ABOUT JHF

The Journal of Horticulture and Forestry (JHF) is published monthly (one volume per year) by Academic Journals.

Journal of Horticulture and Forestry (JHF) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as Arboriculture, Plant growth by hydroponic methods on straw bales, Postharvest physiology of crops, Permaculture etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JHF are peer-reviewed.

Contact Us

Editorial Office:

jhf@academicjournals.org

Help Desk:

helpdesk@academicjournals.org

Website:

http://www.academicjournals.org/journal/JHF

Submit manuscript online

http://ms.academicjournals.me/
Editors

Dr. Amanullah Khan
Khyber Pakhtunkhwa Agricultural University, Department of Agronomy, Faculty of Crop Production Sciences, Peshawar-25130, Pakistan.

Prof. Paul K. Baiyeri
Department of Crop Science, Faculty of Agriculture, University of Nigeria, Nsukka, Nigeria

Dr. Fahrettin Tilki
Artvin Coruh University
Faculty of Forestry
08000-Artvin, Turkey

Dr. Peter Fredenburg
Freewheel Media
2D Samtah Building
386 Queens Road West
Sai Ying Pun,
Hong Kong

Dr. Deepu Mathew
Kerala Agricultural University
Tavanur - 679 573,
India

Dr. Süleyman Korkut
Düüzce University, Faculty of Forestry
Department of Forest Industrial Engineering
81620 Beciyorukler Campus, Duzce
Turkey

Dr. Geoff Sellers
Research Fellow Agronomy Institute
UHI Orkney College Kirkwall
Orkney KW15 1LX

Dr. Xianmin Chang
Agronomy Institute, Orkney College
University of Highlands and Islands
East Road, Kirkwall, Orkney
UK

Dr. Alireza Iranbakhsh
Islamic Azad Univeristy,
Aliabad Katoul Branch, Aliabad Katoul,
Golestan
Iran

Dr. Prof. Festus K. Akinnifesi
Strategic Objective 2 - Sustainable Agricultural Production Systems (SO2)
Food and Agriculture Organization of the United Nations (FAO)
Viale delle Terme di Caracalla,
Rome,
Italy.

Dr. Geoff Sellers
Research Fellow Agronomy Institute
UHI Orkney College Kirkwall
Orkney KW15 1LX
Editorial Board

Dr. Gecele Matos Paggi
Federal University of Mato Grosso do Sul
Brazil

Dr. Mekou Youssoufa Bele
Center for International Forestry Research (CIFOR)
Central Africa Regional Office (CARO)
P.O.Box 2008, Messa.
Yaounde - CAMEROON

Dr Uğur Çakicioglu
Fırat University,
Faculty of Science and Arts,
Department of Biology
TURKEY

Dr Hare Krishna
Central Institute of Temperate Horticulture-Regional Station,
Mukteshwar-263 138, District- Nainital, Uttarakhand, India

Dr. Zhonglian('Julie') Huang
Donald Danforth Plant Science Center
975 North Warson Road
St.Louis, MO 63132
USA

Dr. Gholamreza Sharifisirchi
Reza Sharifi-Sirchi
Biotechnology Department, Agriculture college,
Shahid Bahonar University-Kerman
Iran

Dr Ashwani Tapwal
Scientist
Rain Forest Research Institute (RFRI),
Ministry of Environment & Forests (GOI)
P.O. Box -136, Deovan, Jorhat-785 001,
Assam, TANZANIA

Dr. Karim Hosni
School of Agriculture, Mograpne,
Department of Agricultural Production, 1121, Zaghouna
Tunisia

Dr. Jasper Abowei
Department of Biological Sciences,
Faculty of Science,
Niger Delta University, Wilberforce Island,
Bayelsa State
Nigeria

Dr. Hasan Turkez
Faculty of Science, Molecular Biology and Genetics Department,
Erzurum Technical University,
Erzurum, Turkey

Dr. Ricardo Aroca
Department of Soil Microbiology
Zaidín Experimental Station (CSIC)
Professor Albareda 1
18008 Granada
Spain

