ABOUT JAERD

The Journal of Agricultural Extension and Rural Development (JAERD) is published monthly (one volume per year) by Academic Journals.

Journal of Agricultural Extension and Rural Development (JAERD) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as Impact monitoring and evaluation system for farmer field schools, Metals in bio solids-amended soils, Nitrogenous fertilizer influence on quantity and quality values of balm, Effect of irrigation on consumptive use, water use efficiency and crop coefficient of sesame etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JAERD are peer-reviewed.

Contact Us

Editorial Office: jaerd@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JAERD
Submit manuscript online http://ms.academicjournals.me/
Editors

Dr. Kursat Demiryurek
Ondokuz Mayis University, Faculty of Agriculture, Department of Agricultural Economics, 55139, Samsun, Turkey.

Prof Theera Rukkwamsuk
Kasetsart University
Thailand.

Dr. Vincent Bado
WARDA, Africa Rice Center
Burkina Faso.

Dr. Tahseen Jafry
Glasgow Caledonian University
Cowcaddens Road, Glasgow Scotland UK, G4 OBA UK.

Dr. Daniel Temesgen Gelan
Welaita Sodo University, Ethiopia

Dr. Ayyanadar Arunachalam,
Department of Forestry,
North Eastern Regional Institute of Science & Technology,
Nirjul, Arunachal Pradesh, India.

Dr. V. Basil Hans
St Aloysius Evening College, Mangalore.
720 Light House Hill, Mangalore – 575 005,
Karnataka State.
India.

Dr. Farhad Mirzaei
Department of Animal Production Management, Animal Science Research Institute of Iran

Dr. Ijaz Ashraf
Institute of Agri. Extension and Rural Development, University of Agriculture, Faisalabad-Pakistan
Editorial Board

Dr. Vasudeo P. Zamabare
South Dakota School of Mines and Technology (SDSMT)
USA.

Dr. Jurislav Babic,
University of Osijek, Faculty of Food Technology
F. Kuhaca 20, 31000 Osijek
Croatia.

Dr. Ghousia Begum
Indian Institute of Chemical Technology (IICT)
India.

Dr. Olufemi Martins Adesope
University of Port Harcourt, Port Harcourt,
Nigeria.

Dr. A.H.M. Mahbubur Rahman
Rajshahi University
Bangladesh.

Dr. Ben Odoemenla
IFAD
Nigeria.

Dr. D. Puthira Prathap
Sugarcane Breeding Institute (Indian Council of Agricultural Research)
India.

Dr. Mohammad Sadegh Allayari
Islamic Azad University, Rasht Branch
Iran.

Dr. Mohamed A. Eltawil
Kafrelsheikh University
Egypt.

Dr. Henry de-Graft Acquah
University of Cape Coast
Applied Statistics
Ghana.

Prof. Stanley Marshall Makuza
Umutara Polytechnic
Zimbabwe.

Dr. Franklin Peter Simtowe
International Crops Research Institute for the semi-arid Tropics (ICRISAT)
Malawi.

Dr. Hossein Azadi
Centre for Development Studies, Faculty of Spatial Sciences,
University of Groningen
The Netherlands.

Dr. Neena Singla
Punjab Agricultural University
Department of Zoology College of Basic Sciences and Humanities
India.

Dr. Emana Getu Degaga
Addis Ababa University
Ethiopia.

Dr. Younes Rezaee Danesh
Department of Plant Protection, Faculty of Agriculture
Urmia University, Urmia-Iran.

Dr. Zahra Arzjani
Faculty of Geography, Islamic Azad University
Branch of Tehran Central, Tehran
Iran.

Dr. Hossein Aliabadi Farahani
Islamic Azad University Shahrir (Shahr-e-Qods) Beranch,
Agricultural Department
Iran.

Dr. Shikui DONG
Environmental School, Beijing Normal University
China.

Dr. Babar Shahbazz
University of Agriculture, Faisalabad and Sustainable Development Policy Institute
Islamabad
Pakistan.

Dr. H. M. Chandrashekar
Institute of Development Studies, University of Mysore,
Manasagangotri Mysore 570 006, Karnataka State
India.

Dr. Kassahun Embaye
Institution: Institute of Biodiversity Conservation (IBC)
Ethiopia.

Dr. Hasan Kalyoncu
University of Süleyman Demirel, Faculty of Science and Art,
Department of Biology
TURKEY.
Table of Contents: Volume 10 Number 3 March 2018

ARTICLES

The implications of smallholdings of water and land for the sustainability of a community based water management system in Oman 61
Dennis Powers and Abdullah Al Ghafri

Determinants of smallholder farmers’ participation in seed producing cooperatives in Southern Zone of Tigray, Ethiopia 75
Hagos Kidane, Tesfaye Lemma and Girmay Tesfay
The implications of smallholdings of water and land for the sustainability of a community based water management system in Oman

Dennis Powers¹* and Abdullah Al Ghafri²

¹College of Economics, Management and Information Systems, Aflaj Research Unit, University of Nizwa, Birkat Al Mawz, Oman.
²College of Arts and Science, Aflaj Research Unit, University of Nizwa, Birkat Al Mawz, Oman.

Received 10 December, 2017; Accepted 21 February, 2018

This paper investigates the implications of smallholder farming, that is, characteristic of a community based water management system in Oman known as a falaj (pl aflaj). The aflaj are naturally sustainable, and for centuries have provided water in an arid region, supporting agriculture and livelihoods. With over three thousand active aflaj in Oman, the typical falaj is small; conveying enough water to irrigate a relatively small amount of land, and this water and land is further subdivided among many farmers. The implications of these smallholdings on the economic viability of the falaj were investigated by studying one falaj system. It is found the small holdings of water and land imply a typical farmer cannot realize economies of scale in farming, implying average costs are high and farm profits are low. As the aflaj are community managed, the low economic value of the falaj implies there may be insufficient funds for maintenance of the falaj, thus threatening their sustainability.

Key words: Traditional agriculture, water management, community based natural resource management system, smallholdings.

INTRODUCTION

The implications of small land holdings in an indigenous community based water management system in Oman known as a falaj (pl. aflaj) was studied. The aflaj are small scale irrigation systems that have provided water for both domestic and agricultural use to small communities in Oman for over a millennium, thereby allowing for human settlement in a harsh, arid environment. The long history of the aflaj speaks to its success in sustainable water management, as well as to the importance and the aflaj to Oman’s heritage and cultural identity (Wilkinson, 1977; Sutton, 1984; Orchard and Gordon, 1994; Limbert, 2001; Nash and Agius, 2011). Their continued existence is important both because of the fact that they are a naturally sustainable source of water, and because of their importance to Oman’s heritage.

There are over three thousand active aflaj accounting for approximately thirty percent of all groundwater used in Oman (Zekri et al., 2006). However in the post 1970 oil economy of Oman, the number of aflaj in operation has
fallen by approximately twenty five percent (Aflaj Inventory Project, 2001). There are thought to be two reasons for this decline in the aflaj. The first is over-aggressive groundwater pumping has reduced the water table, reducing the flow rate of some aflaj to unsustainable levels (Norman et al., 1998; Dutton, 1995).

The second reason for the decline in the aflaj is that the oil economy has led to a rapid increase in household income in Oman since 1970. This increase in income implies the economic significance of the aflaj has diminished, and thus interest in aflaj farming has decreased, especially among the young (McCann et al., 2002; Bosi, 2009). Hence, increasing the profitability of aflaj farming is important to the continued economic viability of aflaj farms. Moreover, the decline in income from farming creates a threat to the maintenance of the aflaj itself. Since the aflaj is a community based water management system, the aflaj community members are responsible for its maintenance (Wilkinson, 1977).

Typically, a aflaj is managed by a committee which has been endowed with water to fund its maintenance. The water can generate funds in two ways. First, some of the water may be rented to community members using auctions. Second, some of the water may also be applied to aflaj lands on which the aflaj owns date palms. These aflaj owned palms may either produce a crop that is sold, or the date palms themselves may be rented to community members (Al Marshudi, 2007). In all cases, the revenue from aflaj owned water and aflaj owned date palms provide the funds for maintenance of the system. Thus the amount of revenue for maintenance is derived from the economic value of the water and land of the aflaj. If that value is low, the funds available for maintenance will also be low, thereby presenting a threat to its sustainability. As a result many aflaj suffer from sub-standard maintenance (Al Ghafri, 2004). Indeed, part of the maintenance in many aflaj is now carried out by the Ministry of Regional Municipalities and Water Resources (MRMWR), whereas for centuries it was supported solely by the wealth generated by the aflaj (Al Hatmi and Al Amri, 2000).

While there may be multiple reasons for the declining profitability of aflaj farms, one potential reason is small land holdings. Through inheritance laws, the aflaj land holdings have been subdivided many times over the centuries leading to small land holdings observed today. If economies of scale are present, small land holdings imply farmers will be unable to realize the economies of scale, and will thus have higher average costs, implying lower income generated from farming. The purpose of this paper is to examine the economic implications of these small holdings on the productivity and sustainability of these aflaj.

LITERATURE REVIEW

This paper argues average costs tend to decline as farm size increases. Such a relationship implies larger aflaj farms are more productive. While economies of scale are present in many industries it is not necessarily present in agriculture. The relationship between farm size and productivity has been studied extensively in the literature. Early studies found an inverse relationship between farm size and productivity; that is, smaller farms tend to be more productive (Sen, 1962). Recently, Kagin et al. (2016) found not only do smaller farms have higher productivity, but they are also more technically efficient. However, Savastano and Scandizzo (2017) have found the relationship between farm size and productivity to be non-monotonic, with the relationship between farm size and productivity switching between direct and inverse. In particular, they found a direct relationship for very small farms, but an inverse relationship for moderate size farms, and again a direct relationship for large farms.

