ABOUT AJB

The African Journal of Biotechnology (AJB) (ISSN 1684-5315) is published weekly (one volume per year) by Academic Journals.

African Journal of Biotechnology (AJB), a new broad-based journal, is an open access journal that was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly, to provide the most rapid turn-around time possible for reviewing and publishing, and to disseminate the articles freely for teaching and reference purposes. All articles published in AJB are peer-reviewed.

Contact Us

Editorial Office: ajb@academicjournals.org

Help Desk: helpdesk@academicjournals.org

Website: http://www.academicjournals.org/journal/AJB

Submit manuscript online http://ms.academicjournals.me/
Editor-in-Chief

George Nkem Ude, Ph.D
Plant Breeder & Molecular Biologist
Department of Natural Sciences
Crawford Building, Rm 003A
Bowie State University
14000 Jericho Park Road
Bowie, MD 20715, USA

Associate Editors

Prof. Dr. AE Aboulata
Plant Path. Res. Inst., ARC, POBox
12619, Giza, Egypt
30 D, El-Karama St., Alf Maskan, P.O.
Box 1567,
Ain Shams, Cairo,
Egypt

Dr. S.K Das
Department of Applied Chemistry
and Biotechnology, University of
Fukui,
Japan

Prof. Okoh, A. I.
Applied and Environmental
Microbiology Research Group
(AEMREG),
Department of Biochemistry and
Microbiology,
University of Fort Hare.
P/Bag X1314 Alice 5700,
South Africa

Dr. Ismail TURKOGLU
Department of Biology Education,
Education Faculty, Fırat University,
Elazığ, Turkey

Prof T.K.Raja, PhD FRSC (UK)
Department of Biotechnology
PSG COLLEGE OF TECHNOLOGY
(Autonomous)
(Affiliated to Anna University)
Coimbatore-641004, Tamilnadu,
INDIA.

Dr. George Edward Mamati
Horticulture Department,
Jomo Kenyatta University of
Agriculture
and Technology,
P. O. Box 62000-00200,
Nairobi, Kenya.

Dr. Gitonga
Kenya Agricultural Research
Institute,
National Horticultural Research
Center,
P.O Box 220,
Thika, Kenya.
Editorial Board

Prof. Sagadevan G. Mundree
Department of Molecular and Cell Biology
University of Cape Town
Private Bag Rondebosch 7701
South Africa

Dr. Martin Fregene
Centro Internacional de Agricultura Tropical (CIAT)
Km 17 Cali-Palmira Recta
AA6713, Cali, Colombia

Prof. O. A. Ogunseitan
Laboratory for Molecular Ecology
Department of Environmental Analysis and Design
University of California, Irvine, CA 92697-7070. USA

Dr. Ibrahima Ndoye
UCAD, Faculte des Sciences et Techniques
Departement de Biologie Vegetale
BP 5005, Dakar, Senegal.
Laboratoire Commun de Microbiologie
IRD/ISRA/UCAD
BP 1386, Dakar

Dr. Bamidele A. Iwalokun
Biochemistry Department
Lagos State University
P.M.B. 1087. Apapa – Lagos, Nigeria

Dr. Jacob Hodeba Mignouna
Associate Professor, Biotechnology
Virginia State University
Agricultural Research Station Box 9061
Petersburg, VA 23806, USA

Dr. Bright Ogheneovo Agindotan
Plant, Soil and Entomological Sciences Dept
University of Idaho, Moscow
ID 83843, USA

Dr. A.P. Njukeng
Département de Biologie Végétale
Faculté des Sciences
B.P. 67 Dschang
Université de Dschang
Rep. du CAMEROUN

Dr. E. Olatunde Farombi
Drug Metabolism and Toxicology Unit
Department of Biochemistry
University of Ibadan, Ibadan, Nigeria

Dr. Stephen Bakiamoh
Michigan Biotechnology Institute International
3900 Collins Road
Lansing, MI 48909, USA

Dr. N. A. Amusa
Institute of Agricultural Research and Training
Obafemi Awolowo University
Moor Plantation, P.M.B 5029, Ibadan, Nigeria

Dr. Desouky Abd-El-Haleem
Environmental Biotechnology Department &
Bioprocess Development Department,
Genetic Engineering and Biotechnology Research
Institute (GEBRI),
Mubarak City for Scientific Research and Technology
Applications,
New Burg-Elarab City, Alexandria, Egypt.

Dr. Simeon Oloni Kotchoni
Department of Plant Molecular Biology
Institute of Botany, Kirschallee 1,
University of Bonn, D-53115 Germany.

Dr. Eriola Betiku
German Research Centre for Biotechnology,
Biochemical Engineering Division,
Mascheroder Weg 1, D-38124,
Braunschweig, Germany

Dr. Daniel Masiga
International Centre of Insect Physiology and Ecology,
Nairobi,
Kenya

Dr. Essam A. Zaki
Genetic Engineering and Biotechnology Research
Institute, GEBRI,
Research Area,
Borg El Arab, Post Code 21934, Alexandria
Egypt
Dr. Alfred Dixon
International Institute of Tropical Agriculture (IITA)
PMB 5320, Ibadan
Oyo State, Nigeria

Dr. Sankale Shompole
Dept. of Microbiology, Molecular Biology and Biochemistry,
University of Idaho, Moscow,
ID 83844, USA.

Dr. Mathew M. Abang
Germplasm Program
International Center for Agricultural Research in the Dry Areas
(ICARDA)
P. O. Box 5466, Aleppo, SYRIA.

Dr. Solomon Olawale Odemuyiwa
Pulmonary Research Group
Department of Medicine
550 Heritage Medical Research Centre
University of Alberta
Edmonton
Canada T6G 2S2

Prof. Anna-Maria Botha-Oberholster
Plant Molecular Genetics
Department of Genetics
Forestry and Agricultural Biotechnology Institute
Faculty of Agricultural and Natural Sciences
University of Pretoria
ZA-0002 Pretoria, South Africa

Dr. O. U. Ezeronye
Department of Biological Science
Michael Okpara University of Agriculture
Umudike, Abia State, Nigeria.

Dr. Joseph Hounhouigan
Maître de Conférence
Sciences et technologies des aliments
Faculté des Sciences Agronomiques
Université d’Abomey-Calavi
01 BP 526 Cotonou
République du Bénin

Prof. Christine Rey
Dept. of Molecular and Cell Biology,
University of the Witwatersand,
Private Bag 3, WITS 2050, Johannesburg, South Africa

Dr. Kamel Ahmed Abd-Elsalam
Molecular Markers Lab. (MML)
Plant Pathology Research Institute (PPathRI)
Agricultural Research Center, 9-Gamma St., Orman,
12619,
Giza, Egypt

Dr. Jones Lemchi
International Institute of Tropical Agriculture (IITA)
Onne, Nigeria

Prof. Greg Blatch
Head of Biochemistry & Senior Wellcome Trust Fellow
Department of Biochemistry, Microbiology & Biotechnology
Rhodes University
Grahamstown 6140
South Africa

Dr. Beatrice Kilel
P.O Box 1413
Manassas, VA 20108
USA

Dr. Jackie Hughes
Research-for-Development
International Institute of Tropical Agriculture (IITA)
Ibadan, Nigeria

Dr. Robert L. Brown
Southern Regional Research Center,
U.S. Department of Agriculture,
Agricultural Research Service,
New Orleans, LA 70179.

Dr. Deborah Rayfield
Physiology and Anatomy
Bowie State University
Department of Natural Sciences
Crawford Building, Room 003C
Bowie MD 20715, USA
Dr. Marlene Shehata
University of Ottawa Heart Institute
Genetics of Cardiovascular Diseases
40 Ruskin Street
K1Y 4W7, Ottawa, ON, CANADA

Dr. Hany Sayed Hafez
The American University in Cairo, Egypt

Dr. Clement O. Adebooye
Department of Plant Science
Obafemi Awolowo University, Ile-Ife
Nigeria

Dr. Ali Demir Sezer
Marmara Universitesi Eczacilik Fakultesi,
Tibbiye cad. No: 49, 34668, Haydarpasa, Istanbul, Turkey

Dr. Ali Gazanchain
P.O. Box: 91735-1148, Mashhad, Iran.

Dr. Anant B. Patel
Centre for Cellular and Molecular Biology
Uppal Road, Hyderabad 500007
India

Prof. Arne Elofsson
Department of Biophysics and Biochemistry
Bioinformatics at Stockholm University, Sweden

Prof. Bahram Goliaei
Departments of Biophysics and Bioinformatics
Laboratory of Biophysics and Molecular Biology
University of Tehran, Institute of Biochemistry and Biophysics
Iran

Dr. Nora Babudri
Dipartimento di Biologia cellulare e ambientale
Università di Perugia
Via Pascoli
Italy

Dr. S. Adesola Ajayi
Seed Science Laboratory
Department of Plant Science
Faculty of Agriculture
Obafemi Awolowo University
Ile-Ife 220005, Nigeria

Dr. Yee-Joo TAN
Department of Microbiology
Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore
MD4, 5 Science Drive 2, Singapore 117597
Singapore

Prof. Hidetaka Hori
Laboratories of Food and Life Science, Graduate School of Science and Technology, Niigata University.
Niigata 950-2181, Japan

Prof. Thomas R. DeGregori
University of Houston, Texas 77204 5019, USA

Dr. Wolfgang Ernst Bernhard Jelkmann
Medical Faculty, University of Lübeck, Germany

Dr. Moktar Hamdi
Department of Biochemical Engineering, Laboratory of Ecology and Microbial Technology
National Institute of Applied Sciences and Technology.
BP: 676. 1080, Tunisia

Dr. Salvador Ventura
Department de Bioquímica i Biologia Molecular
Institut de Biotecnologia i de Biomedicina
Universitat Autònoma de Barcelona
Bellaterra-08193
Spain

Dr. Claudio A. Hetz
Faculty of Medicine, University of Chile
Independencia 1027
Santiago, Chile

Prof. Felix Dapare Dakora
Research Development and Technology Promotion
Cape Peninsula University of Technology, Room 2.8 Admin. Bldg. Keizersgracht, P.O. 652, Cape Town 8000, South Africa
Dr. Geremew Bultosa
Department of Food Science and Post Harvest Technology
Haramaya University
Personal Box 22, Haramaya University Campus
Dire Dawa, Ethiopia

Dr. José Eduardo García
Londrina State University
Brazil

Prof. Nīrbhay Kumar
Malaria Research Institute
Department of Molecular Microbiology and Immunology
Johns Hopkins Bloomberg School of Public Health
ES144, 615 N. Wolfe Street
Baltimore, MD 21205

Prof. M. A. Awal
Department of Anatomy and Histplogy,
Bangladesh Agricultural University, Mymensing-2202, Bangladesh

Prof. Christian Zwieb
Department of Molecular Biology
University of Texas Health Science Center at Tyler
11937 US Highway 271
Tyler, Texas 75708-3154
USA

Prof. Danilo López-Hernández
Instituto de Zoología Tropical, Facultad de Ciencias, Universidad Central de Venezuela. Institute of Research for the Development (IRD), Montpellier, France

Prof. Donald Arthur Cowan
Department of Biotechnology,
University of the Western Cape Bellville 7535 Cape Town, South Africa

Dr. Ekhaise Osaro Frederick
University Of Benin, Faculty of Life Science
Department of Microbiology
P. M. B. 1154, Benin City, Edo State, Nigeria.