Dr. Maarit Kallio
Finnish Forest Research Institute
Vantaa Unit,
POB 18,
FI-01301 VANTAA
Finland

Dr. Iulian Costache
University of Craiova
Faculty of Agriculture and Horticulture
Department of Biology and Environmental Engineering
13 A. I. Cuza Street, 200583 Craiova,
Romania

Dr. Rajesh Kumar
Scientist C
Forest Protection Division
Rain Forest Research Institute (RFRI),
P.O. Box -136, Deovan, Jorhat-785 001,
Assam, India

Bharat Sharma Acharya
Ratnanagar 01, Chitwan, Nepal
Nepali

Dr. Subhajit Panda
Taxonomy & Biosystematics Laboratory
Post-Graduate Department of Botany
Darjeeling Govt. College
Darjeeling-734101
India

Dr. Kadiriyê URUÇ PARLAK
Agri Ibrahim Cecen University
Science and Arts Faculty
Department of Biology
04100 Agri/TURKEY
ARTICLES

Influence of climate on fruit production of the yellow plum, Ximenia americana, in Burkina Faso, West Africa
Ounyambila Lompo, Anne Mette Lykke, Benjamin Lankoandé and Amadé Ouédraogo

Impact evaluation on survival of tree seedling using selected in situ rainwater harvesting methods in Gerduba Watershed, Borana Zone, Ethiopia
Demisachew Tadele, Awdenegest Moges, Mihret Dananto
Full Length Research Paper

Influence of climate on fruit production of the yellow plum, *Ximenia americana*, in Burkina Faso, West Africa

Ounyambila Lompo\(^1\)*, Anne Mette Lykke\(^2\), Benjamin Lankoandé\(^1\) and Amadé Ouédraogo\(^1\)

\(^1\)Laboratory of Plant Biology and Ecology, Unit of Training and Research in Life and Earth Sciences, University Ouaga I Pr Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou 03, Burkina Faso.

\(^2\)Institute of Bioscience, Aarhus University, Vejlsovej 25, 8600 Silkeborg, Denmark.

Received 14 December, 2017; Accepted 13 March, 2018

Fruits of *Ximenia americana* have socio-economic value for the local people in West Africa. Understanding the possible influence of climate conditions on fruit production is a basis for better exploitation planning and sustainable management of the species. This study aims to assess the fruit production of *X. americana* according to tree size across a climatic gradient. The mean total number of fruits, the mean weight of fruits and the total weight of fruits per tree were calculated based on a sample of 450 trees distributed in five stem diameter classes and three climatic zones. Stem diameter, total height and crown volume were measured for each sampled tree. The global fruit production ranged from 200.37 ± 32.65 to 1027.20 ± 267.72 fruits/tree according to tree size. Trees with larger crown volume produced more fruits with higher total weight than those with smaller crown. The climatic zone significantly affected fruit production (p < 0.0001). The highest fruit weight per tree was recorded in the south-Sudanian phytogeographic zone, with a mean value of 1.49 ± 0.26 kg while the lowest value was observed in the sub-Saharan zone, with 0.67 ± 0.11 kg. The best prediction models of *X. americana* fruit production included crown volume and climatic zone.

Key words: Fruit production, semi-arid climate, wild fruit tree, non-timber forest product, prediction.

INTRODUCTION

Many people across the world rely highly on Non Timber Forest Products (NTFPs) for their livelihood. In West Africa, many local trees provide fruits that contribute to health and food security (Lykke et al., 2004; Lamien et al., 2009; Ouédraogo et al., 2017), especially for rural communities. One example is *Ximenia americana* L., a shrub with edible fruits (Figure 1) which also has many medicinal properties (Saeed and Bashier, 2010). The mature pulp contains 64.91% moisture, 5.91% protein, 22.85% lipid, 10.64% soluble sugar, and has bioactive
and antioxidant activities. One hundred gram of pulp contains 187.98 mg vitamin C, 0.88 mg carotenoids, 2.81 mg anthocyanin and 38.29 mg yellow flavonoids (Sarmento et al., 2015). The fruit is particularly appreciated in rural areas during the food shortage period, which correspond to the species’ fructing time (Thiombiano et al., 2012). Extracted oil from X. americana seeds is used locally for food, medicine and cosmetics (Ouédraogo et al., 2013; Urso et al., 2013), but it is not widely marketed (Urso et al., 2013). Despite the important contribution of X. americana fruits to the daily livelihood of many communities across sub-Saharan Africa, fruit production of the species is not documented. Currently, harvest of X. americana fruits depends entirely on wild tree populations, while this may not be sustainable as wild harvesting can lead to overexploitation (Jordaan et al., 2008).