Three broadly defined explanations have been offered for this inverse relationship. The first is market imperfections; particularly, imperfections in the labor market (Eswaran and Kotwal, 1986; Hellberg, 1998; Toufique, 2005; Henderson, 2015; Ali and Deininger, 2015). Hired labor has a tendency to shirk, making monitoring necessary, as well as reducing productivity. However, home labor does not have such a tendency, making costly monitoring unnecessary. Thus home labor is more productive. It was suggested that small farms tend to make more extensive use of home labor, and thus small farms are more productive.

A second explanation focuses on omitted variable bias. In particular, land quality may differ between small and large farms, and thus drive the difference in productivity. There is mixed evidence for this effect. Bhalla and Roy (1988) find evidence for such an effect, whereas Barrett et al. (2010) do not.

Finally, a third explanation is the possibility of measurement error. Farm size is usually self-reported, and it has been suggested that small farmer misstate the size of the farm, introducing an error that artificially overstates the productivity. Again the evidence is mixed. Lamb (2003) finds evidence suggesting all of the inverse relationship between farm size and productivity can be explained by measurement error. However, others have found a more accurate measurement of farm size strengthens the inverse relationship between farm size and productivity (Carletto et al., 2013; Holden and Fisher, 2013; Gourlay et al., 2017; Desiere and Jolliffe, 2018).

Recently, Nkonde et al. (2015) argued that since previous studies have focused on farm sizes limited to 1 to 10 ha, and the measurement of productivity is limited to a single measure, the findings in these studies provide an incomplete understanding of the relationship between farm size and productivity. When these limitations are relaxed they find that the relationship between farm size and productivity is less clear and depends on the productivity measure used.

In this paper, while we focus on the relationship between aflaj farm size and average costs, the link
between productivity and average costs are clear. All else constant, higher productivity will yield lower average costs. And while much of the literature has found some evidence that smaller farms are associated with high productivity (and thus lower average costs), the opposite was found. That is, smaller falaj farms face higher average costs when compared with larger falaj farms from the same falaj.

To understand this result, it is important to note that the explanations focused on in the literature are not applicable for farms from the same falaj. The reason is that falaj is a community and the farms that comprise it are similar with respect to the variables that have been identified in the literature. For example, while labor market imperfections may exist, it was found out in this study that home labor was not used by falaj farmers. Hence, all faced the same labor market imperfections, and thus this cannot drive any cost differences between small and large farms in the falaj. Similarly, the omitted variables focused on in the literature are unlikely to be relevant for falaj farms. Regarding land quality, the falaj in its total size is small and thus all farms belong to the same relatively small amount of land, and thus the land is likely to be of similar quality. Lastly, one may consider measurement errors of small farms. It is important to realize that all farms in a falaj are small by comparison to those in the literature. Hence, even if there were a bias of small farmers to misstate the size of their farms, given all are small farms, that bias would be similar for all, and thus could not explain differences in costs between small and large farms. In fact, given the tendency toward measurement error in farm size we use a proxy for farm size. In fact, the possibility of bias in stating farm size.

A MODEL OF ECONOMIES OF SCALE FOR FALAJ FARMS

Given the aforementioned explanations driving the relationship between farm size and productivity are not relevant for a falaj, this begs the question as what might explain the differences in average costs between small and large falaj farms. It was argued that differences in average costs between farms of different sizes are owing to their use of part-time and full-time labor. It will be shown that the larger is the falaj farm, the greater the opportunity to avail of the less expensive full-time labor, and hence the lower average cost tends to be. A simplified version of a model that explains the relationship between part-time and full-time labor and average costs for different farm sizes was presented.¹

Set-up of the model

Production is given by \(Y = F(L, T) \), where \(Y \) is production, \(L \) is labor and \(T \) is the number of trees. Note the number of trees represents the scale of the farm. Assuming constant returns to scale technology, the production function can be written in the intensive form \(Y = f(L/T)T \), where \(Y \) is the output per tree, and \(L/T \) is labor hours per tree.

Labor is either full-time or part-time. Full-time labor has a cost of \(s \) and can work a maximum of \(n \) hours. Part-time labor has an hourly wage of \(w \). Hence, labor cost is given by:

\[
\text{Labor costs} = Ds + w(L - Dn),
\]

where \(D \) is an integer that states the number of full-time workers. Note that if \(L = Dn \), part-time labor is not used.

It is assumed that full-time labor is less expensive than part-time labor in the sense that \(n \) hours of work is less costly with full-time than part-time labor. Hence, \(wn > s \). Furthermore, let us assume \(w < s \) so that part-time labor is cheaper for the first hour work.

Optimal choice of part-time labor

To begin, consider the case in which a farmer hires part-time labor. In that case, the standard first-order condition yields \(f'(L/T) = w \).

For a given \(w \), this can be solved for \((L/T)^* = g(w) \equiv y \). or \(L^* = T y \). That is, the optimal labor-tree ratio, is a function of the wage, and is denoted by \(y \). In this case, the level of production is given by \(Y = f(y)T \) and profits is given by:

\[
\pi = Tf(y) - wYT = T(f(y) - wy).
\]

Note that as \(T \) rises, part-time labor, production, and profits rise. This is shown graphically in Figure 3.

Optimal choice of full-time labor

Consider now the choice of full-time labor, assuming there is no option for part-time labor. Since full-time labor is added in discrete units it is not possible to use the standard first-order condition to find the optimal amount of full-time labor. Instead we construct a “discrete” version of the first-order condition.

First, note that profits with \(D \) full time workers are given by \(\pi_D = T f(Dn/T) - Ds \). \(D \) is the optimal number of full-time workers if \(\pi_D - \pi_{D-1} > 0 \) and \(\pi_D - \pi_{D+1} < 0 \). It should also be noted that for any \(D \), profits are increasing in the number of trees; that is, \(\partial \pi / \partial T > 0 \). Hence as trees increase, both \(\pi_D \) and \(\pi_{D+1} \) will increase. However, one can show \(\partial \pi_{D+1} / \partial T > \partial \pi_D / \partial T \) implying that as \(T \) increases there will eventually be a value of trees \(T_{D+1} \), such that \(\pi_D = \pi_{D+1} \), and after which \(\pi_{D+1} > \pi_D \), so that an additional unit of full-time labor is hired.

The aforementioned description of the demand for full-time labor gives rise to the relationship between the number of full-time labor hired and the number of trees depicted in Figure 4. For trees less than \(T_1 \) full-time labor is not hired. Once \(T_1 \) is reached the first full-

¹ A full version of the model is available from the author upon request.
time worker is hired, and one workers is employed for trees from \(T_1 \) to \(T_2 \). At \(T_2 \) a second full-time worker is hired, at \(T_3 \) as third is hired, etc.

Part-time and full-time labor demand

A heuristic explanation is now provided for the situation in which both part-time and full-time labor is available. Figure 5 shows the choice of full-time and part-time labor as dependent on the number of trees. For trees less than \(T_1 \) only, part-time labor is used. Part-time labor increases linearly with trees as in Figure 5. At \(T_1 \) it becomes profitable to hire the first full-time worker and part-time labor is replaced with full time labor. And since a full-time worker is less expensive than part-time labor, this occurs before part-time labor has worked \(n \) hours, so that the switch from part-time to full-time labor causes a jump up in the amount of labor used. From \(T_1 \) to \(T_{1+PT} \) only one full-time worker is used and thus labor is constant. However, with constant labor, as the number of trees increases, the marginal product of labor rises. At \(T_{1+PT} \) the number of trees has grown such that the marginal product of a part-time worker is equal to the wage and part-time labor is employed. For trees greater than \(T_{1+PT} \) and less than \(T_2 \) part-time labor is added to the one full-time worker as the amount of trees increase. At \(T_2 \) it is more profitable to hire a second full-time worker, with no part-time labor. Hence, from \(T_2 \) to \(T_{2+PT} \) only two full-time worker is used and thus labor is constant. And, as before, at \(T_{2+PT} \) the marginal product of labor has increased so that it is profitable to hire part-time labor. This process continues to repeat itself.

Average costs and scale economies

Given the aforementioned relationship between labor demand and the number of trees, we now provide an explanation for the relationship between average costs and trees, or scale. This is seen in Figure 6, which shows the relationship between average costs and production, as dependent on the number of trees. From \(0 \) to \(T_1 \) trees, only part-time labor is used. Since labor increase linearly with trees, average cost is constant. From \(T_1 \) to \(T_{1+PT} \) only one full-time worker is employed and replaces part-time labor. Since the cost is constant in this range, as the number of trees increases, the average cost is declining. Once \(T_{1+PT} \) is reached, part-time labor is added as trees increase, and average costs rises until \(T_2 \) is reached. At that point, another full-time worker is added to replace part-time labor. From \(T_2 \) to \(T_{2+PT} \), again costs are constant, so that as trees increase, the average cost declines. This pattern of U-shaped average cost curves repeats itself as the number of trees continues to increase.

However, there are two characteristics of the average cost curve and it is important to note them. First, the local minima of the average cost are constant and thus represent the global minimum. This occurs at a level of trees such that full-time workers are used most efficiently. Second, the local maxima are falling. These local maxima occur where part-time labor is used to the greatest extent with full-time labor. As the number of trees increases, at these local maxima, the part-time labor represents a smaller portion of total labor, and thus the increase in average cost created by that part-time labor is less as compared to average cost at the previous local maxima.

Both observations imply that though average costs are non-monotonic, there is a general tendency for average costs to decline as scale increases; the sense that the local maxima continually get smaller, and in the limit, approaches the global minimum.