Dr. Luísa Maria de Sousa Mesquita Pereira
IPATIMUP R. Dr. Roberto Frias, s/n 4200-465 Porto Portugal

Dr. Min Lin
Animal Diseases Research Institute
Canadian Food Inspection Agency
Ottawa, Ontario, Canada K2H 8P9

Prof. Nobuyoshi Shimizu
Department of Molecular Biology, Center for Genomic Medicine
Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku
Tokyo 160-8582, Japan

Dr. Adewunmi Babatunde Idowu
Department of Biological Sciences
University of Agriculture Abia
Abia State, Nigeria

Dr. Yifan Dai
Associate Director of Research
Revivicor Inc.
100 Technology Drive, Suite 414
Pittsburgh, PA 15219
USA

Dr. Zhongming Zhao
Department of Psychiatry, PO Box 980126, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0126, USA

Prof. Giuseppe Novelli
Human Genetics, Department of Biopathology,
Tor Vergata University, Rome, Italy

Dr. Moji Mohammadi
402-28 Upper Canada Drive
Toronto, ON, M2P 1R9 (416) 512-7795
Canada
Prof. Jean-Marc Sabatier
Directeur de Recherche Laboratoire ERT-62
Ingénierie des Peptides à Visée Thérapeutique,
Université de la Méditerranée-Ambrilia
Biopharma inc.,
Faculté de Médecine Nord, Bd Pierre Dramard, 13916,
Marseille cédex 20.
France

Dr. Fabian Hoti
PneumoCarr Project
Department of Vaccines
National Public Health Institute
Finland

Prof. Irina-Draga Caruntu
Department of Histology
Gr. T. Popa University of Medicine and Pharmacy
16, Universitatii Street, Iasi,
Romania

Dr. Dieudonné Nwaga
Soil Microbiology Laboratory,
Biotechnology Center, PO Box 812,
Plant Biology Department,
University of Yaoundé I, Yaoundé,
Cameroon

Dr. Gerardo Armando Aguado-Santacruz
Biotechnology CINVESTAV-Unidad Irapuato
Departamento Biotecnología
Km 9.6 Libramiento norte Carretera
Irapuato-León Irapuato,
Guanajuato 36500
Mexico

Dr. Abdolkaim H. Chehregani
Department of Biology
Faculty of Science
Bu-Ali Sina University
Hamedan,
Iran

Dr. Abir Adel Saad
Molecular oncology
Department of Biotechnology
Institute of graduate Studies and Research
Alexandria University,
Egypt

Dr. Azizul Baten
Department of Statistics
Shah Jalal University of Science and Technology
Sylhet-3114,
Bangladesh

Dr. Bayden R. Wood
Australian Synchrotron Program
Research Fellow and Monash Synchrotron
Research Fellow Centre for Biospectroscopy
School of Chemistry Monash University Wellington Rd. Clayton,
3800 Victoria,
Australia

Dr. G. Reza Balali
Molecular Mycology and Plant Phthology
Department of Biology
University of Isfahan
Isfahan
Iran

Dr. Beatrice Kilel
P.O Box 1413
Manassas, VA 20108
USA

Prof. H. Sunny Sun
Institute of Molecular Medicine
National Cheng Kung University Medical College
1 University road Tainan 70101,
Taiwan

Prof. Ima Nirwana Soelaiman
Department of Pharmacology
Faculty of Medicine
Universiti Kebangsaan Malaysia
Jalan Raja Muda Abdul Aziz
50300 Kuala Lumpur,
Malaysia

Prof. Tunde Ogunsanwo
Faculty of Science,
Olabisi Onabanjo University,
Ago-Iwoye.
Nigeria

Dr. Evans C. Egwim
Federal Polytechnic,
Bida Science Laboratory Technology Department,
PMB 55, Bida, Niger State,
Nigeria
Prof. George N. Goulielmos
Medical School,
University of Crete
Voutes, 715 00 Heraklion, Crete,
Greece

Dr. Uttam Krishna
Cadila Pharmaceuticals limited,
India 1389, Tarsad Road,
Dholka, Dist: Ahmedabad, Gujarat,
India

Prof. Mohamed Attia El-Tayeb Ibrahim
Botany Department, Faculty of Science at Qena,
South Valley University, Qena 83523,
Egypt

Dr. Nelson K. Ojijo Olang’o
Department of Food Science & Technology,
JKUAT P. O. Box 62000, 00200, Nairobi,
Kenya

Dr. Pablo Marco Veras Peixoto
University of New York NYU College of Dentistry
345 E. 24th Street, New York, NY 10010
USA

Prof. T E Cloete
University of Pretoria Department of Microbiology
and Plant Pathology,
University of Pretoria,
Pretoria,
South Africa

Prof. Djamel Saidi
Laboratoire de Physiologie de la Nutrition et de
Sécurité
Alimentaire Département de Biologie,
Faculté des Sciences,
Université d’Oran, 31000 - Algérie
Algeria

Dr. Tomohide Uno
Department of Biofunctional chemistry,
Faculty of Agriculture Nada-ku,
Kobe., Hyogo, 657-8501,
Japan

Dr. Ulises Uruzúa
Faculty of Medicine,
University of Chile Independencia 1027, Santiago,
Chile

Dr. Arituva Valentine
National Agricultural Biotechnology Center,
Kawanda
Agricultural Research Institute (KARI)
P.O. Box, 7065, Kampala,
Uganda

Prof. Yee-Joo Tan
Institute of Molecular and Cell Biology 61 Biopolis
Drive,
Proteos, Singapore 138673
Singapore

Prof. Viroj Wiwanitkit
Department of Laboratory Medicine,
Faculty of Medicine, Chulalongkorn University,
Bangkok
Thailand

Dr. Thomas Silou
Université of Brazzaville BP 389
Congo

Prof. Burtram Clinton Fielding
University of the Western Cape
Western Cape,
South Africa

Dr. Brnčič (Brncic) Mladen
Faculty of Food Technology and Biotechnology,
Pierottijevo 6,
10000 Zagreb,
Croatia.

Dr. Meltem Sesli
College of Tobacco Expertise,
Turkish Republic, Celal Bayar University 45210,
Akhisar, Manisa,
Turkey.

Dr. Idress Hamad Attitalla
Omar El-Mukhtar University,
Faculty of Science,
Botany Department,
El-Beida, Libya.

Dr. Linga R. Gutha
Washington State University at Prosser,
24106 N Bunn Road,
Prosser WA 99350-8694
Dr Helal Ragab Moussa
Bahnay, Al-bagour, Menoufia, Egypt.

Dr VIPUL GOHEL
DuPont Industrial Biosciences
Danisco (India) Pvt Ltd
5th Floor, Block 4B,
DLF Corporate Park
DLF Phase III
Gurgaon 122 002
Haryana (INDIA)

Dr. Sang-Han Lee
Department of Food Science & Biotechnology,
Kyungpook National University
Daegu 702-701,
Korea.

Dr. Bhaskar Dutta
DoD Biotechnology High Performance Computing
Software Applications Institute (BHSAI)
U.S. Army Medical Research and Materiel Command
2405 Whittier Drive
Frederick, MD 21702

Dr. Muhammad Akram
Faculty of Eastern Medicine and Surgery,
Hamdard Al-Majeed College of Eastern Medicine,
Hamdard University,
Karachi.

Dr. M. Muruganandam
Department of Biotechnology
St. Michael College of Engineering & Technology,
Kalayarkoil,
India.

Dr. Gökhan Aydin
Suleyman Demirel University,
Atabey Vocational School,
Isparta-Türkiye,

Dr. Rajib Roychowdhury
Centre for Biotechnology (CBT),
Visva Bharati,
West-Bengal,
India.

Dr Takuji Ohyama
Faculty of Agriculture, Niigata University

Dr Mehdi Vasfi Marandi
University of Tehran

Dr Fügen DURLU-ÖZKAYA
Gazi University, Tourism Faculty, Dept. of Gastronomy and Culinary Art

Dr. Reza Yari
Islamic Azad University, Boroujerd Branch

Dr Zahra Tahmasebi Fard
Roudehen branche, Islamic Azad University

Dr Albert Magří
Giro Technological Centre

Dr Ping ZHENG
Zhejiang University, Hangzhou, China

Dr. Kgomotso P. Sibeko
University of Pretoria

Dr Greg Spear
Rush University Medical Center

Prof. Pilar Morata
University of Malaga

Dr Jian Wu
Harbin medical university , China

Dr Hsiu-Chi Cheng
National Cheng Kung University and Hospital.

Prof. Pavel Kalac
University of South Bohemia, Czech Republic

Dr Kürsat Korkmaz
Ordu University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition

Dr. Shuyang Yu
Department of Microbiology, University of Iowa
Address: 51 newton road, 3-730B BSB bldg. Iowa City,
IA, 52246, USA
Dr. Mousavi Khaneghah
College of Applied Science and Technology-Applied Food Science, Tehran, Iran.

Dr. Qing Zhou
Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University Portland.

Dr Legesse Adane Bahiru
Department of Chemistry, Jimma University, Ethiopia.

Dr James John
School Of Life Sciences, Pondicherry University, Kalapet, Pondicherry
ARTICLES

Actinomycetes bioactive compounds: Biological control of fungi and phytopathogenic insect
Edelvio de B. Gomes, Léo Ruben L. Dias and Rita de Cássia M. de Miranda

Expression and purification of human IL-2 protein from Escherichia coli
Ramadan Hassan, Mohammed El-Mowafy and Eman Samy Zaher

Vitamin C, iron and zinc levels of selected African green leafy vegetables at different stages of maturity
Teddy Frederick Mamboleo, John Mbonea Msuya and Akwilina Wendelin Mwanri
Actinomycetes bioactive compounds: Biological control of fungi and phytopathogenic insect

Edelvio de B. Gomes¹,², *Léo Ruben L. Dias*³ and *Rita de Cássia M. de Miranda*³

¹*Instituto Federal de Educação, Ciência e Tecnologia de Sergipe, Campus São Cristovão, SE, Brazil.*
²*Instituto Federal de Educação Ciência e Tecnologia da Bahia, Campus Barbalho, Salvador, BA, Brazil.*
³*Mestrado em Meio Ambiente, Universidade Ceuma, Campus Renascença, São Luís, MA, Brazil.*

Received 15 November, 2017; Accepted 26 January, 2018

Actinomycetes are aerobic and gram-positive spore forming bacteria. They belong to the order actinomycetales and are characterized by substrates and aerial mycelium growth. They are the most abundant microorganisms in soil. They play important roles in the cycling of organic matter and inhibit the growth of several plant pathogens in the rhizosphere. Due to the presence of enzymes such as proteases and chitinase, actinomycetes have been studied as a natural controller of insects and phytopathogenic fungi that cause considerable losses in agriculture. Additionally, the facilities for the industrial manipulation of cultures, and the diversity of metabolites produced make actinomycetes preferred for the control of pests. Furthermore, actinomycetes constitute a “green” alternative for controlling insects and fungi, since they do not contaminate the environment, and are natural members of the soil. They also contribute to the sustainability of soil by formation and stabilization of compost piles, due to their degrading capabilities, and ability to form stable humus. Moreover, they can be associated with other soil microorganisms to degrade recalcitrant residues like celluloses to maintain biotic soil equilibrium.