Previous studies on tropical trees showed that fruit production depends on tree size and prediction models were established for estimating fruit quantity based on dendrometric parameters, for example for Bombax costatum Pelleg. & Vuillet, Carapa procera DC., Pentadesma butyracea Sabine and Vitellaria paradoxa C.F. Gaertn (Lamien et al., 2007; Ouédraogo et al., 2014; Lankoandé et al., 2017). Some prediction models include both climatic factors and tree dendrometric variables. Fruit production of many species is known to vary across climatic gradient (Glélé Kakaï et al., 2011; Hoque and Haque, 2016). Indeed, fluctuation of fructing traits is strongly related to environmental factors, especially climate variability (Glélé Kakaï et al., 2011). For instance, the number of fruits per shea tree varies from 225 to 305 fruits across a climatic gradient in Benin (Glélé Kakaï et al., 2011). The fruit production of X. americana is unknown across the species distribution range, and even less the influence of environmental variables on the production. This study aims to: (i) estimate the fruit production of X. americana, (ii) determine the influence of tree size and climatic gradient on the fruit production and (iii) establish models to predict the species’ fruit production.

MATERIAL AND METHODS

Study area

The study was carried out along a transect from northern to southern Burkina Faso, covering three phytogeographic zones (Fontes and Guinko, 1995) across the climatic zones of the country. Data were collected around nine villages: Koflandé, Mikérédoougou (south-Sudanian zone), Theykui, Nounou, Douroula, Kari (north-Sudanian zone), Oula, Sousou and Bhem (sub-Sahel zone) (Figure 2). The climatic gradient ranged from around 1000 mm precipitation in the south-Sudanian zone to 600 mm in the sub-Sahel zone, with similar trend for the length of the rainy season and the number of rainy days (Table 1). The altitude varied from 250 to 350 m throughout the study area. The vegetation is characterized by woodlands in the south-Sudanian zone, wooded grassland in the north-Sudanian zone and shrub land in the sub-Sahel zone (White, 1983; Fontes and Guinko, 1995). Agriculture and livestock farming are the main human activities across the study area, involving 80% of the total population (Ministère de l’Economie et des Finances, 2010).

METHODOLOGY

Data on fruit production were collected over two years (2015 and 2016) in the three phytogeographic zones (except for the south-Sudanian in 2015 only) during the maturity period of X. americana fruits (April to August). A total of 450 trees were sampled (150 trees per phytogeographic zone) and separated from each other by a minimum of 100 m distance (Ugese et al., 2008; Glélé Kakaï et al., 2011). In each phytogeographic zone, 30 individuals were randomly sampled per stem diameter class (0-3, 3-6, 6-9, 9-12 and ≥ 12 cm); their diameter being measured at 20 cm above the ground level (D20). All fruits on the tree were collected, counted and weighted to obtain the fresh weight. For each sampled tree, additional dendrometric parameters were measured: total height, crown diameter and height. Only healthy trees without any sign of pruning

![Figure 1. Ripe fruits of Ximenia americana (a), collected for eating (b).](image-url)
Figure 2. Study area with the sampling sites across the phytogeographic zones of the country.

Table 1. Main climatic traits in the three phytogeographic zones.