Methods

One falaj was studied to determine the extent to which small landholdings lead to an inability to realize economies of scale, thereby raising average costs and reducing profitability. This study was done as part of the Oman Earthwatch Programme (OEP) under the supervision of the National Field Research Center for Environmental Conservation. The OEP project, entitled “A study on the socio-economic and environmental sustainability of the Aflaj of Oman”, has as its stated primary objective to improve the socio-economic viability of the falaj by identifying alternative income sources or cost-reduction methods, which will increase falaj income. The present study reported in this paper is one aspect of this project that is concerned with understanding the costs faced by falaj farmers. For two reasons, the OEP project focused on only one falaj. First, field research on the aflaj is labor intensive, and thus expensive. Second, since the intention is to use the research to develop pilot projects, an intensive study of one falaj was necessary to more clearly identify the challenges faced by the falaj so as to design pilot projects that will have the highest chance of meaningfully impacting the falaj.

The rest of this aspect of the study describes the site location, the survey used to collect the data, the measurement of the variables, and the specification of the regression model to be estimated.

Site location

The falaj chosen for this study was Falaj Luzugh, in the Wilayat of Samail, Oman. Figure 1 shows the location of Luzugh in Oman, while Figure 2 shows an aerial image of the falaj with the direction of flow superimposed in blue. This falaj was chosen because it has exhibited a stable flow rate and thus any challenges faced are not caused by a reduction in the flow rate, but are likely due to the socio-economic problems discussed earlier, making it a good choice to better understand these challenges and develop appropriate pilot projects.

Using survey results, economies of scale was examined in Falaj Luzugh. Given the argument that small farms result in higher costs, and thus, lower profits, since economies of scale cannot be realized, descriptive statistics are presented for both farm size in Falaj Luzugh and the profitability of those farms. Then economies of scale were test explicitly by estimating an average cost function for falaj farms.

The survey

The data in this report was collected from a survey of Falaj Luzugh completed in the summer of 2014 as part of the OEP project. Participants in the survey were identified as falaj water owners by manager of the falaj (called the wakil), who arranged for research assistants to visit the water owners in their homes to conduct the survey. As this was an extensive survey, the questions were asked verbally and the responses were recorded by the research assistants. Participation rate in the survey was high as forty six of the fifty identified water owners agreed to complete the survey.

The survey contains two types of data. First, the survey asks
quantitative questions regarding household size, cropping, sources of water, uses of water, size of harvests, prices received for their crops, the amount of the crop sold, the amount of the crop consumed at home, the inputs used in farm production, and the cost of those inputs. From this data, farm size, the size of the harvest, average costs, and farm profits were calculated.

The second type of data is a qualitative data. The survey included a questionnaire that asked the farmers a range of questions to elicit their perceptions regarding the economic relevance of the falaj profits and their willingness to adopt pilot projects to improve
Figure 3. The relationship between the choice of part-time labor and the number of trees.

Figure 4. The relationship between full-time labor and the number of trees.

Figure 5. The relationship between total labor employed and the number of trees.
the economic performance of the falaj.

Measurement of variables

The measurement of the variables farm size, farm profits, costs, and production was described here.

Farm size

Average farm size in Falaj Luzugh is small. There are fifty identified shareholders of water but the land irrigated by the entire community is only 27.11 ha, implying the average land holding is 5,666 km². While this indicates the land holdings are small, for the rest of this paper the measure of farm size used is the number of date palms. This is for three reasons. First, date palms are the primary crop. From an agronomic efficiency perspective, there is an optimal distance with which to space the date palms. Hence the number of date palms should be proportional to the size of the farm. Second, from a practical perspective, individual land holdings are irregularly shaped. The individual farmers would not be familiar with the number of square meters of land owned, and the field research needed to measure each farm would be excessively costly. Finally, as explained earlier, using date palms as a measure of size avoids the bias common in self-reported farm size.

Farm profits

Given it has been conjectured that farm profits are economically insignificant, we report on the magnitude of profits and their relative significance to household income. To determine the significance of farm level profits to the household, we use both qualitative and quantitative data. The qualitative portion of the survey asked two survey questions that elicit the participants’ perceptions regarding the significance of the income generated by their falaj farms. These questions, and a summary of the responses, will be discussed subsequently.

The quantitative portion of the survey collected data on crops grown, the harvest of each crop, and the selling price of the crop, with which we were able to measure the total revenue for each farm, and thus profits after subtracting costs (subsequently described). However, in many cases, some crops were not sold, but rather consumed at home. In this case, average prices others sold the crop at were used to estimate the value of the crop. To determine the significance of farm level income it should be compared to household income. However, since we do not have data on household income, to determine their significance to households we express profits relative to average family income in Oman to estimate their significance.

It should be noted that using the wholesale price to measure the value of home consumed crops underestimates their value. The fact that these were consumed at home implies the marginal value in consumption of the crop exceeded this wholesale price at which they could have been sold. While one may think to estimate the value of home consumption at the retail price, this would overestimate their value. The reason is a household may consume a crop at home even when its marginal value in consumption is below the retail price, as long as it exceeds the wholesale price. In fact, the only way to accurately measure the value of home consumed crops would be to have an estimate of the marginal value in consumption of the crop, which is to say an estimate of household demand for the crop, which is not available. And since this paper is concerned with the possible income generation of the falaj, we chose to estimate the value of the crops at their selling price, that is, the wholesale price.

Costs

Costs are measured both to compute profits, as well as to measure average costs to determine if economies of scale are present. Estimates of costs are taken from the estimates provided by individuals on the survey related to labor, fertilizer, seeds, water rented, and pollination of date palms. The primary cost identified is labor. The survey asked the number of part-time and full-time workers employed and, since the farmer may have the employee do other work not associated with the falaj, the farmer was asked to approximate the proportion of their time allocated to the falaj farm to determine the labor costs associated with falaj farms.

Production

The estimate of production is taken from the estimate of the harvest per tree, and for each variety of date palm. The market value of the harvest was then calculated using prices at which farmers could sell their dates. To convert the monetary amount of the harvest into kilograms of dates, the market value of the harvest was divided by
the price of a particular variety; the Khalas dates. Hence, the
number reported for the harvest is the “Khalas equivalent”
kilograms of dates.

Data analysis

To test for economies of scale, an average cost function is
estimated. Given the non-linear nature implied by economies of
scale, a log-linear model is used. Specifically, the following
equation is estimated:

$$\ln AC = a + b \ln q$$

(1)

where AC is average cost, q is the quantity produced, and a and b
are parameters to be estimated, with the hypothesis that the
constant a is positive and b is negative. The extent to which b is
negative and statistically significant will indicate if economies of
scale are present.

However, as explained earlier, average costs are declining non-
monotonically as average costs tend to rise when part-time labor is
used. In particular, the higher is the proportion of part-time labor to
total labor, the higher is average costs. We capture this with an
interactive term in the slope parameter b. Specifically,

$$b = b_0 + b_1 \frac{PT}{PT + FT}$$

Hence the equation to be estimated is:

$$\ln AC = a + b_0 \ln q + b_1 \frac{PT}{PT + FT} \ln q$$

(2)

Both Equations 1 and 2 will be estimated.

RESULTS

Here, the data on both farm size and profits are analyzed, and then proceeds by testing for the presence of

economies of scale by estimating an average cost
equation. It then considers the impact of economies of
scale, and attitudes of farmers toward pilot projects to
improve profitability of falaj farms.

Farm size in Falaj Luzugh

Economies of scale are less likely to be realized when
farms are relatively small. This sub-section presents data
on farm size in Falaj Luzugh.

Using the number of date palms as a proxy for farm
size as explained earlier, Figure 7 shows the size of
farms of the survey respondents, while Table 1 reports
the maximum, minimum, average, and standard deviation
of farm size.

The question of whether the sizes are too small to
realize economies of scale must be determined from
average cost data, however, the numbers do indicate
significant dispersion in sizes of farms, implying it could
be that while some farms are too small to experience
economies of scale, others may be sufficiently large to
realize economies of scale.

Profitability of farming in Falaj Luzugh

There exists significant dispersion in the size of farms.
We first consider qualitative responses to questions
asking about the significance of farming income. It should
be noted that farming, for most, provides secondary
income. Of the 46 respondents, only 4 did not report
income from another source. Moreover, due to
sensitivities in asking about individual income, a
comparison of farming related income to other income
Table 1. Descriptive statistics of farm sizes in Falaj Luzugh, measured as number of date palms per farm*.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>41</td>
</tr>
<tr>
<td>Maximum</td>
<td>138</td>
</tr>
<tr>
<td>Minimum</td>
<td>5</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>31</td>
</tr>
</tbody>
</table>

Table 2. Results to the survey question “The falaj farm is an important source of income for my family”*.

<table>
<thead>
<tr>
<th>Possible answers</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Strongly Agree</td>
<td>13</td>
</tr>
<tr>
<td>b. Agree</td>
<td>30</td>
</tr>
<tr>
<td>c. Disagree</td>
<td>24</td>
</tr>
<tr>
<td>d. Strongly Disagree</td>
<td>30</td>
</tr>
<tr>
<td>Did not answer</td>
<td>2</td>
</tr>
</tbody>
</table>

could not be made. Instead the survey asked individuals two questions about the relative importance of farming income. The questions, with responses, are shown in Tables 2 and 3.

Table 2 presents a summary of the responses to the statement “The falaj farm is an important source of income for my family”. While the question of whether the falaj farm is an important source of income is subjective, it does provide one with an understanding of the perception of the economic significance of the falaj to community members. While 54% either strongly disagreed or disagreed that the falaj farm provides a significant amount of income, it is clear that for a significant minority, 43%, the falaj still has economic significance.