Key words: Actinomycetes, compounds, agriculture, fungi, insect.

INTRODUCTION

Historically, discoveries and developments of a class of new bioactive compounds with antimicrobial and antiparasitic activities have frequently emerged from natural sources (Chin et al., 2006; Ganesan, 2008). These natural bioactive compounds produced serve as a model for the synthesis of synthetic and semi-synthetic drugs. These developments are directly linked to the screening of natural producers such as microorganisms and plants, which require employment of biotechnological techniques (Marinelli and Marconi, 2011; Newman and Cragg, 2012). Particularly, the use of microbial sources for the investigations of novel natural bioactive compounds has proved to be productive during the last two decades and was emphasized extensively in review articles (Berdy, 2005; Balts, 2007; Naine, 2011; Raja and Prabakarana, 2011). Microbial natural products are
biotechnologically preferable due to their remarkable appropriate pharmacological activities and facility for controlling variables in bioprocess (Sanchez and Demain 2002).

Well-known as the source of several drugs such as antibiotics, antitumor, immunosuppressants, antiviral and antiparasitic agents, microorganisms are responsible for the production of about 23,000 bioactive secondary metabolites (dos Reis Feitosa et al., 2014; Subbanna et al., 2018). Despite this large amount, only 150 of these compounds have been employed in pharmacology, agriculture or other fields (Brzezinska et al., 2014). The filamentous bacteria group actinomycetes alone are the main producers responsible for the production of over 10,000 of these compounds, representing 45% of all bioactive microbial metabolites discovered (Brzezinska et al., 2014). When considering only these compounds in practical use, it may represent about 80% (Olano et al., 2008). This bacterial group represents the most economically and biotechnologically worthwhile microorganisms (Balz, 2007; Naine et al., 2011; Raja and Prabakaran, 2011).

Actinomycetes are a group of gram-positive branching unicellular filamentous bacteria belonging to the order actinomycetales; it is so called, because it has a fancied similitude with the radiating rays of the sun when seen in tissue ruptures. It is characterized by high content of G+C in DNA, presence of LL-Diaminopimelic acid (LL-DAP) and the presence or absence of characteristic sugars in the cell wall. Members of this group are ubiquitous and the discovery of new actinomycete taxa from diverse habitat with unique metabolic activity implies, generally, discovery of novel bioactive compound. Their reproduction is based on fission of hyphae or by means of special spores (conidia). They may also form branching threads or rods, and their hyphae are generally nonseptate. Septa, when existing, may be observed in some forms (Manulis et al., 1994). The chemical composition of cell wall is similar to that of Gram-positive bacteria but because of their well-developed morphological (hyphae) and cultural characteristics, actinomycetes have been considered as a group, well separated from other bacteria. Cell wall maintains cell shape, preventing bursting due to osmotic pressure. This wall, as distinctive in prokaryotic organisms, consists of a thick layer of peptidoglycan, a structure composed of glycan (polysaccharides) chains of alternating N-acetyl-d-glucosamine (NAG) and N-acetyl-d-muramic acid (NAM) and diaminopimelic acid (DAP). Teichoic and teichuronic acids are chemically bonded to peptidoglycan (Bhatti et al., 2017; De Schrijver and De Mot, 1999).

Although historically referred to as the ray fungi due to the mycelia of branching filaments (hyphae), actinomycetes, unlike the true fungi, have thin hyphae (0.5 1.5 mm in diameter) with genetic material coiled inside as free DNA (Bhatti et al., 2017). Linked polymers containing short chains of amino acids and long chains of amino sugars are found in cell wall of the hyphae. The actinomycetes cell wall composition is of considerable taxonomic significance, varying considerably among different groups. Therefore, there are at least, four major cell wall types based on the three features of peptidoglycan composition and structure: (i) diaminopimelic acid isomer on tetrapeptide side chain position 3, (ii) sugar content of peptidoglycan and (iii) the presence of glycine in interpeptide bridges (Davenport et al., 2000). Interactions between actinomycetes and plants in soil rhizosphere make bacterial species essential for the micro-environment, characterizing them as plant growth-promoting rhizobacteria.

Increase in population and food prices concomitant with the reduction in agricultural activities has become a global food security concern. On the other hand, losses of U$$ 120 billion (representing 20 to 40%) have been attributed to insect pests and fungal attack (FAO, 2010). Approximately, 70,000 different insect species damage food crops across the world (Vijayabharathi, 2013). Among them, the species belonging to Lepidoptera order are the major cause of crop losses (Qin et al., 2009). Bacteria belonging to actinomycetes group also present several mechanisms especially useful in the development of potential anti-fungal drugs based on anti-fungal bioactive metabolites, due to their versatility in the production of extracellular enzymes and a variety of these secondary metabolites. Many of these anti-fungal bioactive compounds have been characterized and employed in agriculture (Arasu et al., 2008).

The aim of the present study is to show the potentialities of actinomycetes for producing biofungicide and bioinsecticide important in agriculture. This study also describes the general mechanisms of action and status of main commercial products derived from bioactive compounds.

ACTINOMYCETES AND BIOCONTROL OF INSECTS IN AGRICULTURE

Since the application of chemical insecticides on crops for controlling deleterious insects has become hazardous to environment and human health, many efforts have been oriented in order to amend their use for a more ecofriendly and safe alternative control methods (Bream et al., 2001). The bacterial species, *Bacillus thuringiensis*, for example, is the most successful microorganism employed as a commercial insecticide for biological control, replacing conventional chemical insecticides in some areas of application. Several other varieties of microorganisms including fungi and nematodes have been reported as strategies to biologically control insect pests, but, actinomycetes especially, play an important role in the biological control of insects through the production of a large variety of...
The diverse variety of metabolites found in bacteria has been employed as insectal for the biocontrol of insect pests. Gupta et al., 1995 reported the potentiality of several of them to be actinomycetes and tested their capacity to produce insecticidal compounds against different order of insects (Hokkanen and Lynch, 1995).

Hussain et al. (2002) confirmed the very high mortality of larval and pupal stages of Musca domestica reaching up to 90% of mortality, after actinomycetes treatments, and Sundarapandian et al. (2002) verified actinomycetes effectiveness against Culex quinquefasciatus. The effective action of actinomycetes against insects is not only attributed to the production of bioactive compounds, but especially attributed to their capacity to produce chitinase enzyme, which degrades the insect chitin surface, allowing penetration of bioactive toxic lethal compound in the insect body (Brzezinska et al., 2014). Therefore, the action of actinomycetes in insects is combined, depending on the action of two or more mechanisms (Gadelhak et al., 2005). A large variety of compounds that act in isolation or generally in combinations with other molecules is related to actinomycetes and it justifies the ability or even the potentiality of several of them to be employed as insect pests controllers. Some typical actinomycetes and their major role as biocontrol agent are depicted in Table 1.

cotton bollworms represent a highly polyphagous insect species (Lepidoptera order), attacking crops such as tomato, cotton, pigeon pea, chickpea, rice, sorghum and cowpea. Other vegetal hosts include groundnut, okra, peas, field beans and soybeans. The high mobility, high fecundity, and facultative diapause contribute to the dispersion of these species and, therefore, over 181 plant species of economically important crops are potentially infested (Shad et al., 2012). The second most important polyphagous lepidopteran pest, Spodoptera litura, causes 25 to 100% yield loss on economically important crops such as cotton, groundnut, chilli, tobacco, castor and okra.

In the last two decades, actinomycetes have been shown to be a vast source of novel agents having considerable potential for the biocontrol of insect pests. Many secondary metabolites produced by the members of this group of bacteria show insecticidal activity. Hence, the possibility of using these metabolites in controlling insects had been achieved by several researchers (Dutton and Gueguen, 1999; Sazonova et al., 1993; Dindo, 1993; Spindler and Spindler-Barth, 1994; Lasota and Dybas 1991; Scholl et al., 1992; Campbell et al., 1983; Vijayan and Balaraman 1991; Takahashi et al., 1989; Mishra et al., 1987).

<table>
<thead>
<tr>
<th>Bioactive compound</th>
<th>Actinomycete</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lomofungin</td>
<td>Streptomyces lomondensis</td>
<td>Antifungal</td>
</tr>
<tr>
<td>Sclerotrinic</td>
<td>Streptomyces sclergranulatus</td>
<td>Antifungal</td>
</tr>
<tr>
<td>Spoxamicin</td>
<td>Streptosporangium oxazolnicum</td>
<td>Antiltrypanosomal</td>
</tr>
<tr>
<td>Avermectin</td>
<td>S. avermilis</td>
<td>Antiparasitic</td>
</tr>
<tr>
<td>Antimycin</td>
<td>Streptomyces lucitanusus</td>
<td>Antifungal</td>
</tr>
<tr>
<td>Rosamicin</td>
<td>Micromonaspora rosaria</td>
<td>Antibacterial</td>
</tr>
<tr>
<td>Validamycin</td>
<td>Streptomyces hygroscopicus</td>
<td>Antifugal</td>
</tr>
<tr>
<td>Azalomycin</td>
<td>Streptomyces malayensi</td>
<td>Antifungal</td>
</tr>
<tr>
<td>Roseoflavin</td>
<td>Streptomyces davawensis</td>
<td>Antibacterial</td>
</tr>
<tr>
<td>Rifamycin</td>
<td>Micromonaspora rifamycinica</td>
<td>Antibacterial</td>
</tr>
</tbody>
</table>

Table 1. Some bioactive compounds produced by actinomycetes and their related biological activities.

Chitinase as a coadjuvant

Chitinase is an enzyme used by insects to degrade the structural polysaccharide “chitin” during the molting process (Gupta et al., 1995; Zhang et al., 2002). The largest chitinase activity among bacteria has been observed in species of Streptomyces. Gadelhak et al. (2005) isolated streptomyces and non-streptomyces actinomycetes and tested their capacity to produce chitinase enzyme on colloidal chitin agar (CCA). These experiments confirmed the high ability of Streptomyces to produce chitinase. Species of Streptomyces show high multiplicity of chitinase genes.