<table>
<thead>
<tr>
<th>Phytogeographic zones</th>
<th>Main localities</th>
<th>Isohyets (mm)<sup>a</sup></th>
<th>Rainy season period</th>
<th>Number of rainy days (mean SD)<sup>b</sup></th>
<th>Temperature min-max (°C)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>south-Sudanian</td>
<td>Banfora</td>
<td>+900</td>
<td>May-October</td>
<td>68.8±4.9</td>
<td>22-34</td>
</tr>
<tr>
<td>north-Sudanian</td>
<td>Dédogou</td>
<td>600-900</td>
<td>June-October</td>
<td>58.0±4.8</td>
<td>24-41</td>
</tr>
<tr>
<td>sub-Sahel</td>
<td>Ouahigouya</td>
<td>+600</td>
<td>July-October</td>
<td>42.9±7.5</td>
<td>26-45</td>
</tr>
</tbody>
</table>

a: Isohyets were recorded between 1981 and 2010 (source: National Office of Meteorology).
b: Mean number of rainy days were recorded between 2000 and 2011 (source: National Office of Meteorology).
c: Temperatures are extreme ones from 1980 to 1998 (Sawadogo 2014; Ouédraogo 2006)

and debarking were sampled.

Statistical analysis

Inter-annual, climate and tree traits effects on fruit production were analyzed, and prediction models were performed. General linear models (GLM) were used to test for differences in fruit production parameters according to year, phytogeographic zone and tree traits. Different prediction equations were performed considering dendrometric parameters and climatic zones as explanatory variables, and number of fruits, mean weight of one fresh fruit and weight of total fresh fruits per tree as response variables. Data were log transformed to meet the conditions of normality and homoscedasticity. The effects of tree traits were first tested separately (D20, total height and crown volume = \(\pi h^2(d/2)^2\), where \(h\) = crown height (m), \(d\) = mean of short and long diameters (m)) using GLM and Tukey post hoc tests. Following, the effect of tree traits and climate zone were tested together. JMP 12 and R 2.15.3 software were used for the analyses.
RESULTS

Variation of fruit production according to stem diameter and phytogeographic zone

Fruit production varied significantly among stem diameter classes of trees (p < 0.0001) (Figure 3). Generally, the total number of fruits and total fruit weight increased with stem diameter, except in the north-Sudanian zone where the medium size classes had the highest fruit production. Mean values of individual fruit weight were 2.50 ± 1.31, 2.34 ± 0.13 and 3.50 ± 0.20 g in the south-Sudanian, north-Sudanian and the sub-Sahel zones, respectively. In the south-Sudanian zone, the highest production of fruits was recorded in large trees (diameter ≥ 12 cm), with 1027.20 ± 267.72 fruits/tree (Figure 3) corresponding to a total fresh weight of 1.65 ± 0.35 kg. In the sub-Sahel zone, the production for the same diameter class was 200.37 ± 32.65 fruits/tree, corresponding to 0.67 ± 0.12 kg. In the north-Sudanian zone, the highest fruit production was recorded in the 6 to 9 cm stem diameter class (Figure 4) with 543.53 ± 122.06 fruits/tree (Figure 3), corresponding to a total fruit fresh weight of 1.25 ± 0.23 kg.

Inter-annual effect on fruit production

There was no significant difference in fruit production between years when tested for the sub-Sahel and the North-Sudanian zones (p = 0.71) as a consequence, only the data of the first year from the three phytogeographic zones were used to establish prediction models.

Prediction models to estimate the number of fruits

The number of fruits was significantly related to the stem diameter, total height and crown volume of trees. When tested individually they accounted for 28, 34 and 45% of the variation, respectively (Table 2). A model including total height and crown volume accounted for 29, 32 and 43% of the variation in total fruit weight. When tested alone, the climate zone had a significant effect on total fruit weight, which was significantly higher in the south-Sudanian zone than in the sub-Sahel zone. Crown volume and climate zone together accounted for 46% of the variation in total fruit weight.

