemic disorder characterized by hypertension and new-onset of proteinuria which develops after the 20th week of pregnancy in previously normo-tensive women. It is a common cause of maternal and perinatal morbidity and mortality in both developed and developing countries affecting 2 to 8% of
pregnancies (World Health Organization (WHO), 1988). WHO estimates that the incidence of preeclampsia is 7 times higher in low- and middle-income countries than in high-income countries, and from 10 to 25% of these cases will result in maternal death (Engender Health, 2007; Dolea and AbouZahr, 2003). Preeclampsia/Eclampsia is responsible for an estimated 16% of global maternal mortality (63,000 maternal deaths) annually (Khan et al., 2006).

Rates from African countries such as South Africa, Egypt, Tanzania, and Ethiopia vary from 1.8 to 7.1% (Kimbally et al., 2007; Mahaba et al., 2001; Thiam et al., 2003; Teklu and Gaym, 2006). According to WHO report, an estimated 350 women per 100,000 live births were dying of pregnancy and related causes in Ethiopia. The Ethiopian National Emergency Obstetric and Newborn Care (EMONC) survey showed that preeclampsia contributed to the complication of approximately 1% of all deliveries and 5% of all pregnancies. Moreover, 16% of direct maternal mortality and 10% of all maternal mortality (direct and in direct) was due to preeclampsia/eclampsia (Gaym et al., 2011). A maternal mortality trend analysis showed an increasing trend of preeclampsia in Ethiopia (Abdella, 2010). Cesarean section is one of the lifesaving surgical interventions attributed to the decrease of maternal and perinatal mortality and morbidity. The frequency of cesarean section births continues to steadily rise worldwide (Gori et al., 2007). According to Demographic Health Survey (1990 to 2014), the global cesarean section rate is 18.6%. The average cesarean section rate in Africa is 7.3%, the highest Egypt (51.8%) and 0.6% for Ethiopia which is very low. But the national cesarean section rate in Ethiopia varies from 2 to 27% (Betrán et al., 2016).

Cesarean anesthesia has gained importance as the cesarean birth rates have increased. Even though the cesarean procedure has become very safe over the years, it is still associated with maternal and perinatal mortality and morbidity (Liu et al., 2007). The overall postoperative morbidity rate associated with cesarean births is 35.7%. The higher mortality and morbidity rates might be attributable not only to the surgical procedure but also to the anesthetic technique preferred (SaygıI et al., 2015).

This study aimed to compare outcomes of preeclamptic parturient following caesarean delivery under either general or spinal anesthesia.

MATERIALS AND METHODS

Study area and setting

A hospital based retrospective cross sectional study was used to compare maternal outcomes following caesarian delivery in preeclamptic women under general and spinal anesthesia in Tikur Anbessa Specialized Hospital Addis Ababa, Ethiopia; from November to December, 2016. Addis Ababa is the capital city of Ethiopia. It is the largest city with a population of 3,384,569 according to the 2007 population census. It lays at an altitude of 7,546 ft (2,300 m) above sea level in the southern periphery, the city rises to over 9,800 ft (3,000 m) in the north. It has 11 government hospitals and 86 health centers in the city. Tikur Anbessa Specialized Hospital is tertiary referral, teaching governmental hospital and the largest of all public hospitals in Ethiopia. The hospital has a total of 800 beds, 80 of which are currently being used in obstetrics and gynecology ward. About 3000 deliveries are attended each year and 60% of these are operative deliveries (Aya et al., 2003).

Inclusion and exclusion criteria

Inclusion criteria

All preeclamptic mothers admitted in obstetrics and gynecology ward of Tikur Anbessa Specialized Hospital from October 2014 to October 2016 and underwent CS was included in the study.

Exclusion criteria

Mothers who also do not have complete records on their charts like operation sheet, anesthesia sheet, and socio demographic characteristics data were excluded from the study.

Sample size determination

All preeclamptic mothers that underwent CS in obstetrics and gynecology ward, Tikur Anbessa Specialized Hospital from October 2014 to October 2016 were included in the study.

Sampling procedures

First, all mothers with preeclampsia undergone CS for delivery with either GA or SA were selected by the principal investigator from CS registration book by counting cases that were enrolled between October 2014 and October 2016. Then all eligible patients’ card was collected from card room to conduct data collection.