Spinosyn as the first specific insect pest controller

The tobacco budworm, Heliothis virescens (F.) is a well-known tobacco plague in United States of America. As reported by Sparks and co-workers (1981, 1982, 1983), this species and others belonging to the same genus developed resistance to a wide variety of insecticides including DDT, methyl-parathion and the pyrethroids. In some areas, the resistance spectrum of H. virescens...
expands and incorporates many of the newer organophosphorous and carbamate insecticides (Sparks et al., 1993). The search on new insect control agents includes an assortment of random or directed screening scenarios, sometimes referred to as the trial and error approach (Sparks and Hammock, 1983; Hammock, 1985; Hammock et al., 1986).

Discovery of new insect control agents is still a common and hard effective development, particularly when the focus is the natural product source as well as synthetic organic chemistry. In this context, in 1985, a program to screen fermentation broths from soil microorganisms for pharmaceutically and agriculturally useful compounds was conducted by scientists at Lilly Research Laboratories (Indianapolis, IN, USA). Those scientists discovered a new species of Actinomycete, *Saccharopolyspora spinosa* (Mertz and Yao 1990) isolated from soil sample. Extracts of this fermentation broth were active against mosquitoes (Kirst et al., 1992) and southern armyworm, *Spodoptera eridania* (Cramer), larvae in early screening assays. Consequently, they discovered this activity was associated with a new bioactive compound classified in the group of macrocyclic lactones (Kirst et al., 1992) called the spinosyns (Sparks et al., 1998). Spinosyn A (1H-as-Indaceno[3,2-d]oxacyclododecin-7,15-dione, 2-[(6-deoxy-2,3,4-tri-O-methyl L-mannopyranosyl)oxy]-13-[[5-[(dimethylamino)tetrahydro-6-methyl-2H-pyran-2-yl]oxy]-9-ethyl-2,3,3a,5a,5b,6,9,10,11,12,13,14,16a,16b-tetradecahydro-14-methyl-2R-[2R*,3aS*,5aR*,5bS*,9S*,13S*(2R*,5S*,6R*),14R*,16aS*,16bR*]-[9CI]) are the principal components of spinosad™ (Tracer Naturally Insect Control, Indianapolis, IN), and other spinosyns active against larvae of *H. virescens*.

Spinosyns are a macrolide insecticide belonging to the family of tetracyclic lactones to which are attached an amino-sugar (D-forosamine) and a neutral sugar (L-rhamnose). Members of the family differ in the extent of N- and O-methylation on the sugars, or C-methylation on the polyketide nucleus (Ichikawa et al., 2013; Kirst, 2010; Sparks et al., 1998). Their activity against mosquitos (mosquito larvicidal activity) was evidenced. In complementary works, Strobel and Nakatsukasa (1993) identified a strain A83543, as *S. spinosa*, and confirmed it as a new species of actinomycete which produces a large family of macrolide compounds. Particularly, spinosyns A and D are the two active ingredients. Most of the genes involved in spinosyn biosynthesis are clustered in an 74 kb region of the *S. spinosa* genome. This region has been characterized by DNA sequence analysis and targeted gene disruptions. The spinosyn biosynthetic gene cluster contains five large genes encoding a type I polyketide synthase, and 14 genes involved in modification of the macrolactone, or in the synthesis, modification and attachment of the deoxysugars. Four genes required for rhamnose biosynthesis (two of which are also required for forosamine biosynthesis) are not present in the cluster. A pathway for the biosynthesis of spinosyns was proposed by Waldron et al. (2000). Figure 1 shows the main structure of spinosyn.

FUNGI IN AGRICULTURE

The economic significance of fungal biotechnology cannot be overstated; indeed, fungi have been exploited to yield a range of valuable products, some of which have proved invaluable to mankind. Since ancient times, fungi have been utilized for simple food processing. In the last century, the development of fungal biotechnology for the subsequent production of valuable commodities such as antibiotics, enzymes, vitamins, pharmaceutical compounds, fungicides, plant growth regulators, hormones, and proteins were seen (Wiley, 2018); however, fungi can be detrimental to agriculture, especially foods of largest commercial importance.

Fungi represent one of the major threats for biodeterioration of cereals and pulses during storage, causing economic losses to growers by increasing the free fatty acid content of seeds and decreasing germination ability of the plants (Dhingra et al., 2001;
Kedia et al., 2014). In addition, the mycotoxins secreted by different food borne molds cause qualitative losses of commodities, potentially inducing various health problems in consumers. Some species of *Aspergillus* are highly aflatoxigenic, particularly in tropical and subtropical countries, secreting high level of aflatoxins. Furthermore, aflatoxin is classified as group 1 human carcinogen by the International Agency for Research on Cancer (Mishra et al., 2013).

Food commodities are frequently contaminated by fungi, and the associated toxins generated by some of them during storage, transportation and post-harvest processing cause significant losses in quality, quantity, nutrient composition, and thereby reduce market value. According to the Food and Agriculture Organization (FAO), about 1000 million metric tons of food is spoiled globally each year due to mycotoxins produced by fungi (Bhat et al., 2010; Prakash et al., 2005; Prakash et al., 2014).

Commodities are intensive products in natural state (primary) or with a small degree of industrialization. This category involves agricultural products (raw and/or processed), minerals (raw and/or industrialized) and energy (Veríssimo and Xavier, 2015). In the food sector of Brazil, among the main commodities, crops such as soybean, corn and cotton can be mentioned.

Among the most consumed grains is soy, which is considered as a functional food; it provides nutrients to the body, prevents chronic degenerative diseases and is also an excellent source of minerals. Corn, in turn, is also of great importance for human consumption, as it is an energetic, digestible food with high starch content. It is the raw material of many industrialized products including animal feed, in which corn and soybeans complement each other (Ferrarini, 2004; Balini et al., 2015). Corn has high energy content and soy has rich protein value (Oliveira et al., 2004 Balini et al., 2015). Corn is one of the oldest food grains considered as one of the three major cereal crops in the world, together with rice and wheat. Brazil produced 56.3 million tons of corn in the 2011-2012 harvest, and exported 8.5 million tons (Godfray and Garnet, 2014; De Rossi, 2015).

From the process of cultivation till distribution, the seeds of these grains are conditioned to fungus contamination. This is because the grains present food components of these microorganisms, in addition to several other factors. The most frequently found genera are *Aspergillus* and *Penicillium*; the fungi are so-called because they grow in seeds and store grains with moisture contents within the range of 8 to 18%. Among these fungi, the genus *Aspergillus* is a frequent contaminant of soybean and corn (Balini et al., 2015).

Cotton (*Gossypium hirsutum* L.) is among the most important fiber crops in the world. Each year, approximately 35 million hectares of cotton are planted worldwide. World cotton trade moves about $ 12 billion annually and involves more than 350 million people in its production, from farms to logistics, ginning, processing and packaging. Currently, cotton is produced by more than 60 countries, where the five countries that produce the most are: China, India, the United States, Pakistan and Brazil (USDA, 2017). Throughout the world, there are reductions in cotton productivity due to outbreaks of disease. In Brazil, with the introduction of cultivars adapted to the Cerrado and with higher yield of fiber, cotton cultivation has intensified. In this ecosystem, climatic conditions are favorable to the development of various diseases caused by fungi, resulting in increased production costs (Borém and Freire, 2014).

ACTINOMYCETES’ ACTION AGAINST PHYTOPATHOGENIC FUNGUS

Actinomycetes are important enzyme producers, such as quitinases, proteases, peptidases and cellulases. Quitinases are the most important in the process of phytopathogenic fungi control. Similar to insect control mechanisms, the control of actinomycetes in fungi is a result of combined and complementary action. Firstly, the cell wall chitin is degraded by enzymes, and consequently the cell is assessed and antibiotics and others active compounds are released in the cell.

Fungal plant diseases management by *Streptomyces* has been well documented, but few commercial products are in the market using specific strains of the microorganism or its metabolites. While it is unmanageable for massive production, the potential microorganisms like *S. plicatus* used in biocontrol programmes connecting their enzymatic properties seems to be practical to develop methods for production and extraction of secondary metabolites, or the use of extract of broth directly (Sinha et al., 2014).

Investigations on the potential of actinomycetes on biological control have been reported since the 80s, as shown in the classical work of Tahvonen (1982b), who tested strains of *Streptomyces* isolated from peat for control of soil and seedborne disease in peat culture. A key illustration of *Streptomyces* biocontrol agent is the action of a strain of *Streptomyces griseoviridis*, reported by Tahvonen (1982a). In that paper, the author described a strain originally isolated from light coloured *Sphagnum* peat as antagonistic to a variety of plant pathogens together with *Alternaria brassicola* (Schw.) Wiltsh., *Botrytis cinerea* Pers., *Fusarium avenaceum* Sacc and *Fusarium culmorum*. The species, *S. griseoviridis* has been used in root dipping or growth nutrient treatment of cut flowers, potted plants, greenhouse cucumbers, and different alternative vegetables (Bhatti et al., 2017).

Fungal pathogens pose serious problem worldwide and cause a number of plant diseases including rusts, smuts, rots, wilt, anthracnose causing severe damage to crops (Pakdeevaraporn et al., 2005; Ashokvardhan et
al., 2014); in this context and in the natural world, no microorganism can survive independently, and microorganisms can interact with each other by a number of ways. Interactions between microorganisms can be divided into mutually beneficial, neutral and harmful such as mutualism, neutralism, amensalism, antagonism, parasitism, etc. So, interactions between microorganisms can be positive, negative or no effects (Moënne-Loccoz, 2014).

Biological control of postharvest diseases by antagonistic microorganisms seems to be a promising alternative to fungicides. Understanding the methods of action of antagonisms is essential to allow the use of antagonists under partial conditions and to enhance their biological control while protecting human health and the environment. Several modes of action have been documented for the antagonistic activity of biological control agents: they act by multiplying on the fruit surface or within wounds on the fruit; this is done by competing for space and nutrient at an infection court on the product, by antibiosis, by restricting the action of hydrolytic enzymes produced by pathogen, by producing enzyme to degrade pathogen cell walls, and/or by direct parasitism of the pathogen (Long et al., 2005; Shojaee et al., 2014). Soil actinomycetes have revealed their wide antifungal activity (Ventura et al., 2007; Sharma et al., 2014; Tinatin and Nuzrat, 2006). They have been shown to protect several plants to various degree of soil borne fungal pathogens. Actinomycetes as biocontrol agent produce Urauchimycins which is a member of antimycin class, a set of well-identified antifungals, that act by inhibiting the electron flow in the mitochondrial respiratory chain of a phytopathogenic fungus and have been identified in Streptomyces isolated from the integument of attine ants (Schoenian et al., 2014).