Prediction models to estimate the total fruit weight

The total fruit weight was significantly related to tree size. When tested individually, the stem diameter, tree height and crown volume accounted for 29, 32 and 43% of the variation in total fruit weight, respectively (Table 4). A model with all the three variables does not explain more than one with crown volume alone. When tested alone, the climate zone had a significant effect on total fruit weight, which was significantly higher (p < 0.0001) in the north-Sudanian zone than in the sub-Sahel zone. Crown volume and climate zone together accounted for 46% of the variation in total fruit weight.

DISCUSSION

Influence of tree size on fruit production

Evidence is provided that tree size has an influence on fruit production as widely reported for other tropical tree species (Kouyaté et al., 2006; Ouédraogo et al., 2014; Lankoandé et al., 2017). Fruit production of X. americana was higher in trees with a large crown than the small ones. This result is in line with Molina et al. (2011) who reported that, generally, large trees are more productive than those with small diameters. The crown volume better explains the fruit production than the stem diameter, with higher production in larger trees. For many savanna tree and shrub species of West Africa (for example, Detarium microcarpum, Faidherbia albida, Piliostigma reticulatum, Bauhinia rufescens, Ziziphus mauritiana and Bombax costatum), similar fruit production pattern was observed (Bagnoud et al., 1995; Kouyaté et al., 2006; Ouédraogo et al., 2014). However, in the north-Sudanian zone the highest fruit production was found in the medium diameter classes trees of X. americana. In this phytogeographic zone, the largest trees which are also the oldest ones seem to be most vulnerable to environmental disturbances that could explain their low production. Intermediate size individuals of X. americana appear to be more resilient to the local environmental conditions in this zone as reported by Soro et al. (2011) for the shea tree, Vitellaria paradoxa.

Effect of climatic zones on fruit production

Climate is known to affect fruit production of trees in semi-arid areas (Glèlè Kakaï et al., 2011). The present study showed a five-fold increase of fruit production
Figure 3. Mean number of fruits per tree (a) and mean total weight of fruits per tree (b) according to tree stem diameter class across the three phytogeographic zones.

*SS: south-sudanian zone, NS: north-soudanian zone, SbS: sub-sahel zone.

Figure 4. Ximenia americana shrubs with large stem diameter and low fruit production (a) and medium diameter with high production (b) from the north-sudanian phytogeographic zone.

Table 2. Prediction models of the number of fruits with tree diameter, total height, crown volume and climate zone as predictors.

<table>
<thead>
<tr>
<th>Prediction equation</th>
<th>df</th>
<th>F</th>
<th>p</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log (number of fruits) = 3.20 + 1.26 Log (diameter)</td>
<td>1</td>
<td>177.50</td>
<td><0.0001</td>
<td>0.28</td>
</tr>
<tr>
<td>Log (number of fruits) = 2.90 + 2.32 Log (height)</td>
<td>1</td>
<td>226.61</td>
<td><0.0001</td>
<td>0.34</td>
</tr>
<tr>
<td>Log (number of fruits) = 4.12 + 0.73 Log (crown volume)</td>
<td>1</td>
<td>363.05</td>
<td><0.0001</td>
<td>0.45</td>
</tr>
<tr>
<td>Log (number of fruits) = 3.96 + 0.01 Log (diameter) + 0.20 Log (height) + 0.67 Log (crown volume)</td>
<td>3</td>
<td>229.48</td>
<td><0.0001</td>
<td>0.45</td>
</tr>
<tr>
<td>Log (number of fruits) = 4.22 + 0.68 Log (crown volume) + [South – sudanian + 0.16]</td>
<td>3</td>
<td>264.33</td>
<td><0.0001</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

df: degree of freedom; F: Fisher; p: Probability; R²: Coefficient of determination
Table 3. Prediction models of average fruit weight predicted by tree diameter, height, crown volume and climate zone.