Data collection procedures

Medical records were reviewed for all preeclamptic patients who had CS from October, 2014 to October, 2016. Data was collected from patients’ medical records by using checklists. Five nurses and two anesthetic nurses with experience of data collection and supervision was involved as data collectors and supervisors, respectively, after taking training for one day on how to collect records and fill on the format prepared. Socio demographic, reproductive health characteristics, pre-operative, intra-operative and post-operative data were collected after taking the selected parturient card from card store.

*Corresponding author. E-mail: tsehayterefe484@gmail.com. Tel: +251932971199.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
Data analysis procedures
The collected data were cleaned, coded, entered into SPSS version 20 statistical software for analysis. Data were checked for completeness and consistency. Frequency tables and graphs were used to describe the study variables. Independent sample T-test was applied to see whether there is significant difference between continuous independent variables and outcome variables. And logistic regression was applied for testing association between categorical independent variables and outcome variables. The significant level is declared at P-value < 0.05.

Data quality control
For data quality control, data collection tools were adopted from existing literatures and pretest of the questionnaire was carried out. Prior to data collection, one day training was provided for data collectors and supervisors on how to review records from the selected patient’s card and fill on the prepared format after taking 5% of the sample size from card room for pretest. Supervisors were assigned to supervise the data collectors and monitor the data collection process. The principal investigator role was to coordinate over all activities of the data collection process. There was meeting and discussion between data collectors, supervisor and the principal investigator after the end of data collection daily to ensure completeness and consistency.

Operational definitions
Maternal outcomes
The incidence of pre and post-operative morbidity (elevated blood pressure, hypotension, intra operative aspiration, peri-operative maternal death, peri-operative infection, length of hospital stay, peri-operative maternal death and admission in ICU) was collected.

General anesthesia
After pre oxygenation, thiopental 4 to 5 mg/kg and succinylcholine 1 to 2 mg/kg were administered and they were intubated under sellick’s maneuver. Maintenance of anesthesia was achieved with 100% oxygen and 0.5 to 1% halothane. Blood pressure and heart rate were monitored in the ward before induction after intubation and at 5 min interval till completion of the operation.

Spinal anesthesia
For spinal anesthesia (SA), isobaric bupivacaine (0.5%), 10 to 15 mg was given intrathecally at level of L3/L4 and 500 ml of normal saline given before induction and bilateral IV line secured to give crystalloid fluids and analgesics as required. Patients received 2 to 3 L/min oxygen from nasal prong throughout surgery. Blood pressure and heart rate were monitored at ward, before SA and after spinal anesthesia and at 5 min interval till completion of the operation.

Severe preeclampsia
Is the development of hypertension characterized by systolic blood pressure exceeding 160 mmHg and/or diastolic blood pressure exceeding 110 mmHg, together with proteinuria (>5 g/24 h) after 20 weeks of gestation (Leeman and Fontaine, 2008).

Ethical statement
Ethical clearance was obtained from Research Ethical Review Board of Addis Ababa University (AAU), permission to conduct the study was obtained from the clinical service director of Tikur Anbessa Specialized hospital prior to data collection. Participant records were treated anonymously and only accessed by research team; hence, confidentiality of participants’ records and privacy of the health facility were secured.

RESULTS
Socio demographic characteristics of respondents
A total of 170 patients’ document was reviewed based on the eligibility criteria and availability of the documents. The mean age of the study subjects were 28.18 years and SD= ±4.66 years, the median age is 28 years (IQR: 25-30). Majority of the cases 129 (78.7%) were from urban and the rest 34 (20.7%) are from rural areas. Regarding marital status, 153 (96.8%) were married and 5 (3.2%) were unmarried (Tables 1 and 2).

Obstetric characteristics
Clinical characteristics
Majority 152 (91%) of the cesarean sections (C/S) were emergency C/S and the rest 15 (9%) were elective C/S. 78 (46.7%) of the parturient were operated under general anesthesia and 89 (53.3%) were under spinal anesthesia. 130 (83.9%) of operators were resident (GP) and the rest 25 (16.1%) were senior gynecology and obstetrics surgeons.