More recently, Dias et al. (2017) isolated strains of Streptomyces sp. (a very promising genus of the order Actinomycetales) of sediment from an urban mangrove located at the city of São Luís MA and verified antimicrobial activity of these bacteria in front of organisms of clinical and agricultural interest. Costa et al. (2017) isolated species of actinomycetes of biotechnological interest from soil contaminated with agrochemicals and verified, already in isolation, the antibiosis potential of these bacteria. Furthermore, biofungicides such as MYCOSTOP® are produced using actinomycetes for the control of seed- and soil-borne plant pathogens (Fusarium, Alternaria, Phytophthora and Pythium) which cause damping-off and root diseases, Actinovate® isolated from streptomyces species. Streptomyces lydicus WYEC108 is a strain of this species which has been formulated to control fungal plant pathogens effectively for fresh market tomatoes, PRESTOP® is used for controlling damping-off and root diseases (Pythium, Fusarium, Phytophthora and Rhizoctonia) as well as for the control of Botrytis grey mould and Didymella (Mycosphaerella) gummy stem blight in cucumber (Kamara and Gangwar, 2015), which are all available commercially. After undergoing various biological processes, Streptomyces are able to successfully control plant pathogenic fungi including P. oryzae by hydrolyzing their cell walls (Kavitha et al., 2010; Awla et al., 2016).

CONCLUSION

It is of great importance to know the diversity of bioactive compounds produced by soil microorganisms. Understanding the mechanisms of action of these bioactive is crucial for its efficient application in agriculture. In this sense, actinomycetes are preferable due to their predominance in soil, and enormous potential to adapt and produce a variety of bioactive metabolites with activity against important phytopathogenic fungi and insects. Although many biofungicides and bioinsecticides have been produced and successfully applied to cultivars, many other potentially useful molecules with bioactivities against such organisms need more investigations to confirm their efficiency. Additionally, many other compounds need to be commercially available, and the production must be intensified. The status of research worldwide, points out to the necessity of tests involving new metabolites and further investigations, to find new species and optimize production process conditions.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Gomes et al. 557

Ferrari H (2004). Determinação de teores nutricionais do milho por espectroscopia no infravermelho e calibração multivariada. Dissertation - Curso de Pós graduação em Química, Universidade Federal do Paraná, Curitiba, Brazil.

Spindler KD, Spindler-Barth M (1994). Inhibition of chitinolytic enzymes from Streptomyces griseus (bacteria), Artemia salina (Crustacea), and a cell line from Chironomus tentans (Insecta) by allosaminid and isoalleosaminid. Pest Manage. Sci. 40(2):113-120.

Expression and purification of human IL-2 protein from Escherichia coli

Ramadan Hassan, Mohammed El-Mowafy* and Eman Samy Zaher

Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, 60 Elgomhoria Street, 35516, Mansoura, Egypt.

Received 16 February, 2018; Accepted 9 April, 2018

Human interleukin 2 protein (IL-2) is an important cytokine found to be elevated in several types of cancer. A synthetic DNA sequence of the cDNA of mature IL-2 protein was cloned into the pRSET-B expression vector. The expressed IL-2 protein in Escherichia coli [BL21] was associated with the formation of insoluble inclusion bodies (IBs). The effect of different cultivation conditions (temperature, isopropyl-β-D-thiogalactoside concentration, and early harvest of cells) together with the incorporation of single or dual His-tag on the formation of IBs of the expressed protein was investigated. Yet, expression of soluble IL-2 was not achieved under any of the investigated conditions. A simple protocol for rapid and effective solubilization of these IBs was optimized. Using this protocol, together with subsequent purification using ion metal affinity chromatography, a purified His-IL2 protein was obtained in a yield of 5.1 mg/cell pellet of 1 L culture. In conclusion, the effect of different expression conditions on the solubility behavior of an expressed eukaryotic protein in E. coli was investigated using human IL-2 as a model protein. Moreover, the purified expressed protein could be used as a positive control in early diagnosis of tumors and in cancer research in Egypt.

Key words: Human interleukin-2, protein expression, inclusion bodies.

INTRODUCTION

Interleukins are proteins that play a vital role in intercellular communication among leukocytes. Such proteins are cytokines that are classified into different classes Il-1 to Il-38 (Akdis et al., 2016), in addition to IL-39 (Wang et al., 2016). Human interleukin-2 (IL-2) is a protein produced by human lymphocytes that have been stimulated by mitogens or antigens (Ju et al., 1987). IL-2 is first synthesized as a precursor polypeptide of 153 amino acids followed by cleavage of the first 20-amino acids signal peptide resulting in the production of the mature secreted IL-2 protein (133 amino acids, 15 kDa) (Schoner et al., 1992). The mature protein is a potent cytokine that regulates innate lymphoid cells, acts as a B-cell growth factor, promotes antibody synthesis, and induces proliferation and differentiation of natural killer cells (NK) to enhance their cytolytic activities (Roediger et al., 2015). Additionally, it has been used in anti-tumor therapy (Sengupta et al., 2008; Janik et al., 1993), and in...
Several studies showed the increased expression levels of IL-2 in different types of cancer e.g. prostate cancer (Royuela et al., 2000), stomach and renal cancer (Lin et al., 1995), squamous cell carcinomas of the head and neck (Reichert et al., 1998), and neuroblastic tumors (Ceccarelli, 2014). Therefore, the elevated expression levels of such cytokine could be used as a diagnostic marker for detection of actively proliferating tumors (Garcia-Tunon et al., 2004).

Recombinant protein expression in *Escherichia coli* is useful for different purposes. (i) The production of vaccines such as the expression of chicken anemia virus capsid protein VP1 (Lee et al., 2011). (ii) The production of protein that could be used in serodiagnosis of infections e.g. poliovirus (Uma et al., 2016), and *Brucella melitensis* (Gloekkaert et al., 2001). (iii) Production of purified proteins that are sold by research companies to be used as positive control in different research experiments e.g. recombinant IL-2 in Western blot and ELISA (Gehman and Robb, 1984).

The use of *E. coli* as an expression system has many advantages e.g. rapid transformation process, high yield of expression, and the whole expression is less expensive in comparison with other hosts (Rosano and Ceccarelli, 2014). However, the higher expression rates of recombinant proteins in *E. coli* are often accompanied with the formation of insoluble aggregates of the target protein called inclusion bodies (IBs) (Singh et al., 2015). The aim of this study was to express the recombinant IL-2 protein in considerable amounts that could be used as a positive control for early diagnosis of tumors and in cancer research in Egypt. Another aim was to investigate the effect of different expression conditions on the solubility behavior of eukaryotic protein expression in *E. coli* using human IL-2 as a model protein.

MATERIALS AND METHODS

Bacterial strains and construction of recombinant plasmids harboring IL-2 gene

The *E. coli* strain Top10 (Thermo Fisher Scientific) was used for cloning, propagation and maintenance of the constructed plasmids; while the *E. coli* strain BL21 (DE3) (Invitrogen) was used for recombinant protein expression. Both strains were transformed using CaCl2 heat shock method (El-Mowafy et al., 2013). Selection of positive transformants was performed on Luria-Bertani (LB) medium agar plates containing ampicillin (100 µg/ml). Positive clones were further cultivated in LB medium containing ampicillin (100 µg/ml). Glycerol stocks of all strains were prepared and stored at -80°C till further use (El-Mowafy et al., 2013).

The cDNA of human IL-2 precursor (462 bases, 153 amino acids) (Devos et al., 1983) was synthesized and provided by Macrogen Inc (Korea) in a bacterial cloning plasmid (pIL-2) with ampicillin as a selection marker.

The primers IL2-F1 and IL2-R1 (Table 1) were used for cloning of mature IL-2 (402 bp, 133 amino acids) from pl-IL2 into pRSET-B expression vector (Invitrogen). The amplified IL-2 gene and pRSET-B vector were digested with BamHI (NEB, UK) and HindIII (NEB, UK) followed by ligation with T4 DNA ligase enzyme (NEB) to form the plasmid pHisIL2. The cloned IL-2 gene was in frame with the nucleotides encoding the N-terminal 6 His-tag, which is already introduced by Invitrogen in the pRSET-B vector, resulting in the expression of His-IL2 protein. Similarly, another version of IL-2 was also cloned into pRSET-B vector as a BamHI/HindIII fragment from pl-IL2 using the primers IL2-F1 and IL2-R2 (Table 1) into pRSET-B expression vector to obtain the plasmid pHis-IL2-His. The expressed IL-2 protein (His-IL2-His) from the latter plasmid was dual His-tagged at both terminals. This was achieved by introducing the nucleotides encoding the C-terminal 6 His-tag at the primer IL2-R2, in addition to the cloning of the BamHI/HindIII-digested polymerase chain reaction (PCR) fragment of IL-2 in frame with the nucleotides encoding the N-terminal 6 His-tag of the pRSET-B vector. Positive clones were confirmed by restriction digestion with BamHI and HindIII. All the cloning steps were performed using Phusion High-Fidelity DNA Polymerase (NEB, UK). All PCR reactions were performed in MultiGene™ Mini Personal Thermal Cycler (Labnet, Multigene gradient, Foster City, CA). The PCR products were electrophoresed on a 1.5% agarose gel and visualized by staining with ethidium bromide. The size of DNA fragments was confirmed using Hyperladder™ 100 bp (Bioline, England) and 1 kb DNA ladder (NEB, UK).

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL2-F1</td>
<td>AGAAGAGGATCCGgcaccGacttcaagttctaca</td>
</tr>
<tr>
<td>IL2-R1</td>
<td>TCTTCTAGGTCttcaagttgtgatgatgct</td>
</tr>
<tr>
<td>IL2-R2</td>
<td>TCTTCTAGGTCttcaagttgtgatgatgct</td>
</tr>
</tbody>
</table>

Expression of IL-2 in *E. coli* BL21 at different conditions

LB medium containing ampicillin (100 µg/ml) was inoculated from the glycerol stock of *E. coli* BL21 transformed with pRSET-B, pHisIL2 or pHis-IL2-His plasmids and incubated at 37°C with shaking (200 rpm). After overnight cultivation, subculturing into flasks containing 50 ml fresh medium supplemented with the antibiotic was performed so that the starting OD600 was 0.5 (Ma et al., 2006). The expression was induced with 0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG). Preliminary time course screening of expression was performed by harvesting 1.5 ml culture after 3, 4, and 5 h of induction followed by centrifugation at 878 × g for 5 min. The cell pellet was suspended in 30 µl 5x SDS gel loading buffer (0.25 M Tris-HCl, pH=6.8, 40% Glycerol, 8% SDS, 2.9 mM β-mercaptoethanol and 0.1% bromophenol blue) followed by heating at 95°C for 10 min (Laemmli UK, 1970). The resulting denatured protein samples were analyzed by 15% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), before staining with Coomassie Brilliant Blue (Laemmli UK, 1970). The size of protein bands was confirmed using chromatein prestained protein marker (Biosepes, China) or Roti®-Mark standard protein marker.
The bacterial suspension was subjected to sonication using a Soniprep (150 Sonicator TM-182; UK) in intervals of 30 s sonication and 30 s without sonication for a total of 5 min, while immersed in ice. To allow for enzymatic lysis, lysozyme solution (2 mg/ml) in 20 mM Tris-HCl (pH 8) was added to the sonicated cell suspension in a ratio of 3x volume of the initial cell pellet followed by immersion in ice for 30 min. Benzonase enzyme (EMD Millipore, USA) was added to the mixture to decrease the viscosity of the lysate by degradation of nucleic acids (Final concentration 25 U/ml). The soluble cell lysate (soluble protein extract) was obtained by centrifugation of the whole cell lysate at 11200×g for 10 min, at 4°C, from which an aliquot was denaturated by heating in 5x SDS gel loading. Another aliquot was taken for the total protein extract (soluble and insoluble protein extract) before centrifugation, as a control, and was denaturated by heating in 5x SDS gel loading (Laemmli UK, 1970).