<table>
<thead>
<tr>
<th>Prediction equation</th>
<th>df</th>
<th>F</th>
<th>p</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log (mean weight/fruit) = 2.05 - 0.08 Log (diameter)</td>
<td>1</td>
<td>3.58</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>Log (mean weight/fruit) = 2.16 – 0.21 Log (height)</td>
<td>1</td>
<td>9.50</td>
<td>0.002</td>
<td>0.02</td>
</tr>
<tr>
<td>Log (mean weight/fruit) = 2.04 – 0.06 Log (crown volume)</td>
<td>1</td>
<td>11.87</td>
<td>0.0006</td>
<td>0.03</td>
</tr>
<tr>
<td>Log (mean weight/fruit) = 2.00 + 0.11 Log (diameter) -0.13 Log (height) - 0.07 Log (crown volume)</td>
<td>3</td>
<td>3.64</td>
<td>0.06</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Log (mean weight/fruit) = 1.99 – 0.04 Log (crown volume) + [South – sudanian – 0.11] North – sudanian – 0.10] Sub – sahel + 0.21

df: degree of freedom; F: Fisher; p: Probability; R²: Coefficient of determination.

Table 4. Prediction models of mean total fruit weight with tree diameter, height, crown volume and climate zone as predictors.

<table>
<thead>
<tr>
<th>Prediction equation</th>
<th>df</th>
<th>F</th>
<th>p</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log (total weight of fruits) = 3.28 + 1.18 Log (diameter)</td>
<td>1</td>
<td>182.88</td>
<td><0.0001</td>
<td>0.29</td>
</tr>
<tr>
<td>Log (total weight of fruits) = 3.08 + 2.10 Log (height)</td>
<td>1</td>
<td>212.76</td>
<td><0.0001</td>
<td>0.32</td>
</tr>
<tr>
<td>Log (total weight of fruits) = 4.12 + 0.73 Log (crown volume)</td>
<td>1</td>
<td>340.78</td>
<td><0.0001</td>
<td>0.43</td>
</tr>
<tr>
<td>Log (total weight of fruits) = 3.97 + 0.12 Log (diameter) + 0.08 Log (height) + 0.60 Log (crown volume)</td>
<td>3</td>
<td>228.25</td>
<td><0.0001</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Log (total weight of fruits) = 4.24 + 0.63 Log (crown volume) + [South – sudanian + 0.05] North – sudanian + 0.20] Sub – sahel – 0.25

df: degree of freedom; F: Fisher; p: Probability; R²: Coefficient of determination

according to the climatic zones. Stressful environmental conditions such as rainfall shortage and the harmattan (drying wind) may induce an important abortion in fruiting and consequently a reduction of fruit production (Okullo et al., 2004; Berjano et al., 2006). Glèlè Kakaï et al. (2011) showed that the climatic zone had a significant effect on fruit production of the shea tree, *V. paradoxa*, especially for the number of fruits. The wind is an important determining factor of biological processes in the semi-arid areas (Okullo et al., 2004; Berjano et al., 2006). In the Sudanian and Sahel zones, the harmattan blows in gusts during the second period of dry season (for example, from February to April) which corresponds to the flowering period of *X. americana* (Arbonnier, 2002), and that could consequently have a negative impact on the fruiting. Apart from the irregular precipitations, this hard wind is the most likely factor accountable for variation in fruiting of the species. Indeed, strong winds result in disturbance of pollinators and abscission of flowers and young fruits (Okullo et al., 2004).

Prediction model to estimate fruit production

Dendrometric traits of trees have variable influence on fruit production (Totland and Birks, 1996). The use of both tree dendrometric traits and environmental factors to perform prediction models makes it possible to identify the influence of each variable for future observations. For *X. americana* tree, the crown volume prove to be the best predictor of fruit production (number and total weight of fruits per tree). As 51% of the variation in number of fruits and 43% of total weight was explained by crown volume and climate zone, these variables are sound factors for establishing valid prediction models. In addition, the few number of factors used to build the models traduced the effectiveness of prediction models. When taking together crown volume and climatic zone as predictors, fruit production is better estimated (Chapman et al., 1992; Popescu et al., 2003; Zywiec et al., 2012). This is also in line with Bognounou et al. (2013) who reported a relationship between biomass production, crown size of trees and climatic conditions.