A similar conclusion can be reached by examining Table 3, which summarizes the responses to the question of whether the respondent viewed themselves as “making money, losing money, or breaking even” on their farm. Note that 35% report they are losing money on their falaj farm, similar to the 30% in Table 2 strongly disagreeing that the falaj farm provides significant income. In contrast, 9% report they are making money on their falaj farm, which is similar to the 13% strongly agreeing that the falaj provides significant income. However, 52% report they are breaking even on their falaj farm. As this could include those who perceive themselves as making or losing an insignificant amount of money on the farm, this would appear to correspond to the combined 54% in Table 2 that either agreed or disagreed that their falaj farm provided significant income. In other words, an individual that felt they were approximately breaking even on their falaj farm may have agreed or disagreed with the statement that their farm provided significant income. In any case, it is clear that while few view themselves as making money on their farm, more than half of the respondents were not losing money. This suggests that while the falaj farms are not of great economic significance, there is still a possibility for the falaj to be economically relevant.

Nevertheless, as indicated by Table 2, 54% disagreed with the statement that the falaj provided an importance source of income. Similarly, in Table 3, 35% said they were losing money on the falaj farm, and 52% said they were breaking even. Hence, most perceive the falaj farms as providing an insignificant level of income, with some reporting losses.

Apart from the perceptions regarding income from farming, quantitative data on profits was collected, as explained later. The results of the survey are consistent with the perceptions of the farmers. The descriptive statistics regarding profits are reported in Table 4. Column two shows the absolute level of farm profits, while column three expresses this in percentage of average family income in Oman in 2013, which is $45,708.$2 To express profits in per unit terms, column four reports profits per tree, while column five expresses profits per tree as a percentage of average family income.

The average profit per year is $786, corresponding to 1.7% of average family income. Though positive, it is low relative to average family income, consistent with the farmers’ perceptions that most are breaking even. There is also significant dispersion. The maximum profit recorded is 8.9% of average family income, consistent with some suggesting falaj farming is an important source of income. The minimum profit (maximum loss) is equivalent to 3.8% of average family income. Moreover, the standard deviation is $1,514, equivalent to 3.3% of average family income, indicating that there are substantial differences in farmers’ profits from farming. Hence, as with farmer perceptions, the profits calculated suggests that while some are making significant income from farming, and some are losing money, the average person is making an insignificant amount of income from farming.

While the absolute measure of profits can be used to illustrate the magnitude and dispersion in profits throughout the falaj, such dispersion could only be due to differences in farm size, or number of trees. Hence, columns four and five measure profits per tree. As with the absolute measure, there is dispersion in profits per tree, indicating that the variation in profits in the falaj is due to more than just variation in the number of trees owned.

2 Source: National Center for Statistics and Information, Oman. The year 2013 is used as this is the latest date available.
Table 3. Results to the survey question “Which of the following statements is most correct?”

<table>
<thead>
<tr>
<th>Possible answers</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. I am losing money on my falaj farm</td>
<td>35</td>
</tr>
<tr>
<td>b. I am making money on my falaj farm</td>
<td>9</td>
</tr>
<tr>
<td>c. I am breaking even on my falaj farm</td>
<td>52</td>
</tr>
<tr>
<td>Did not answer</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 4. Descriptive statistics of annual farm profits in Falaj Luzugh

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Level of farm profits in USD</th>
<th>Farm profits as a percentage of average family income in Oman</th>
<th>Profits per tree in USD</th>
<th>Profits per tree as a percentage of average family income in Oman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>786</td>
<td>1.7</td>
<td>1.40</td>
<td>0.003</td>
</tr>
<tr>
<td>Maximum</td>
<td>4068</td>
<td>8.9</td>
<td>77.05</td>
<td>0.169</td>
</tr>
<tr>
<td>Minimum</td>
<td>-1738</td>
<td>-3.8</td>
<td>-347.64</td>
<td>-0.761</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1514</td>
<td>3.3</td>
<td>67.94</td>
<td>0.149</td>
</tr>
</tbody>
</table>

Evidence of economies of scale in Falaj Luzugh

It was established that the average farm in Falaj Luzugh generates an insignificant level of income. Here, presents evidence that the explanation for the low income generation is due, at least in part, to high average costs associated with the inability to realize economies of scale. This is accomplished by testing for the relationship between average cost and production.

Using the data collected from the survey on labor employed and its cost, it was calculated the number of full time workers employed on falaj farms is 21.15, with the average farmer employing 0.48 full time workers. While other costs are identified, the labor costs comprise 93% of costs, demonstrating that labor costs are a substantial portion of total costs.

Average cost is calculated as total cost divided by production. Using farm level data on average cost and production described subsequently, Figure 8 graphs the production of each farm against each farm’s average cost. It is clear that the larger production, and thus larger farms, is associated with lower average costs.

To provide context on the magnitude of average costs, Figure 8 also shows the selling price of Khala dates ($1.74 kg⁻¹). As one can see, lower amounts of production are associated with average costs that are higher than the price; implying profits per unit are negative for small farms.

To further test for economies of scale, an average cost function is estimated using Equations 1 and 2. The estimation results of both specifications are presented in Table 5. In both specifications, the sign of the production coefficient is negative and significant at 1% level, indicating evidence of economies of scale. In specification 2, the sign of b_1 is also negative, and statistically significant, and is thus inconsistent with the theory presented. However, only four farmers reported the use of part-time labor, which may not be a sufficient number to test this aspect of the theory. In either case, the results indicate evidence of economies of scale, and given production is directly related to the size of farms this implies small farmers will face higher average costs, and thus lower profits per unit produced.

Impact of economies of scale on the economic viability of the Falaj

The small holdings that characterize the falaj imply economies of scale are not being realized by many farmers, and thus profits are lower than otherwise. To better understand the extent to which the small holding reduce profits in the falaj, we compare the current average costs and profits of all falaj farms to the average costs and profits if the falaj is operated as a single farm. If the falaj is operated as a single farm then economies of scale would be realized and average costs would be reduced. The reduced average cost can be approximated using the estimated average cost equation. Using the sum of all farm’s production as the falaj production, the falaj level production would be 45156 kg. Substituting this
Figure 8. Declining average cost of production in Falaj Luzugh compared to the selling price of dates of $1.74 kg⁻¹.

Table 5. Estimation of the average cost equation for specifications (1) and (2).

<table>
<thead>
<tr>
<th>Specification</th>
<th>a</th>
<th>b₀</th>
<th>b₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) ln AC = a + b₁lnq</td>
<td>5.41* (0.74)</td>
<td>-0.89* (0.14)</td>
<td>-</td>
</tr>
<tr>
<td>R²</td>
<td>0.57</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(2) ln AC = a + b₀lnq + b₁ (PT/PT+FT) lnq</td>
<td>6.05* (0.68)</td>
<td>-0.99* (0.12)</td>
<td>-0.42* (0.13)</td>
</tr>
<tr>
<td>R²</td>
<td>0.68</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Number of observations</td>
<td>34</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Indicates significance at the 1% level. 4While 46 people participated in the survey the number of observations is only 34. The reason is some of the participants did not answer some key part of the survey that prevented calculation of either their harvest or their costs.

number into the estimated average cost equation from specification 1, the average cost would be $0.035 kg⁻¹. To put this into perspective, the minimum average cost reported is $0.263 kg⁻¹.

One can then extrapolate to total costs. Summing all reported costs of all farms, the total cost of all falaj production was $42588. However, if the average cost of $0.035 kg⁻¹ is used, the total cost of all falaj production would be $1580.46. And while there is no guarantee that the equation holds outside the estimated range of data, there would clearly be a substantial reduction in cost. Indeed, even if one uses the minimum average cost reported of $0.263 kg⁻¹ as the estimate of average cost for the entire falaj, the total cost of all production would be $11876.03, still far below the actual cost reported.

Table 6 shows the revenue, costs, and profits of the falaj reported on the survey, and under the assumption that economies of scale are realized by having the falaj operate as a single farm.

The data indicates there would be a substantial reduction in average costs, and a corresponding increase in profits, were the falaj to function as a single farm. This illustrates the impact that the small holdings, and the implied inability to realize economies of scale, have on the economic performance of falaj farms, and the economic viability and sustainability of the falaj community.

Heritage value of the Falaj

As the study was conducted to determine potential pilot projects to improve the economic sustainability of the falaj, the survey asked farmers a series of questions.

3 Specification 1 is used for two reasons. First, though specification 2 has the higher R², the fact that this is driven by only four observations on the interactive term suggests the results may be spurious. Second, using specification 2 results in a lower estimated average cost compared to specification 1. Hence we chose the specification with the more modest effect on average cost.
about their willingness to participate in pilot projects and the heritage value of the falaj. This is particularly relevant when one considers the significance of the aflaj to Oman’s culture and heritage. If a pilot project is viewed as undermining the heritage value of the falaj, then that project is unlikely to have community support.

Regarding the existence of heritage value, the farmers were asked to respond to the statement “The falaj is an important source of my heritage”, 96% strongly agreed, indicating there is heritage value to falaj farmers. Given some potential pilot projects may involve changes in the falaj, the survey asked about their willingness to adopt such changes. To measure the extent to which one values this heritage the participants were asked to respond to the following two statements: “For a high enough price I would consider selling my falaj water”, and “For a high enough price I would consider selling my falaj land”. In both cases, 74% strongly disagreed with the statements, and 13% disagreed. This suggests that since farmers value the heritage represented by falaj farms they are unwilling to divest in their land and water.

DISCUSSION

This study have shown that the small land holdings characterizing the falaj communities in Oman prevent economies of scale from being realized, thereby threatening the economic viability and sustainability of these indigenous community based water management systems. Apart from the economic viability of the falaj as an income generating activity, the small holdings and the poor economic performance created also may impact the ability of the falaj to maintain the existing physical structure of the falaj. As described in earlier, the falaj raises revenue by auctioning of water. Given the low profits generated by the small farms in the falaj, the value of water to farmers will be relatively small, and thus the willingness to pay for auctioned water will be low. Hence, the revenue raised by the falaj may be insufficient to fund maintenance.