The expression of the recombinant IL-2 protein in the total protein extract and the soluble cell lysate was investigated at different cultivation conditions by SDS-PAGE Coomassie staining. Such conditions included induction of expression at lower concentration of IPTG (0.25 mM), harvesting at earlier time of expression (3 h after IPTG induction), and expression of the protein at lower incubation temperature (35 or 30°C) (Sorensen and Mortensen, 2005a).

Recovery, purification and solubilization of IBs to obtain soluble purified IL-2 protein

The cell pellet from 100 ml culture was collected after IPTG induction and subjected to lysis by sonication and lysozyme enzyme before separation of the soluble protein extract as mentioned earlier. The protocol was carried out as described previously (Schoner et al., 1992) with few modifications. Briefly, the pellet (containing the disrupted cells, insoluble cellular proteins and IL-2 inclusions bodies) was suspended in 100 mM Tris-HCl (pH 8.5) containing triton 1% and urea 1 M. The mixture was left on ice for 10 min followed by centrifugation at 11200×g for 10 min at 4°C. Washing of the pellet with triton and urea was repeated for additional 2 times, before washing with 100 mM Tris-HCl, pH 8.5. For solubilization of IBs, the pellet was resuspended in equal volume of 8 M guanidine HCl in 100 mM Tris-HCl (pH 8.5) and left in ice for 1 h with gentle shaking. The mixture was centrifuged at 11200×g for 10 min at 4°C. The supernatant containing the solubilized IBs was subjected to Proto™ Ni-NTA agarose beads (Macherey-Nagel, Germany) to fish the His-tagged IL2 protein according to the manufacturer’s instructions. After elution of the Ni2+ bound His-tagged IL2 protein with imidazole (500 mM), excess imidazole concentration was removed by ultrafiltration with 100 mM Tris-HCl, pH 7 using Roti®-Spin MINI-3 centrifugal device (Roth, Germany). The purified IL-2 protein was stored at -80°C till further use (El-Mowafy et al., 2013).

Western blot

Western blot analysis of the expressed IL-2 proteins was performed using diluted (1:1000) 6-Histidine Ectoipo Tag Antibody [HRP] (Novus Biologicals, USA) as previously mentioned in El-Mowafy et al. (2013), except that the His-tagged protein bands were visualized by incubation of the membrane with tetramethylbenzidine (TMB) substrate solution (Sigma Aldrich, USA) at room temperature for few minutes before capturing of photos (Shaaban et al., 2015).

Determination of protein content

The concentration of the purified IL-2 protein was measured using Bradford protein assay kit (Biospecs, China) according to the manufacturer’s instructions. The protein concentration was calculated from the standard curve of bovine serum albumin (positive control) after measurement of the absorbance at 595 nm using ELx808™ Absorbance Microplate Reader (Biotek Instruments Inc., Winooski, VT) (Shaaban et al., 2015). The buffer containing the purified IL-2 protein (100 mM Tris-HCl, pH 7) was used as blank (negative control).

RESULTS

PCR and cloning

The DNA sequence of mature IL-2 (402 bp) was successfully amplified from pl-IL2 plasmid (Figure 1A) and cloned into the pRSET-B vector, to allow for the bacterial expression of either the N-terminal His-tagged IL-2 (His-IL2 protein from pl-IL2 plasmid) or the C-terminal His-tagged IL-2 (His-IL2-His protein from pl-His-IL2-His plasmid). Cloning of both versions of IL-2 was confirmed by restriction digestion of the constructed plasmids (Figure 1B).

Recombinant expression of His-IL2 and His-IL2-His purified proteins

Bacterial expression of both versions of IL-2 protein was successfully detected at different time points following IPTG induction (Figure 2). Maximum production of the recombinant protein was observed after 4 h of induction (Figure 2). Therefore, further expression experiments were performed after 4 h of induction for both types of expressed IL-2 protein, unless otherwise specified.

Formation of IBs was detected in both versions of the expressed IL-2 by SDS-PAGE of the total protein extract and the soluble lysate of the transformed E. coli BL21 cells. The presence of the target protein band in the total protein extract, but not in the soluble lysate, confirmed the formation of insoluble IBs (lanes T and S in Figure 3A and B).

Purification and solubilization of IBs of His-IL2 and His-IL2-His proteins was successfully performed as indicated by SDS-PAGE Coomassie staining (Figure 3A and B) and Western blot detection using anti-histidine tag monoclonal antibody (Figure 3C).

Investigation of the effect of different expression conditions on the formation of insoluble IBs

Different expression conditions were used to avoid the formation of insoluble IBs. Decreasing the concentration...
Figure 1. PCR amplification of IL-2 gene (A) and confirmation of successful cloning via restriction enzyme digestion (B). (A) PCR Amplification of mature IL-2 gene from the plasmid pl-IL2 using the primer pairs (IL2-F1, and IL2-R1) and (IL2-F1, and IL2-R2) as demonstrated in lane 1 (Expected size 427 bp) and lane 2 (Expected size 445 bp) respectively. Ma: Hyperladder 100 bp. (B) Enzymatic digestion of the plasmids pl-His-IL2 and pl-His-IL2-His via the enzymes BamHI and HindIII as shown in lane 1 (Expected fragments 2846 and 415 bp) and lane 2 (Expected fragments 2846 and 433 bp), respectively. Ma: Hyperladder 100 bp and Mb: 1 kb DNA ladder.

Figure 2. Time course screening of expression of His-IL2 protein (A) and His-IL2-His protein (B). SDS-PAGE analysis of total protein extract of E. coli BL21 cells transformed with empty pRSET-B vector (E), pl-His-IL2 (G in panel A), and pl-His-IL2-His (G in panel B) after 3, 4, and 5 h induction with IPTG (0.5 mM). Mb: Roti-Mark standard protein marker. Ma: Chromatein prestained protein marker. Expressed His-IL2 and His-IL2-His proteins are indicated by an arrow.

of IPTG to 0.25 mM (Figure 4A), earlier harvest of the induced cells (3 h of induction, Figure 4B), and decreasing the incubation temperature to 35 (Figure 4C) or 30°C (Figure 4D) did not help to avoid the formation of the IBs. This was indicated by the presence of the expressed His-IL-2 in the total protein extract, but not in the soluble lysate (lanes T and S in Figure 4).

Quantification of the yield of the purified recombinant IL-2 proteins

After purification of both versions of IL-2 protein via immobilized metal affinity chromatography of the solubilized inclusion bodies, the concentrations of purified proteins were determined. The yield of His-IL2 and His-
IL-2-His purified proteins was 5.1 and 4.5 mg/cell pellet of 1 L culture, respectively.

DISCUSSION

Early studies on human IL-2 protein were restricted to the protein purified from human T-cell leukemia cell line (Jurkat) (Robb et al., 1983; Stern et al., 1984). After recombinant protein technology, IL-2 was expressed after isolation of IL-2 mRNA from human leukemic T-cell line, followed by cloning of the complementary cDNA into a suitable vector. The cloned IL-2 was expressed in different hosts such as *E. coli* (Ju et al., 1987; Devos et
al., 1983; Rosenberg et al., 1984), insect cells (Smith et al., 1985), and monkey COS cells (Taniguchi et al., 1983). Most of the expressed IL-2 in *E. coli* was reported to be insoluble (forms IBs), however, the recombinant IL-2 was still retaining its biological activity even after extraction from SDS polyacrylamide gel (Devos et al., 2015).

In this study, the DNA sequence of the cloned IL-2 gene was derived from a synthesized DNA sequence rather than extraction of mRNA from human leukemic T-cell line and subsequent conversion into cDNA. An N-terminal His-tagged IL-2 (His-IL-2) protein was expressed in *E. coli* BL21 cells. Insoluble IBs of the recombinant His-IL-2 protein was formed, which was indicated by the absence of the target protein in the soluble lysate of the cells, despite its presence in the total protein extract (Figure 3A). A simple protocol was optimized for the solubilization of the insoluble aggregates of both versions of the expressed IL-2 protein (Figure 3). Such protocol depends on washing of the IBs with low concentrations of triton (1%) and urea (1 M) to get rid of cell wall and cell membrane components without solubilization of the IBs. The detergent guanidine hydrochloride (8 M) was used for solubilization of the IBs, followed by fishing of the His-tagged IL2 protein using Ni²⁺ agarose beads to obtain the purified recombinant proteins (Figure 3) (Palmer and Wingfield 2004).

Different strategies were followed to prevent formation of IBs of the expressed recombinant His-IL2 protein. Incorporation of fusion tags was reported to increase the solubility of the expressed protein and subsequently could prevent formation of IBs (Costa et al., 2014; Sorensen and Mortensen, 2005b). Therefore, a dual His-tagged IL-2 protein (His-IL-2-His) was expressed to decrease the chance of IBs formation. However, the expression of this version of IL-2 protein (His-IL-2-His) was also associated with the formation of IBs (Figure 3B).

High expression rates of recombinant proteins in *E. coli* contribute greatly in IBs formation as described previously by Gatti-Lafranconi et al. (2011). Additionally, the use of high incubation temperature and high IPTG concentration often leads to a high expression rate and subsequent formation of IBs (Singh et al., 2015). Therefore, attempt was made to prevent the formation of IBs by decreasing the cultivation temperature to 35 or 30°C, and by decreasing the concentration of the expression-inducing agent to 0.25 mM. Additionally, the cells were harvested after 3 h of IPTG induction before they enter in the stage of high rate of protein expression. Nevertheless, none of these trials were useful to avoid the formation of IBs (Figure 4).