Comparison of the maternal outcomes under either spinal or general anesthesia
Out of the total study subjects, 78 (46.7%) were operated under general anesthesia and 89 (53.3%) were under spinal anesthesia. Mean age of mothers was 28.2±4.5 vs. 28.1±4.8 years in general and spinal anesthesia groups, respectively. None of the patients had post operative complication in both groups. Mean days of hospital stay after C/S in both groups is comparable. None of the mothers died after C/S in both groups. There is no significant difference between GA and SA groups in terms of post operative complication, days of hospital stay, and death (Tables 3 and 4).

Comparison of maternal vital signs under GA vs. SA
Comparison of pulse rate
The mean pulse rate of mothers at ward and before
Table 1. Socio demographic characteristics of preeclamptic women underwent C/S at Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia, from 2014 to 2016.

<table>
<thead>
<tr>
<th>Variable</th>
<th>GA (%)</th>
<th>SA (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>67 (44.7)</td>
<td>83 (55.3)</td>
<td>1</td>
</tr>
<tr>
<td>Unmarried</td>
<td>4 (80)</td>
<td>1 (20)</td>
<td>0.1</td>
</tr>
<tr>
<td><20</td>
<td>1 (50)</td>
<td>1 (50)</td>
<td>1</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-34</td>
<td>70 (47.3)</td>
<td>78 (52.7)</td>
<td>0.9</td>
</tr>
<tr>
<td>≥35</td>
<td>7 (41.2)</td>
<td>10 (58.8)</td>
<td>0.8</td>
</tr>
<tr>
<td>Residence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>55 (44)</td>
<td>70 (56)</td>
<td>1</td>
</tr>
<tr>
<td>Rural</td>
<td>17 (50)</td>
<td>17 (50)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 2. Comparison of obstetric characteristics of preeclamptic women underwent C/S At Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia, From 2014 To 2016.

<table>
<thead>
<tr>
<th>Obstetric history</th>
<th>GA (%)</th>
<th>SA (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nullipara</td>
<td>35 (46.7)</td>
<td>40 (53.3)</td>
<td>1</td>
</tr>
<tr>
<td>1-4</td>
<td>38 (46.3)</td>
<td>44 (53.7)</td>
<td>0.93</td>
</tr>
<tr>
<td>≥5</td>
<td>1 (50)</td>
<td>1 (50)</td>
<td>1</td>
</tr>
<tr>
<td>Gestational age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><37 weeks</td>
<td>10 (71.4)</td>
<td>4 (28.6)</td>
<td>1</td>
</tr>
<tr>
<td>37-40 weeks</td>
<td>67 (44.7)</td>
<td>83 (55.3)</td>
<td>0.38</td>
</tr>
<tr>
<td>ANC follow up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>59 (47.2)</td>
<td>66 (52.8)</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>13 (41.9)</td>
<td>18 (58.1)</td>
<td>0.68</td>
</tr>
<tr>
<td>Referred from another health institution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>22 (55)</td>
<td>18 (45)</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>54 (44.6)</td>
<td>67 (55.4)</td>
<td>0.42</td>
</tr>
<tr>
<td>Had Previous history of C/S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>8 (44.4)</td>
<td>10 (55.6)</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>146</td>
<td>89</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Table 3. Comparison of clinical characteristics of preeclamptic women underwent C/S at Tikur Anbessa Specialized hospital, Addis Ababa, Ethiopia, from 2014 to 2016.