The finding of the presence of economies of scale is in contrast to much of the literature, which has found an inverse relationship between farm size and productivity, and thus no evidence for economies of scale. The reason for this difference in findings is the characteristics driving the aforementioned inverse relationship, such as labor market imperfections, measurement error, and land quality differences, are unlikely to be present for falaj farms, for reasons explained earlier. Rather the finding of the presence of economies of scale rests on an effect that has not been studied in the literature; namely, that the small farms that characterize the falaj have higher labor costs, as they must rely on the more expensive part-time labor, than full time labor. While our finding is in contrast to much of the literature, it is consistent with the finding of Savastano and Scandizzo (2017) that for very small farms, such as those that would characterize the falaj, there is a direct relationship between farm size and productivity.

To highlight the significance of the estimated economies of scale, it was demonstrated that in the falaj under study, if the falaj operated as a single farm, the profits derived from farming would be approximately twice as much. While the purpose of this calculation was only to illustrate the extra cost being created by small holdings, it is also suggestive of a potential means to realize economies of scale; namely, to operate the falaj as a single farm. Indeed, given the low profits of falaj farms and the existence of economies of scale, there are incentives for large farms to buy small farms, as the land is more valuable when consolidated. If this occurred, then over time farms would grow in size, as would farm profits. Hence, the existence of economies of scale begs the question as to why small farms persist in the falaj. One explanation is that farmers value their falaj farm not only for its income generating potential, but also for its “heritage” value. As explained earlier, 96% of the farmers strongly agreed that the falaj is an importance source of heritage, and 87% they would not consider selling their land or water. This suggests they are unwilling to divest in their land and water due to its heritage value.

Another mechanism to realize economics of scale would be to operate the falaj land as a cooperative farm. However, whether or not a cooperative would be supported is not clear. Since the falaj is itself a cooperative method of managing water, the social institutions for cooperation are already in place. Nevertheless, the private property of rights of the water and land are part of those social institutions, and thus it is not clear whether individuals would interpret a cooperative as divesting in land or water. If it is viewed as divestment, there may be a lack of support for the cooperative.

Table 6. The potential impact of realizing economies of scale in Falaj Luzugh (in US dollars).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Current Profits: Using the sum of all reported costs</th>
<th>Profits if economies of scale are realized: Assuming average cost of 0.035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue</td>
<td>78720</td>
<td>78720</td>
</tr>
<tr>
<td>Costs</td>
<td>(42588)</td>
<td>(1580)</td>
</tr>
<tr>
<td>Profits</td>
<td>36132</td>
<td>77140</td>
</tr>
</tbody>
</table>
While this paper has concentrated on economies of scale in production, it is not clear whether the improvement in falaj farm profits owing to the cost reduction that comes from realizing such economies of scale would be sufficient to provide for falaj maintenance, attract the young to the falaj, and ensure the economic sustainability of the aflaj. It may also be necessary to increase falaj farm related revenue, such as by changing to higher value crops. However, the small farms that characterize the aflaj tend to face significant economies of scale in other respects, such as marketing and distribution of crops (Poulton et al., 2010). For this reason, collective action, such as cooperatives, may have a role to play in improving the profitability of small farms (Verhofstadt and Maertens, 2014; Tolno et al., 2015; Orsi et al., 2017; Corsi et al., 2017).

Conclusions

This paper has demonstrated that for the small farms characterizing Oman’s aflaj economies of scale are present in production, which results in lower profitability. Thus realizing scale economies would increase profitability. Moreover, as discussed, other means to increase profits (such as marketing of higher value crops) may also exhibit economies of scale. Hence, collective action to realize economies of scale is important to the economic sustainability of the aflaj. However, give the reluctance of the local population to divest in land or water due to the heritage value of the falaj, and given that collective action could be interpreted as divestment, it is not clear that such collective action would be supported. Therefore, future research should focus on identification of other means to increase the profitability of falaj farms and the extent to which the small falaj farms face economies of scale in adopting these other means. Moreover, given the presence of economies of scale, future research should determine whether collective action is required to realize scale economies and increase the profitability of the falaj farms, and whether such collective action would be supported by the community.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

This work was supported by the National Field Research Centre for Environmental Conservation and Earthwatch Institute teams working in the Sultanate of Oman for the Diwan of Royal Court as part of the Oman Earthwatch Program 2009 to 2015. The authors would like to thank Mr. Ishaq Al Shabibi for his able research assistance.

REFERENCES

Full Length Research Paper

Determinants of smallholder farmers’ participation in seed producing cooperatives in Southern Zone of Tigray, Ethiopia

Hagos Kidane1*, Tesfaye Lemma2 and Girmay Tesfay3

1Tigray Agricultural Research Institute (TARI), Alamata Agricultural Research Center, P.O. Box 56, Alamata, Ethiopia. 2Haramaya University, Department of Rural Development and Agricultural Extension, Haramaya, Ethiopia. 3Mekelle University, Department of Natural Resources Economics and Management, Mekelle, Ethiopia.

Received 16 March, 2017; Accepted 4 May, 2017

This research attempted to examine smallholder farmers’ participation in seed producing cooperatives with the objectives of assessing factors affecting farmers’ participation and identify the determinants of participation in seed producing cooperatives in southern zone of Tigray, Ethiopia. Both probability and non-probability sampling techniques were employed to select 192 sample households. Interview schedule with respondents and focused group discussions were employed to gather qualitative and quantitative data for the study. Descriptive statistics like frequency, percentage, mean and standard deviations and inferential statistics such as t-test and χ2-test were employed to see mean difference and association, respectively, between both participation categories. The result of the descriptive statistics shows that, from the total fourteen variables, eleven of them were significant at 1, 5 and 10% probability level between the participation categories. Binary logit model was employed to identify the determinants of participation. The result of the model shows that smallholder farmers’ participation in SPCs was significantly influenced by household head’s age, sex, distance to SPCs office negatively and participation in field days, participation in trainings and family labor endowment positively. Thus, enhancing the institutional support services through creating village based seed producing clusters, organizing trainings, field days and using labor saving pre-harvest and post-harvest technologies would contribute to improve smallholder farmers’ participation in SPCs.

Key words: Seed, participation, seed producing cooperatives, binary logit.

INTRODUCTION

The national seed system of Ethiopia was considered as one of the key interventions in the transformation of the agricultural sector to ensure the target of doubling agricultural production by the end of 2015 (Ministry of Finance and Economic Development [MoFED], 2011). Good-quality seed is essential for any food production; it is also a technology transfer agent crucial for increasing production and productivity (Louwaars and De Boef, 2012).

*Corresponding author. E-mail: hagos.kalab@gmail.com.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
Use of quality seeds in field crops alone can enhance the crop productivity by 15 to 25% (Roy, 2014). Many studies in Ethiopia indicated that increasing quality and usage of improved seed has the potential to increase Ethiopia’s annual crop production (Dawit et al., 2010; McGuire and Sperling, 2011; Agricultural Transformation Agency [ATA], 2014).

In Ethiopia, the total cereal seeds requirement is estimated to be 700,000 tonnes (Thijssen et al., 2008; FAO, 2012). For instance, the total volume of improved seeds used in 2014/2015 was about 51,422.3 tonnes which is below 10% of the total volume required (Central Statistics Agency [CSA], 2015). In Tigray region, the potential seed requirement is estimated to be more than 150,000 tons, but the formal sector supply does not exceed 20,000 tonnes (Ibrahim and Fetien, 2010). This indicates that the formal seed system of the region has been less successful in supplying adapted varieties and quality seed. Yet, there remains huge gap between the demand for and supply of quality seeds in the region in general and in the study area in specific.

Promoting seed producing cooperatives is often seen as one of the institutional options to address the existing seed supply shortfall in the country. Thus, seed producing cooperatives are one of the community-based cooperatives organized by farmers at local level for seed production and distribution. Recently, seed producing cooperatives are playing a great role in an intermediary position, between formal and informal seed systems (Amsalu, 2015; Amsalu et al., 2015).

In Tigray region, though legally organized seed producing cooperatives have less than a decade history, up to December 2015, the total number of primary seed producing cooperatives has reached to 69 with a total membership size of 4009 smallholder farmers (Tigray Region Bureau of Agriculture and Rural Development Report [TBoARD], 2015). Similarly, in the study area, there were 14 seed producing cooperatives with a total membership of 1520 farmers which dominantly produced wheat, barley crops and beans in rare cases (Southern Zone Tigray Development Corridor Office Report [SZDCO], 2015). Government and non-governmental organizations gave more emphasis to seed producing cooperatives to involve in seed production and distribution of improved seeds and local adaptive seeds. Those organization support seed producing smallholder farmers in availing basic seeds and complimentary inputs, trainings and get market access.

However, despite of the supports and mobilization made by the governmental and non-governmental organizations for farmers to participate in seed producing cooperatives in the area, smallholder farmers’ participation in these cooperatives is still below expectation. Previous empirical studies in Ethiopian and other countries on farmers’ participation in a collective action like cooperatives were reported to be influenced by different factors across space and time. For instance, demographic and socio-economic characteristics (Dagne et al., 2015), socio-economic, demographic and location (Degnet and Mekbib, 2013), human and social capital (Woldegebrial et al., 2013; Mesay et al., 2013; Baodan et al., 2015), physical capital (Tadesse, 2013; Dagne et al., 2015) and farmers’ asset endowment (Bardhan and Sharma, 2012; Gashaw et al., 2014; Dagne et al., 2015), were among the variables determining households membership/participation in collective actions. In the study area, there is inadequate availability of research specifically to explore determinants of smallholder farmers’ participation in seed producing cooperatives. Therefore, this study was initiated specifically to identify determinants of smallholder farmers’ participation in seed producing cooperatives in southern zone of Tigray, Ethiopia in which it can be used as spring board for further research in seed producing cooperatives.