Conclusion

The impact of the different expression conditions of IL-2 protein on the formation of IBs was determined. Yet, IBs were still forming under all the investigated conditions. This study provides an inexpensive protocol for the production of purified human IL-2 protein. The purified human IL-2 protein produced by this work could be used as a positive control for early diagnosis of tumors and in cancer research in Egypt. Additionally, the biological activity of the purified protein, after trying different refolding conditions, will be investigated in a future project.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

El-Mowafy M, Bahgat MM, Bilitekewi U (2013). Deletion of the HAMP domains from the histidine kinase CaNik1p of Candida albicans or treatment with fungicides activates the MAP kinase Hog1p in S. cerevisiae transformants. BMC Microbiol. 13:209.

Vitamin C, iron and zinc levels of selected African green leafy vegetables at different stages of maturity

Teddy Frederick Mamboleo¹, John Mbomea Msuya² and Akwilina Wendelin Mwanri²*

¹Tanzania Food and Nutrition Centre, Dar es Salaam, Tanzania.
²Department of Food Technology, Nutrition and Consumer Sciences, Sokoine University of Agriculture, P. O. Box 3006, Morogoro, Tanzania.

Received 29 November, 2017; Accepted 16 April, 2018

Nutrient level at harvest of vegetables is an important aspect in the efforts to combat food and nutrition insecurity in developing countries. However information on the nutrient levels at different maturity stages of most indigenous African green leafy vegetables is scanty. This study was undertaken to determine the levels of vitamin C, iron and zinc in Amaranthus cruentus, Cleome gynandra and Solanum villosum at different stages of maturity. The vegetables were planted on plots and harvested at 21, 28 and 35 days. At each stage, about 500 to 600 g of the edible part was harvested and standard chemical analyses procedures were followed to determine the levels of vitamin C, iron and zinc. Vitamin C increased significantly (p<0.05) with maturity in all vegetables except S. villosum Nduruma BG 16 which had similar values for stage I and II. Vitamin C content was highest (163.4 ± 2.3 mg/100 g) in C. gynandra stage III and lowest (27.7 ± 3.9 mg/100 g) in S. villosum SS 49 stage I. Iron content increased significantly (p < 0.05) at all maturity stages. Amaranthus cruentus Madiira Ex zim had the highest iron concentration (99.9 ± 3.7 mg/100 g) while S. villosum Olevolosi SS 49 had the lowest value (23.1 ± 1.5 mg/100 g). Zinc content decreased with plant age, highest values (7.8 ± 0.4 mg/100 g) were observed in C. gynandra at the first stage of maturity which was reduced to about half at the third stage of maturity (3.9 ± 0.0 mg/100 g). There were marked differences in nutrient content among the various varieties and cultivars involved in this investigation. Iron and vitamin C concentrations increased with plant age whereas levels of zinc decreased with plant maturity. Consuming the different vegetables varieties would be the best approach to get all the essential nutrients in adequate amounts. Further studies are needed to investigate organoleptic acceptability of these vegetables at the different stages of maturity.

Key words: Iron, zinc, vitamin C, maturity stage, green leafy vegetables.

INTRODUCTION

Indigenous African Green Leafy Vegetables (GLVs) are valuable sources of nutrients especially minerals and vitamins (Uusiku et al., 2010). They also contain non-nutrient bioactive phytochemicals that have been linked to protection against cardiovascular and other degenerative diseases and play an important role in

*Corresponding author. E-mail: akwmwanri@suanet.ac.tz, akwmwanri@hotmail.com.

Author(s) agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
income generation and subsistence for most households (Moyo et al., 2013; Schippers, 2000). In Tropical Africa where the daily diet is dominated by starchy staples, indigenous GLVs are the cheapest and most readily available sources of important nutrients. They are often easier to grow, resistant to pests and diseases and hence do not require intensive management (Dzomeku et al., 2011; Moyo et al., 2013; Cordeiro, 2013). In Tanzania and many other African countries, consumption of vegetables including indigenous ones, differ according to season. It was reported that consumption of vegetables among four regions in the rural households in Tanzania varied from once to several times per week (Kinabo et al., 2016; Weinberger and Msuya, 2004); and about 64% of the households consumed vegetables at least three times per week in Morogoro, Kilosa and Gairo districts (Kinabo et al., 2016).

Studies show that among other nutrients, GLVs are generally rich in vitamin C, iron and zinc (Uusiku et al., 2010; Weinberger and Msuya, 2004). Vitamin C has numerous metabolic functions that are largely dependent on its reducing properties (Sen et al., 2014). It is required for the maintenance of healthy skin, gums and blood vessels. It is also known to have many biological functions including collagen formation, absorption of inorganic iron, and it is an antioxidant, that reportedly reduces the risk of arteriosclerosis, cardiovascular diseases and some forms of cancers (Amanabo et al., 2011; Nyonje et al., 2014). Iron is a mineral found in every cell of the body. It is considered an essential mineral element because it is needed to make part of blood cells (Abbaspour et al., 2014). Iron deficiency is the main cause of anemia in developing world, and in Tanzania, it affects mostly pregnant women and children below five years of age (Gautam et al., 2008; TDHS-MIS, 2015-2016). Zinc is crucial for normal development and function of cells mediating innate immunity cells and therefore its deficiency can adversely affect the growth and function of immune cells leading to impaired immune system (Roth et al., 2008).

Micronutrient deficiencies can be reduced by educating communities to increase production and consumption of indigenous and traditional dark green leafy vegetables especially in resource poor communities (Aphane et al., 2002; Ismail and Fun, 2003). Green leafy vegetables are harvested from crop fields at different stages of plant growth. For most of green leafy vegetables there is a preferred stage of plant development when flavor and palatability are favorable for human consumption. Moreover, studies have indicated that levels of nutrients and toxic substances in vegetable are influenced by stages of plant development (Khader and Rama, 2003; Modi et al., 2006). Most studies on indigenous vegetables concentrated on nutrient content and authors reported variations in nutrient content of crops depending on cultivar (Singh et al., 2001). However, there is limited information on their nutrient contents when harvested at various maturity stages. In view of this, the current study aimed to establish the content of vitamin C, iron and zinc at different maturity stages in amaranthus (A. cruentus), African nightshade (S. villosum) and spider plant (C. gynandra) so as to determine best harvesting time for optimal nutritional benefits to the consumer.

MATERIALS AND METHODS

Description of the vegetables under study

Five varieties of indigenous green leafy vegetables namely A. cruentus (Madiira 1 EX Zim and Madiira II AM 38), S. villosum (Nduruma BG 16 and Ovelosil SS49) and C. gynandra were used in the study. Seeds of these vegetables were purchased from the Horticulture Training Institute of Tengeru (HORTI - Tengeru), Arusha and from the Horticulture Unit of Sokoine University of Agriculture (SUA), Morogoro, Tanzania. Comparatively, these vegetables were chosen for this research because they are indigenous vegetables that are preferred and consumed by many communities in Tanzania.

Planting and management

The seeds were sown at the crop museum at SUA. Before sowing the seeds, the land was cleared, ploughed, harrowed and fertilized using poultry manure. Seeds of the five vegetables varieties were sown in three replications. The area was divided into three rows for the three replications and each row was divided into five beds, one for each vegetable variety. The seeds were sown in 30 cm inter and intra spacing. The density of the plants was 45 plants per bed. The vegetables were watered twice daily (mornings and evenings) and weeding was done weekly.

Harvesting, collection of samples and sample preparation

The three maturity stages were 21, 28 and 35 days from sowing the seeds (named as maturity stages I, II and III, respectively). At each stage, about 500 to 600 g of the edible parts (leaves and young stems) were harvested by uprooting the whole plant and picking the edible leaves and shoots. The picked leaves were placed in dark colored polythene bags and transported to the food laboratory for chemical analyses. The edible portions of the samples were washed with distilled water. Excess water was left to drain off before being homogenized by cutting into small pieces (about 2 mm) using domestic sharp knife and cutting board. About 2 g of each fresh sample was weighed for vitamin C analysis. The remaining portions were then oven dried for 24 h at 60°C. The dried samples were removed from the oven and immediately ground using motor and pestle into a fine powder. The powdered samples were placed in transparent polythene bags, labeled and stored for subsequent chemical analyses.

Analytical procedure

Vitamin C determination

The vitamin C concentration was determined using AOAC procedure (AOAC, 1995) where 2 g of homogenized samples was ground using motor and pestle and vitamin C compounds were extracted using metaphosphoric acid (AOAC, 1995). The pH of the extracts was adjusted to about 1.2. The reducing capacity was then
filtered using No. 1 Whatman filter papers to obtain clear extract and then measured by titrating with standardized 2,6-dichlorophenolindophenol (DCIP). In this oxidation-reduction reaction, ascorbic acid in the extract was oxidized to L-dihydroascorbic acid (DHAA) and the indophenols dye was reduced to a colourless compound. End point of the titration was detected when excess of the unreduced dye gave a rose pink colour in solution. The L-dihydroascorbic acid was calculated using the formula below:

\[
R = \frac{C \times (V_1 - B) \times V_2}{S_a \times V_3} \times 100
\]

Where, \(R \) = Concentration of ascorbic acid in mg/100g of the sample; \(C \) = Concentration of 2, 6-dichlorophenolindophenol dye; \(V_1 \) = Volume of DCIP used for the sample; \(B \) = Volume of DCIP used for the blank; \(V_2 \) = Total extraction volume; \(S_a \) = Sample weight taken and \(V_3 \) = Sample extract analysed.

\subsection*{Determination of iron and zinc}

Iron and zinc content were determined by following the procedure described by Eslami et al. (2007) where one gram of the sample was incinerated into ash, then the ash obtained was dissolved in 6 M HCl acid. The digest was then filtered using Ashless Whatman filter paper No.1. The clear solution was subjected to atomic absorption spectrophotometer (AAS) (Shmadzu UNICAM 919 - Cambridge, UK) using the hollow cathode lamps set at 248.3 and 213.9 nm, respectively. The AAS was calibrated using standard solutions specific for each mineral element.

\subsection*{Statistical analysis}

The data obtained was analysed using Statistical Product and Service Solutions (SPSS 16.0) software (Version 20). Analysis of variance (ANOVA) was computed at 5% level of significance to determine any significant difference in the levels of nutrients between the vegetable varieties and the three maturity stages (21, 28 and 35 days).