<table>
<thead>
<tr>
<th>Clinical characteristics</th>
<th>GA</th>
<th>SA</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of C/S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>4 (26.7)</td>
<td>11 (73.3)</td>
<td>0.098</td>
</tr>
<tr>
<td>Emergency</td>
<td>74 (49)</td>
<td>77 (51)</td>
<td>1</td>
</tr>
<tr>
<td>Operator status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior</td>
<td>12 (50)</td>
<td>12 (50)</td>
<td>1</td>
</tr>
<tr>
<td>Resident(GP)</td>
<td>58 (45.3)</td>
<td>70 (54.7)</td>
<td>0.67</td>
</tr>
<tr>
<td>Anti-hypertensive treatment used for preeclampsia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydralazine</td>
<td>44 (48.4)</td>
<td>47 (51.6)</td>
<td>0.94</td>
</tr>
<tr>
<td>Labetalol</td>
<td>0 (0)</td>
<td>2 (100)</td>
<td>0.99</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>0 (0)</td>
<td>5 (100)</td>
<td>0.99</td>
</tr>
<tr>
<td>Methyldopa</td>
<td>2 (50)</td>
<td>2 (50)</td>
<td>1</td>
</tr>
<tr>
<td>Anti convulsant treatment used for preeclampsia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium sulfate</td>
<td>25 (52.1)</td>
<td>23 (47.9)</td>
<td>0.53</td>
</tr>
<tr>
<td>Diazepam</td>
<td>1 (33.3)</td>
<td>2 (66.7)</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 4. Comparison of maternal outcome, among preeclamptic women underwent C/S, under GA and SA, at Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia, from 2014 to 2016.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type of anesthesia</th>
<th>General (%), n=78</th>
<th>Spinal (%), n=89</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age</td>
<td></td>
<td>28.2±4.5</td>
<td>28.1±4.8</td>
<td>0.86</td>
</tr>
<tr>
<td>Post-operative complication</td>
<td>Yes</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>78 (100)</td>
<td>89 (100)</td>
<td>0.39</td>
</tr>
<tr>
<td>Days of hospital stay</td>
<td>4-7 days</td>
<td>57 (75)</td>
<td>64 (73.6)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>≥7 days</td>
<td>1 (1.3)</td>
<td>0 (0)</td>
<td>0.6</td>
</tr>
<tr>
<td>Maternal outcome at discharge from hospital</td>
<td>Alive</td>
<td>78 (100)</td>
<td>89 (100)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Dead</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0.39</td>
</tr>
</tbody>
</table>

induction in GA vs. SA groups had no statistically significant difference. The mean pulse rate after induction and throughout intra operative period is significantly higher among GA group when compared with SA (Table 5).

Comparison of blood pressure

Despite the mean blood pressure of mothers at ward and before induction in GA vs. SA groups, there was no significant difference; the mean blood pressure after induction and throughout intra operative period is significantly higher among GA group than SA group (Table 5).

DISCUSSION

This study aimed to compare the outcome of preeclamptic women who gave birth through cesarean section, under either general or spinal anesthesia.

In the present study, 89 patients were administered spinal anesthesia and 78 patients received general anesthesia for cesarean section with a diagnosis of severe preeclampsia.

The present finding shows that both general and spinal anesthesia has no difference in terms of maternal survival status at discharge from the hospital. This finding is in line with previous studies conducted in Pakistan which found prevalence of uncontrolled hypertension and tachycardia to be higher among GA group when compared with SA group (Ahsan-Ul-Haq, 2004; Chattopadhyay et al., 2014; Denu et al., 2015). This result could be explained by the exaggerated response of patients’ to laryngoscopy after intubation of endotracheal tube. Hypotension was treated with conventional treatment using IV fluid therapy and hypertension was controlled with hydralazine or nifedipine. It was observed that although intra operative haemodynamic changes during SA and GA had statistically significant difference but clinically these were acceptable and manageable and did not have any deleterious effect on the patients of both groups.

Conclusion

The present study revealed that maternal outcomes such
as post operative complication, days of hospital stay, and maternal survival at discharge, have no statistically significant difference in both spinal and general anesthesia groups. General as well as spinal anesthetic techniques are acceptable for caesarean delivery in pregnancies complicated by severe preeclampsia if steps are taken to ensure a careful approach to either method. Spinal anesthesia could be considered as first choice for severe preeclamptic patients, associated with less intraoperative hypertension.

RECOMMENDATION

This study is recommended with strong design to be conducted in the area to come up with strong evidences.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

Abbreviations:

AAU, Addis Ababa University; CI, confidence interval; CS, caesarean section; DBP, diastolic blood pressure; EDHS, Ethiopia demographic and health survey; EMONC, Ethiopian emergency obstetric and newborn care; GA, general anesthesia; HELLP, hemolysis elevated liver enzymes and low platelet count; ICU, intensive care unit; MCH, maternal and child health; SA, spinal anesthesia; SBP, systolic blood pressure; SNNPR, South Nation Nationality People Region; SPSS, statistical package for social science; WHO, World Health Organization.

ACKNOWLEDGEMENT

The authors are grateful to Addis Ababa University for the financial and technical support.
REFERENCES

Related Journals:

- Clinical Reviews and Opinions
- Journal of Medicinal Plant Research
- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Medical Laboratory and Diagnosis
- Journal of Diabetes and Endocrinology
- Medical Practice and Reviews

academicJournals
www.academicjournals.org