MATERIALS AND METHODS

The study was conducted in Southern Zone of Tigray Regional State, Northern Ethiopia in 2015. Geographically, it is located between 12° 15’ and 13° 41’ N latitude and 38° 59’and 39° 54’ E longitude and with altitudinal range of 1350 to 3925 m above sea level. It shares common border with South Eastern Tigray zone in the North, Amhara regional state from the South and West, Afar Regional state from the east. The zone is characterized by three distinct agro-ecologies, including lowlands (locally named as Kolla), midland (Weinadega) and highland (Dega). The zone consists of five administrative Woredas, namely Raya Alhama and Raya Azebo from lowland agro ecology and Emba Alaje, Enda Mehoni and Ofira woredas are found in the hillland agro ecology of the zone (EIAR and TARI, 2011). The zone covers a total area of 4,985.72 km², 498,572 and 143,326 ha cultivable land. The average land holding size of households in the zone ranges from 0.25 to 1.25 ha. However, the average landholding of the selected woredas ranges from 0.25 to 0.75 ha of land per household. Southern zone has experienced two rainfall seasons; the short rainy season locally known as “Belgiti” that occurs usually from February to April and the main rain season locally described as “kiremti” that comes during June to September. On average, the area receives annually about 600 mm rainfall with mean annual temperature of 25°C. Wheat, barley, faba bean, and field pea are major crops grown on the highland agro-ecology while teff, sorghum, maize and fruit crops are dominantly grown on the lowland agro-ecology of the area. Seed production is considered as an important component of crop production in the three highland woredas of the zone. Accordingly, fourteen seed SPCs have been involving seed production dominantly in wheat and sometimes in barley and faba bean crops (SZDCO, 2015).

The sample size for the study was determined according to Yamane (1967) formula to minimize availability of error and bias during sampling. The formula for sample determination at 90% confidence level is described as follows:

\[n = \frac{N}{1 + N(\pi / 2)} \]

where \(n = 192 \), \(N = 3243 \), and \(e = 7\% \); \(n = \) sample drawn from the total households of the selected kebeles; \(N = \) total households estimated to involved in seed production of the selected kebeles; \(e = \) sampling error/level of precision) tolerated for the study = 7% was used. Multi-stage sampling technique was employed to select the
sample respondents. At the first stage, three Woredas (Emba Alaje, Ofa and Enda-Mehoni) was selected purposively from the five Woredas of the zone based on experience/exposure on seed producing cooperatives. At the second stage, seven kebeles (three from Enda-Mehoni and two from each Ofa and Emba Alaje woredas) was selected randomly based on their proportion to size from the 14 kebeles, which have seed producing cooperatives. At the third stage, participant (who were registered as cooperative member and involving in seed production for at least two consecutive seasons including the survey period) and non-participant (farmers who grow the same crops and have farm land adjacent to seed producing farmers, but not member of seed producer cooperatives) were identified in collaboration with office of agriculture and rural development of the respective kebeles and the seed producing cooperatives committee members of each kebeles. After having fresh list of the study population from the selected seven kebeles, samples were allocated across the seven kebeles based on probability proportional to size (PPS) sampling technique. Again to have participant and non-participant households in the strata, proceeding with probability proportional to size (PPS) sampling technique was challenging. Proceeding with probability proportional to size procedure in the participation category does not help to obtain the desired proportion of the target strata as the number of participants of SPCs would be under represented.

Sudman (1976), indicated that an adjustment in the sample size may be needed to accommodate a comparative analysis of subgroups (e.g., such as an evaluation of program participants with non-participants). Hence, the sample households for this study were selected randomly based on 2:3 ratio of participants (from the small stratum) and 1:3 ratio of non-participants (from large stratum) in order to generate a statistically valid sample household number. The total sampled household selected from each sampled kebeles is presented in Table 1.

Both primary and secondary data were used for this study. Primary data were mainly collected from sample respondents, key informant interviews and focus group discussions. The primary data related to personal, socioeconomic, institutional and perceptions of farmers on the participation in seed producing cooperatives were collected through structured questionnaire. Secondary sources from published and unpublished documents and reports from relevant organizations were gathered to supplement primary data. Moreover, discussions with woreda experts of the agricultural offices, cooperatives promotion offices, input supply offices and key informants were conducted. Before collecting the data, recruitment of enumerators was done according to their experience in conducting agricultural survey and knowledge of the local language as well as culture of the community. One day training was given for the recruited enumerators and questionnaire pre-testing was carried out. After all this, some amendment was done to the questionnaire. Finally, the actual household survey was conduct by the enumerators from November to January 2016 with a close follow up of the researcher.

The data was analyzed using STATA software version 12.1. An independent sample t-test and Chi-square test were used to see the presence of statistically significance difference and the association between those who participate and do not in terms of the hypothesized variables. Descriptive statistical analysis was used to discuss the results of the survey using frequency, mean, standard deviation and percentages. In addition, mean comparisons of independent samples and relation of sample category with variables of interest was explored. Binary logit econometric model was employed to know the influence of personal (psychological), socioeconomic, physical and institutional variables on participation decision in seed producing cooperatives.

Model specification

The dependent variable of this study is smallholder farmers’ participation in SPC and it is treated as a dummy variable which takes the value of one, if the household head is participates in cooperatives, and zero otherwise. In this study, households who were considered as participant are those who are legally registered as members of SPCs to multiply seed based on their common interest. But, those who consider as non-participant were farmers who have adjacent land for seed production with the cooperatives members but not members of the SPCs.

The logit regression model is based on the cumulative logistic distribution function as expressed by Gujarati (1995):

$$ p_i = \frac{1}{1 + e^{-z(i)}} \quad (1) $$

If p_i represents the probability of deciding to participate in SPC, the probability otherwise is $1 - p_i$:

$$ p_i = 1 - \frac{1}{1 + e^{z(i)}} \quad (2) $$

The ratio of Equations 1 and 2 is the odd ratio in favor of participating in seed producing cooperatives. Then, if we take the natural log of Equation 3, we have therefore where β_0 is the
Table 2. Definition of independent variables and expected sign for analyses (Previous Empirical Studies, 2015).

<table>
<thead>
<tr>
<th>Variables name</th>
<th>Type of variable</th>
<th>Measurement</th>
<th>Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex of household head</td>
<td>Dummy</td>
<td>1 if male, 0 otherwise</td>
<td>+</td>
</tr>
<tr>
<td>Age of household head</td>
<td>Continuous</td>
<td>Years</td>
<td>±</td>
</tr>
<tr>
<td>Education level of household head</td>
<td>Categorical</td>
<td>1 illiterate, 2 read and write, 3 grade 1-4, 4 grade 5-8, 5 grade 9-10</td>
<td>+</td>
</tr>
<tr>
<td>Household size</td>
<td>Continuous</td>
<td>Man equivalent units</td>
<td>+</td>
</tr>
<tr>
<td>Household head administration position</td>
<td>Dummy</td>
<td>1 if yes, 0 otherwise</td>
<td>+</td>
</tr>
<tr>
<td>Cultivable land size</td>
<td>Continuous</td>
<td>Hectare</td>
<td></td>
</tr>
<tr>
<td>Livestock size</td>
<td>Continuous</td>
<td>Total livestock in TLU</td>
<td>+</td>
</tr>
<tr>
<td>Distance to SPC office</td>
<td>Continuous</td>
<td>km</td>
<td></td>
</tr>
<tr>
<td>Mobile phone access</td>
<td>Dummy</td>
<td>1 if yes, 0 otherwise</td>
<td>+</td>
</tr>
<tr>
<td>Experience in cooperatives other than SPCs</td>
<td>Continuous</td>
<td>Years</td>
<td>+</td>
</tr>
<tr>
<td>Extension contact</td>
<td>Dummy</td>
<td>1 if at least once fortnightly, 0 otherwise</td>
<td>+</td>
</tr>
<tr>
<td>Perception on price paid for seed compare to grain of the same crop</td>
<td>Categorical</td>
<td>1 low, 2 fair , 3 attractive</td>
<td></td>
</tr>
<tr>
<td>Field days participation</td>
<td>Dummy</td>
<td>1 if yes, 0 otherwise</td>
<td>+</td>
</tr>
<tr>
<td>Trainings participation</td>
<td>Dummy</td>
<td>1 if yes, 0 otherwise</td>
<td>+</td>
</tr>
</tbody>
</table>

Source: Summarized depending on previous empirical studies.

intercept and β_i is the slopes parameter in the intercept model. The slopes tell us the log-odds in favour of deciding to participate in seed producing cooperatives changes by a unit. The stimulus index Z_i refers to as the logs of the odds ratio in favour of deciding to participate. The odds to be defined as the ratio of the probability that a farmer participate P_i to the probability he will not ($1 - P_i$).

$$
\frac{p_i}{1-p_i} = \frac{1 + e^{Z_i}}{1 + e^{-Z_i}} = e^{Z_i}
$$

(3)

Therefore,

$$
\frac{p_i}{1-p_i} = \frac{1 + e^{Z_i}}{1 + e^{-Z_i}} = e^{Z_i} = \frac{1 + e^{Z_i}}{1 + e^{-Z_i}}
$$

(4)

$$
\frac{p_i}{1-p_i} = \frac{1 + e^{Z_i}}{1 + e^{-Z_i}} = e^{Z_i} = \frac{1 + e^{Z_i}}{1 + e^{-Z_i}} = e^{Z_i}
$$

(5)

Taking the natural logarithms of the odds ratio of Equation 5 will result in what is called the logit model as indicated.

$$
L_i = \ln \left[\frac{p_i}{1-p_i} \right] = \ln \left[\frac{1 + e^{Z_i}}{1 + e^{-Z_i}} \right] = \ln \left[e^{Z_i} \right] = Z_i
$$

(6)

where L_i = the log odds which is also called the logit. If the disturbance term u_i is taken in to account, the logit model becomes:

$$
Z_i = \beta_0 + \sum_{i=1}^{M} \beta_i x_i + \epsilon_i
$$

(7)

Therefore, the econometric model was used in this study to identify determinant variables that influence households’ participation in seed producing cooperatives. For the purpose of this study, definition of fourteen explanatory variables and their expected sign was hypothesized in Table 2.