\section*{RESULTS}

\subsection*{Effect of maturity stage on vitamin C contents}

The results of vitamin C content are presented in Table 1. At the first harvest stage, the highest amount of vitamin C was observed in Madiira AM 38, which was 69.2 ± 4.6 mg/100 g. Madiira EX Zim had highest vitamin C content (113.5 ± 3.6 mg/100 g) at the second stage and Spider plant had highest amount of vitamin C content (163.4 ± 2.3 mg/100 g) at maturity stage III. The lowest vitamin C scores were observed in sample Olevolosi SS 49 (27.7 ± 3.9 mg/100 g and 41.5 ± 1.3 mg/100 g) at maturity stage I and II, respectively and in Madiira AM 38 (102.0 ± 3.4 mg/100 g) and in Olevolosi SS 49 (104.7 ± 3.2 mg/100 g) at maturity stage III. Similar vitamin C content was observed in Ndurma BG 16 at stages I and II and there was a significant decrease observed in Madiira AM 38. In addition, there was a significant difference in vitamin C content among the two cultivars of \textit{S. villosum} and \textit{A. cruentus} at all maturity stages. The highest amount of vitamin C was observed at stage III of harvesting for all the studied vegetables.

\subsection*{Effect of maturity stage on iron content}

Iron content of the five cultivars from three types of vegetables is presented in Table 2. Sample Madiira EX Zim scored the highest iron concentrations (73.3 ± 0.3, 84.6 ± 0.6 and 99.9 ± 3.7 mg/100 g), at all three maturity stages I, II and III, respectively while samples Olevolosi SS 49, Madiira AM 38 and Spider plant had the lowest iron concentrations (23.1 ± 1.5 mg/100 g, 31.3 ± 0.8 mg/100 g and 48.6 ± 3.3 mg/100 g) at maturity stages I, II and III, respectively. In all five vegetable, varieties iron content increased continuously from stage I to stage III. Generally, the increase from maturity stage I to stage II was slightly lower compared to that of stage II to stage III. The two cultivars of \textit{A. cruentus}, Madiira EX Zim had higher iron content compared to Madiira AM 38. Likewise, there was a difference in iron concentration in the two cultivars of \textit{S. villosum} (Ndurma BG 16 and Olevolosi SS 49) but the had same concentration at the third stage of maturity.

\subsection*{Effect of maturity stage on zinc content}

The contents of zinc across different stages decreased

\begin{table}[h!]
\centering
\begin{tabular}{lccccc}
\hline
Vegetable & Stage I & Stage II & Stage III \\
 & (21 Days) & (28 Days) & (35 Days) \\
\hline
\textit{Solanum villosum} (Ndurma BG 16) & 49.6±0.6c & 49.2±1.6c & 115.5±1.6d
\textit{Solanum villosum} (Olevolosi SS 49) & 27.7±3.9a & 41.5±1.3b & 104.7±3.2f
\textit{Cleome gynandra} (Spider Plant) & 32.4±2.9a & 63.0±4.5de & 163.4±2.3f
\textit{Amaranthus cruentus} (Madiira Ex Zim) & 51.0±2.3c & 113.5±3.6g & 132.0±3.5h
\textit{Amaranthus cruentus} (Madiira AM 38) & 69.2±4.6g & 57.1±2.0cd & 102.0±3.4i
\hline
\end{tabular}
\caption{Vitamin C contents (mg/100 g) in different vegetables at different stages of maturity.}
\end{table}
with plant maturity (Table 3). The highest zinc contents were 7.8 ± 0.4 mg/100 g in sample C. gynandra at maturity stages I, 5.8 ± 0.9 mg/100 g in Madiira AM 38 at maturity stage II and 4.5 ± 0.9 mg/100 g in Olevolosi SS 49 at maturity stage III. The lowest zinc contents were in sample Madiira EX Zim at all three maturity stages. In all five varieties, zinc content decreased with plant age in each variety. Significant differences in zinc content were also observed among the two varieties of S. villosum, which is Olevolosi SS 49 and Nduruma BG, 16 only in the first maturity stage but no difference was observed in the second and third maturity stages. There were also differences in the two varieties of amaranthus Madiira EX Zim and Madiira AM 38 at the first and second stages of maturity but zinc content was not significantly different at stage III of maturity.

DISCUSSION

In this study, variation in vitamin C, iron and zinc contents in vegetables harvested at different stages of maturity was investigated. Variation was observed in vitamin C content across the cultivars. Vitamin C content was similar with what was reported by other researchers for vegetables grown in Africa (Ayua et al., 2016). There was relatively higher vitamin C content at the third stage of maturity in all studied vegetables. C. gynandra had the highest vitamin C content at 35 days. These results are in agreement with the work of Amanabo et al. (2011) who found that vitamin C content increased from market maturity (94.60 ± 5.60 mg/100 g) to reproductive stage (160.50 ± 7.10 mg/100 g) in A. cruentus (Amanabo et al., 2011). Some researchers reported that vitamin C concentration is highest in mature leaves with fully developed chloroplasts (Khan et al., 2011) and regardless of fertilizers used, vitamin C content increased with maturity in spider plant and black nightshade grown in Kenya (Ayua et al., 2016). This suggest that harvesting green leafy vegetables at advanced age potentially provides the greatest concentrations of vitamin C. Apart from maturity stage and variety type, other factors that affect vitamin C concentration in vegetables include postharvest handling conditions (time lapse between harvest to consumption and extent of physical damage), processing methods such as blanching, cooking, drying and canning (Kader and Seung, 2000). This implies that even when vegetables are harvested at the maturity stages when vitamin C content is highest, care should be taken during handling, processing and cooking to ensure maximum intake of this important vitamin.

There was variation in iron content across the varieties...
and across the cultivars. *Amaranthus cruentus* (Madiira Ex Zim) had the highest iron content. Iron content in the studied vegetables was higher than other indigenous African vegetables as reported by other researchers (Kamga et al., 2013; Lyimo et al., 2003). In a recent study, variation in nutrient content was reported, specifically zinc and iron contents in vegetables grown from different districts in Tanzania (Amuri et al., 2017). An increase in iron content was observed in all varieties of the studied vegetables across the harvesting stages. The increasing trend of iron suggests that the mineral may be indissociable ion and accumulates as age increase. These findings were similar to those of Flyman and Afolayan who reported increase in iron content at each stage in *Vigna unguiculata* as the plant matured from 21 to 57 days after sowing the seeds (Flyman and Afolayan, 2008). Modi and colleagues found that iron concentration in *A. cruentus* increased significantly (*p* < 0.05) from 40 ± 2.5 mg/100 g at 20 days after sowing to 58 ± 2.1 mg/100 g at 40 days after sowing (Modi et al., 2006). It was reported in other studies that iron concentration decreased in green leafy vegetables as they mature towards fruiting (Khader and Rama, 2003). The possible reason for the increasing trend observed in this study is that the 35 days that were set as maximum for harvesting the leaves was still early for the vegetables to start flowering. Further studies to investigate later harvesting stages on nutrients may be necessary.

Zinc content was significantly higher in *C. gynandra* at the first stage of maturity. The amount was higher than what was reported in other commonly consumed vegetables like sweet potato leaves, lettuce, jute mallow, and kales (Kamga et al., 2013). The observed variations could be attributed by harvesting stage or nature of the soil where the vegetables were grown. The differences in zinc content between them may be attributed to differences in absorption efficiencies between the varieties. Different plant varieties have got different root system and hence different efficiency in exploiting and taking up nutrients from the soil. There was a slight but not significant decrease in zinc concentration at all stages of maturity. The decreasing zinc content may be attributed to diversion of this mineral towards plant development. During fruit initiation and development, some metabolites for cellular synthesis and growth substances are translocated from the leaves, stems, and roots to the developing fruits (Khader and Rama, 2003). Moreover, Lanyasunya et al. (2007) observed that the rapid uptake of mineral by plants during early growth and the gradual dilution that occurs as plant matures would have been responsible for the decrease in some of the mineral content during fruiting. Zinc content decreased with increasing maturity stages in *Amaranthus* and *Spinacea* species (Khader and Rama, 1998).

Flyman and Afolayan (2008) found that zinc content was higher at 21 days (389.08 ± 5.08 mg/100 kg) and decreased continuously to 161.53 ± 3.59 mg/100 kg at 28 days and decreased further to 85.83 ± 1.30 mg/100 g, at 35 days after sowing. Amanabo et al. (2011) observed that zinc content in *A. cruentus* decreased from 0.08 ± 0.01 mg/100 g dry weight at market maturity (vegetative) stage to 0.05 ± 0.01 mg/100 g dry weight at heading (reproductive) stage. Generally, the variation in nutrient content across the cultivars and across different vegetables can be explained by their genetic variations (Marles, 2017).

Associations of soil nutrient and concentration in vegetables

Nutrient concentrations in foods depend largely on the quality of soil in which the crops are grown. Soil fertility management practices were reported to affect zinc and iron concentration in vegetables and there was a direct association between soil chemical properties and vegetable mineral concentrations (Amuri et al., 2017). Some studies noted that soil pH may affect zinc content in vegetables and in some study sites zinc in the soil was negatively correlated with zinc content in vegetables (Amuri et al., 2017; Harter, 1983). The authors noted that levels of zinc in vegetables varied due to soil management and not necessarily zinc concentration in the soil (Amuri et al., 2017). A study in Bangladesh found that elemental concentrations vegetables varied in different samples and which reflect the difference in uptake capabilities and their further translocation to the edible portion of the plants (Jolly et al., 2013). They also found variation according to location which could be related to soil properties and soil nutrient management. Other studies found that increased zinc content in the soil increased its concentration in *Amaranthus* leaves (Ondo et al., 2012). Although soil nature and other environmental factors contribute to the mineral deposition in plants, it was not the case in this study since all vegetables were grown in similar soil type.

Conclusions

There were marked differences in nutrient content among the various varieties and cultivars involved in this investigation. There were variations in vitamin C content in all vegetables investigated where the highest amount was in Madiira AM 38 in stage I, in Madiira Ex Zim in stage II and in *C. gynandra* in stage III. Madiira EX Zim was the best in iron content at all maturity stages. *C. gynandra* contained highest levels of zinc at stage I which decreased to about half at stage III. Iron and vitamin C concentrations increased with plant age implying that the vegetables should be harvested at advanced plant age. On the contrary, levels of zinc decreased with plant maturity implying that vegetables should be harvested at early maturity stages preferably the third week after
sowing. This suggests that consuming different vegetables varieties in combination would be the best approach to get all the essential nutrients in adequate amounts needed to maintain normal body functions. It would be interesting to investigate the consumer acceptance in consuming vegetables harvested at different stages of maturity. While considering nutrient content as an important factor, palatability and other sensory attributes and hence consumer acceptance should not be ignored.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

Authors would like to appreciate the financial support from USAID funded Horticulture CRSP project titled ‘sustainable African Indigenous Vegetable Production and Market Chai Development for Improved Health and Nutrition and Income Generation by Small Holder Farmers in Kenya, Tanzania and Zambia.

REFERENCES

TDBHS-MIS (2015-2016). Tanzania Demographic and Health Survey and Malaria Indicator Survey Key Findings. In. Rockville, Maryland, USA; Ministry of Health, Community Development, Gender, Elderly and Children, Ministry of Health Zanzibar, NBS, OCGS, and ICF.