RESULTS AND DISCUSSION

Descriptive and inferential analysis results of the study

The descriptive analysis showed that, the mean age of sampled respondents was 41.58 years. This implies that the mean age of the respondents was at productive age. The average household size in man equivalent was 3.98 and 3.52 for participant and non-participant categories, respectively. The mean cultivable land holding size of the total respondents was 0.869 hectare per household. This shows the land size was smaller than national average which is 1.14 hectare per household (CSA, 2015). The livestock holding in Tropical Livestock Unit (TLU) varied from 0 to 14.76 TLU whereas the average livestock holding was 5.06.

The mean distance from the cooperative office to respondents’ residence was 2.69 km whereas the mean walking distance for participant and non-participant respondents was 2.31 and 3.46 km, respectively. According to the t-test analysis result there was statistically significant mean difference between the participation category in all the continuous variables at 1, 5 and 10% significance level (Table 3).

The majority (75%) of respondents were male headed
whereas remaining were female headed households. As far as education level is concerned, majority (35.9%) of the respondents was illiterate followed by (23.4%) under the category of grade 1 to 4. Of the total respondents, 63% had involved in local administration position, while 37% had no any local administration position. Majority (66%) of respondents had experience in cooperatives other than the seed producing cooperatives like multipurpose, saving and credit and livestock and livestock products cooperatives, whereas the remaining about one third (34%) of the respondents have no any experience in cooperatives other than SPCs. Majority (70.8%) of the respondents owned mobile. About 55.7% of respondents were made at least one contact fortnightly with development agents while the remaining 44.3% of the respondents was not made contact fortnightly. The study shows that 72.7% of participants and 60.9% of the non-participants were found participated in field days. However, the percentage of respondents participated in field days was higher in the participant category than non-participant. About 65.6% of respondents attended trainings (87.9% participant and 25% non-participant). About two-third (67.7) of the respondents have perceived that the price paid to seed compared to grain is attractive, while the remaining 22.9% and 9.9% of the respondents perceived that the price paid is fair and low, respectively. The percentage of respondents who perceived that the price is fair in the non-participant category is two times higher than in participant category and lower by about 24% than participant on the percentage response of the price is attractive. The chi-square result shows significant association between the variables sex, experience in cooperatives, perception on price paid to seed, frequency of extension contact, participation in field days and participation in trainings and participation in seed producing cooperatives among the participant and non-participant category at less than 1, 5 and 10% significance level.

However, educational level, administration position and mobile phone access variables do not show significance association between participant categories on participation in SPCs in the study area (Table 4).

Determinants of household participation in seed producing cooperatives

The overall performance of the model goodness-of-fit ($\chi^2 = 133; \text{P}=0.99$) was non-significance. According to Hosmer and Lemshow (1989), statistics, the non-significance chi-square indicated that the logistic regression model prediction of household participation in seed producing cooperatives does not significantly differ from actual observed. The pseudo R squared value was 0.47, indicating that the independent variables explain 47% of the farmer’s choice to participate or not. Thus, the model was found fit for this study. The results of the logit regression model estimate indicate that out of the 14 explanatory variables included, six variables were found to have significant influence on the probability of being a participant in seed producing cooperatives in southern zone of Tigray. The variables considered significant to determine the participation of smallholder farmers in SPCs were: sex of household head, age of household, family size, distance to seed producing cooperative office, participation in field days, and participation in trainings (Table 5). Consequently, the significant explanatory variables, which have effects on participation of farmers in seed producing cooperatives in the study are discussed.

Sex of household head

The result of the study is not consistent with the prior expectation (Table 2); it negatively influenced farmers' participation in SPC at less than 1% probability level. All other thing kept constant, the odds ratio in favor of participation in SPC decreases by a factor of 0.09, as the sex of household head changes from female to a male headed household. This implies that female headed household has a higher probability of participate in SPCs than that of male headed household. Therefore, the possible reasons for the negative relationship might be; first, female have probably low negotiating power than male, and then they might expect that organizing in cooperatives will be the best option to sell their produce.

Table 3. Descriptive and inferential analysis results of continuous explanatory variables (Own Survey, 2016).

<table>
<thead>
<tr>
<th>Explanatory variables</th>
<th>Participants</th>
<th>Non-participants</th>
<th>Total</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of household (years)</td>
<td>40.78</td>
<td>43.23</td>
<td>41.58</td>
<td>-1.685*</td>
</tr>
<tr>
<td>Family size (count in man equivalent)</td>
<td>4.740</td>
<td>4.185</td>
<td>3.828</td>
<td>2.666***</td>
</tr>
<tr>
<td>Cultivable land size (hectare)</td>
<td>0.919</td>
<td>0.767</td>
<td>0.869</td>
<td>2.815***</td>
</tr>
<tr>
<td>Livestock size (TLU)</td>
<td>5.367</td>
<td>4.455</td>
<td>5.064</td>
<td>2.032**</td>
</tr>
<tr>
<td>Distance to SPCs office (km)</td>
<td>2.311</td>
<td>3.406</td>
<td>2.696</td>
<td>-2.436**</td>
</tr>
</tbody>
</table>

Sources: Computed from own survey, 2016. *, ** and *** represents significance at 10, 5 and 1% probability level respectively. SD: Standard deviation.
Table 4. Descriptive and inferential analysis results of dummy and categorical variables (Own Survey, 2016).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
<th>Participants</th>
<th>Non-participant</th>
<th>Total</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex of household</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td>91</td>
<td>71.1</td>
<td>53</td>
<td>82.8</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td>37</td>
<td>28.9</td>
<td>11</td>
<td>17.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>128</td>
<td>100</td>
<td>64</td>
<td>100</td>
</tr>
<tr>
<td>Education level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiterate</td>
<td></td>
<td>43</td>
<td>33.6</td>
<td>26</td>
<td>40.6</td>
</tr>
<tr>
<td>Read and write</td>
<td></td>
<td>11</td>
<td>8.6</td>
<td>6</td>
<td>9.6</td>
</tr>
<tr>
<td>Grade 1-4</td>
<td></td>
<td>33</td>
<td>25.8</td>
<td>12</td>
<td>18.8</td>
</tr>
<tr>
<td>Grade 5-8</td>
<td></td>
<td>23</td>
<td>18</td>
<td>15</td>
<td>23.4</td>
</tr>
<tr>
<td>Grade 9-10</td>
<td></td>
<td>18</td>
<td>14.1</td>
<td>5</td>
<td>7.8</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>128</td>
<td>100</td>
<td>64</td>
<td>100</td>
</tr>
<tr>
<td>Administration position</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>85</td>
<td>66.4</td>
<td>36</td>
<td>56.2</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>43</td>
<td>33.6</td>
<td>28</td>
<td>43.8</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>128</td>
<td>100</td>
<td>64</td>
<td>100</td>
</tr>
<tr>
<td>Mobile phone access</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>95</td>
<td>74.2</td>
<td>41</td>
<td>64.1</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>33</td>
<td>25.8</td>
<td>23</td>
<td>35.9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>128</td>
<td>100</td>
<td>64</td>
<td>100</td>
</tr>
<tr>
<td>Experience in cooperatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>93</td>
<td>72.7</td>
<td>37</td>
<td>57.8</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>35</td>
<td>27.3</td>
<td>27</td>
<td>42.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>128</td>
<td>100</td>
<td>64</td>
<td>100</td>
</tr>
<tr>
<td>Frequency of extension at least one times fortnightly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>79</td>
<td>61.7</td>
<td>28</td>
<td>43.8</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>49</td>
<td>38.3</td>
<td>36</td>
<td>56.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>128</td>
<td>100</td>
<td>64</td>
<td>100</td>
</tr>
<tr>
<td>Field day participation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>93</td>
<td>72.7</td>
<td>25</td>
<td>60.9</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>35</td>
<td>27.3</td>
<td>39</td>
<td>39.1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>128</td>
<td>100</td>
<td>64</td>
<td>100</td>
</tr>
<tr>
<td>Training participation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>110</td>
<td>87.9</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>18</td>
<td>14.1</td>
<td>48</td>
<td>75</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>128</td>
<td>100</td>
<td>64</td>
<td>100</td>
</tr>
<tr>
<td>Perception on price paid to seed compare to grain of the same crop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attractive</td>
<td></td>
<td>97</td>
<td>75.8</td>
<td>33</td>
<td>51.6</td>
</tr>
<tr>
<td>Fair</td>
<td></td>
<td>22</td>
<td>17.2</td>
<td>22</td>
<td>34.4</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>14.1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>128</td>
<td>100</td>
<td>64</td>
<td>100</td>
</tr>
</tbody>
</table>

* *, ** and ***Represents significance at 10, 5 and 1% probability level respectively. NS: Non significant.

and benefit from market and they may show higher tendency to participate. Obed (2013) reported that females are more likely joining to community saving and investment grouping program, which implying female may desire to join grouping as a buffer mechanism. Secondly, in the study area, non-governmental organizations made a deliberate effort to encourage female-headed households to join SPCs than male headed households. This finding is similar with the findings of Nwaobiala (2014) in Nigeria, Obed (2013) in Malawi and Dagne et al. (2015) in Ethiopia who reported that, female headed households are more likely to participate in community based program and membership in cooperative than male headed, respectively.
Table 5. Econometric results on determinants of participation in seed producing cooperative in southern zone of Tigray (Econometric Model Result, 2016).

<table>
<thead>
<tr>
<th>No.</th>
<th>Variable</th>
<th>Coefficient</th>
<th>S.E</th>
<th>Z</th>
<th>Sig</th>
<th>Odds ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sex of household</td>
<td>-2.407</td>
<td>0.718</td>
<td>3.35</td>
<td>0.001***</td>
<td>0.909</td>
</tr>
<tr>
<td>2</td>
<td>Age of household</td>
<td>-0.068</td>
<td>0.028</td>
<td>2.42</td>
<td>0.016**</td>
<td>0.933</td>
</tr>
<tr>
<td>3</td>
<td>Education level</td>
<td>0.206</td>
<td>0.210</td>
<td>0.98</td>
<td>0.329</td>
<td>1.228</td>
</tr>
<tr>
<td>4</td>
<td>Family size</td>
<td>0.841</td>
<td>0.265</td>
<td>3.17</td>
<td>0.002***</td>
<td>2.319</td>
</tr>
<tr>
<td>5</td>
<td>Local administration position</td>
<td>0.124</td>
<td>0.489</td>
<td>0.25</td>
<td>0.799</td>
<td>1.132</td>
</tr>
<tr>
<td>6</td>
<td>Livestock size</td>
<td>-0.041</td>
<td>0.104</td>
<td>0.39</td>
<td>0.695</td>
<td>0.959</td>
</tr>
<tr>
<td>7</td>
<td>Cultivable land size</td>
<td>1.535</td>
<td>0.961</td>
<td>1.60</td>
<td>0.110</td>
<td>4.641</td>
</tr>
<tr>
<td>8</td>
<td>Years of experience in cooperatives</td>
<td>-0.534</td>
<td>0.518</td>
<td>1.03</td>
<td>0.302</td>
<td>0.585</td>
</tr>
<tr>
<td>9</td>
<td>Distance to SPCs office</td>
<td>-0.247</td>
<td>0.104</td>
<td>2.37</td>
<td>0.018**</td>
<td>0.781</td>
</tr>
<tr>
<td>10</td>
<td>Mobile phone access</td>
<td>-0.347</td>
<td>0.567</td>
<td>0.61</td>
<td>0.541</td>
<td>0.707</td>
</tr>
<tr>
<td>11</td>
<td>Frequency of extension contact</td>
<td>0.769</td>
<td>0.510</td>
<td>1.51</td>
<td>0.132</td>
<td>2.169</td>
</tr>
<tr>
<td>12</td>
<td>Field day participation</td>
<td>0.868</td>
<td>0.504</td>
<td>1.72</td>
<td>0.085*</td>
<td>2.383</td>
</tr>
<tr>
<td>13</td>
<td>Perception on price paid to seed</td>
<td>0.628</td>
<td>0.385</td>
<td>1.63</td>
<td>0.103</td>
<td>1.874</td>
</tr>
<tr>
<td>14</td>
<td>Training participation</td>
<td>3.330</td>
<td>0.579</td>
<td>5.75</td>
<td>0.000***</td>
<td>27.949</td>
</tr>
<tr>
<td>15</td>
<td>Constant</td>
<td>-2.344</td>
<td>1.682</td>
<td>1.41</td>
<td>0.160</td>
<td>0.0940</td>
</tr>
</tbody>
</table>

Hosmer and Lemeshow goodness of fit test ($\chi^2 = 133; P=0.994$)

Observation: 192

Pseudo R^2: 0.47

-2log likelihood: 192

Correctively predicted percentage: 77.57

Source: Own Survey, 2016. *, ** and *** represents significance at 10, 5 and 1% probability level respectively.

Age of household head

The result of the study shows that age of household head had negative influence on farmers' participation in SPCs at less than 5% probability level. The result of logit model shows that, as the age of the household head increases by one year, the logs of odds ratio in favor of households' participation in seed producing cooperatives decreases by 0.93. This implies that the older age farmers are reluctant to accept new ways of doing activities like seed production organized in cooperatives. This study is comparable with the study conducted by Greenwell (2010) who reported that age of household head had negative relationship with decision to join national smallholder farmers' association in Malawi. In addition, studies conducted in Ethiopia by Amare (2014), on participation of women farmers' in seed producing and marketing cooperatives/local seed business, Getachew and Girmay (2012), participation of the household head in seed production and marketing and Woldegebrbial et al. (2013), on probability of households to join cooperative membership was shown to negatively influenced between participation/membership and age. The authors conclude that young heads of households are more likely to acquire new knowledge and learn new techniques than the orders.

Family size of household head

The result is consistent with prior expectation; availability of more household size was positively influencing farmers' participation in SPC at less than 1% level of significance. The result of the model indicates that keeping all other factors constant, participation in SPC increased by a factor of 2.32, as household size in worker unit of the household increased by one. Consequently, this may be due to the fact that, the availability of family labor increases the capability of the household to fulfill demand of the cooperative seed multiplication standards and can manage the seed production activities properly. Seed multiplication needs more labor in planting rows, frequent weeding, logging out and threshing of the produced seed separately than the common crop/grain production activities. Hence, the farmers who have more family labor may not need to request additional labor for seed production purpose. The finding of this study confirms the findings of Amare (2014) from Ethiopia, who found that family size had positive and significant influence to household participation in women farmers' participation in seed producing and marketing cooperatives. Similarly, Karli et al. (2006) from Turkey also reported that households with higher family size had higher probability to enter agricultural cooperatives.
Distance to seed producing cooperatives office

Similar to the prior expectation, distance to office of the SPCs negatively affects farmers’ participation in SPC at less than 5% probability level. The result of logit model shows that, as the distance from SPC office to the household heads residence increases by 1 km, the logs of odds ratio in favor of household participation in SPC decrease by 0.78. This is due to the fact that, participation in cooperatives may need up-to-dated information on the day to day activities of the cooperatives and operations. Therefore, the nearby farmers have better chance of getting reliable information related to seed production from the cooperative member than farmers far away. The finding of this study is similar with finding of Obed (2013) and Muthyalu (2013). For instance Muthyalu (2013) reported that distance to multi-purpose cooperatives have negative influence on farmers' input and output marketing in Tigray.

Participation in field days

As expected, participation in field days was positively related to farmers’ participation in SPCs at less than 10% significance level. The result of the odds ratio shows that, if the household participated in field days, the odds ratio in favor of household participation in SPC will increase by 2.38. This implies that household who participated in field days enables to understand the importance of seed practically through observation of farmers’ field in the areas of seed production and seed producing cooperatives. This study is comparable with studies of Mesay et al. (2013) in Amhara region conducted on participation in local seed multiplication and Woldegebrial et al. (2013) in Tigray region conducted on cooperative membership.

Participation in trainings

Different trainings were provided related to seed production and seed producing cooperatives in the study area. As expected, participation in training was positively related to farmers’ participation in seed producing cooperative at less than 1% level of significance. The result of the odds ratio shows that, if the household participated in training, the logs of odds ratio in favor of household participation in SPC will increase by 27.95. Therefore, logit result shows that, farmers who participate in trainings will be more probable to participate in seed producing cooperatives than not participated in training. This indicated that, participation in training is imperative to convince farmers and to provide knowledge and skill on the practical experience of seed production in cooperatives. The finding of this research is similar with findings of Tadelle (2011), Woldegebrial et al. (2013), Mesay et al. (2013) and Baodan et al. (2015).

CONCLUSION AND RECOMMENDATIONS

Cooperative based seed production is among the development efforts undertaken by the government of Ethiopia to ensure seed security of the rural farmers at local level. The study found that smallholder farmers’ participation in seed producing cooperatives is affected by different personal, socio-economic and institutional factors. Accordingly, female headed households, relatively younger farmers, farmers who have participated in field days, trainings, relatively have larger productive household size and farmers who are living nearby to cooperative office have better tendency to participate in SPCs. Therefore, in future priority interventions on smallholder farmers’ participation in SPCs in southern zone of Tigray should be better if policy makers, concerned governmental organizations and NGOs place more emphases on:

1. Encouraging aged household heads and male headed households to join seed producing cooperatives
2. Strengthening the capacity of smallholder farmers on seed production and SPCs by arranging adequate trainings and field days visits.
3. Promoting labor saving technologies like row planter, harvester, thrasher and cleaner machines should take into consideration by research centers and stakeholders to increase labor availability of households in the peak seasons so as to increase household participation in seed producing cooperatives, and
4. Village based clusters of seed production should be promoted by concerned governmental and NGOs to encourage distant farmers to participate in seed producing cooperatives and to produce seed in quality and quantity at grass root level.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors are thankful to agricultural experts of Enda Mohoni, Emba Alaje, Ofla Woredas, and southern zone development corridor and development agents of the selected kebelles. They would like to acknowledge all individuals who participated in group discussion and individual interview who contributed a lot to conduct the study. Our special thanks also go to CASCAPE Project (Mekelle University) and Alamata Research Center of TARI (Tigray Agricultural Research Institute) for the financial support to conduct the study. They would also like to thank to Department of Rural Development and Agricultural Extension of Haramaya University, Ethiopia. Finally, they greatly thank all individuals who made an effort to materialize this study.
REFERENCES

Obed GF (2013). The impact of community savings and investment promotion program on household income and credit market participation in Kasungu District, Central Malawi. MSc Thesis university of Malawi Bunda college of agriculture.

Related Journals:

- Journal of Plant Breeding and Crop Science
- Journal of Stored Products and Postharvest Research
- Journal of Soil Science and Environmental Management
- African Journal of Agricultural Research
- International Journal of Fisheries and Aquaculture
- International Journal of Livestock Production
- Journal of Agricultural Biotechnology and Sustainable Development
- Journal of Agricultural Extension and Rural Development
- Journal of Cereals and Oilseeds

www.academicjournals.org