Conclusion

This study highlighted the potentials of fruit production of *X. americana*. The total number of fruits per tree was high but their weight was relatively low. Climate conditions and
tree crown volume are the major factors influencing fruit production. With consideration of all predictors, the south-Sudanian phytogeographic zone appears to be the area of the optimum fruit production of the species. Fruit production of trees was successfully predicted based on climatic zone and tree dendrometric traits. The prediction models revealed the crown volume of trees as the intrinsic driving factor of fruits production in X. americana trees. Such result is valuable information for the sustainable management and the economic valorization of the species.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Impact evaluation on survival of tree seedling using selected *in situ* rainwater harvesting methods in Gerduba Watershed, Borana Zone, Ethiopia

Demisachew Tadele*, Awdenegest Moges, Mihret Dananto

School of Graduate Studies, Hawassa University, Ethiopia.

Received 24 January, 2018; Accepted 21 March, 2018

Establishing forest plantation on degraded rangelands play a key role in forest rehabilitation processes through afforestation or/and reforestation. *In-situ* rainwater harvesting has positive impact on seedling survivals at degraded rangelands. A quadrant of 10 m × 10 m of five times replication at three slope classes under area enclosure was used. Both survived seedlings and soil physical parameters were collected from three soil depth profiles (0-10, 10-20 and 20-30 cm) and then analyzed. Of the transplanted seedling to the area enclosure with pits (66.53, 46.13, and 25.66%), half-moon (66.53, 41.80, and 20.40%), and soil bund embankment (55.46, 42.60, and 28.80%) were survived at bottom, middle and upper slope classes respectively. The interaction of seedling survival in both planting methods were not significantly different at P>0.05, particularly, in half-moon and pits except soil bund embankment. Because, tree seedling rose at nursery site transplanted to the embankment of structures, that is, on the dig out soils. The conserved moisture is far from seedling roots as a result needs long roots to absorb but weak and short rooting system. Pits and half-moon showed good performance than soil embankments at bottom parts. This explains that almost all *in-situ* structures play a crucial role at flat land rather than middle and upper parts but highest bulk density achieved for the upper parts, which might be due to risks of soil erosion and only left with very compacted cobs. Therefore, slope gradient have implication on *in-situ* rainwater harvesting devices efficiencies in conserving moisture for tree seedling survival so as to establish good forest stands.

Key words: Growth, *in-situ* rainwater harvesting, moisture stress, seedlings, survival.

INTRODUCTION

Forest plantation on degraded rangelands can play a key role in harmonizing long-term forest ecosystem rehabilitation process (Sharma and Sunderraj, 2005). The process of forest ecosystem rehabilitation can be accelerated through human intervention like afforestation or/and reforestation with moisture stress tolerant tree seedling transplanting from nursery sites in dryland areas (Jha and Singh, 1992).

Afforestation is the common approach of restoration on degraded land and biodiversity conservation, and eco-
environmental improvement (Cao, 2011). However, the vegetation establishment on degraded land is constrained by many factors in which the insufficient moisture availability listed as the top constraint (Li et al., 2008). The conserved and stored rainwater supports flourishing plant growth and tree seedling survivals in dry areas (Suleman et al., 1995). These could be possible through in-situ rainwater harvesting devices which have hydrological functions as it modifies water flows and facilitating plant growth (Gupta, 1995) and improve vegetation cover (Singh et al., 2010). This was enhanced by reducing velocity of runoff and the water is collected behind the structures. However, it only could be realized through well designed and improved soil and water conservation and harvesting devices (Gowing et al., 1999).

How the environment is much more degraded, tree seedling plantations, with appropriate and well designed in-situ rainwater storing structures can rehabilitate the denuded areas (Founoune et al., 2002). In such cases, transplanting of nursery-raised seedlings may accelerate regeneration and afforestation of the degraded lands (Yirdaw and Luukkanen, 2003). Because, tree seedling is the primary means by which they are recruited into the forest canopy after disturbance (Smith and Ashton, 1993).

Successful tree seedling survival and growth depends on the soil condition and stored soil moisture available to ensure tree seedling survival into the next growing season (Warren et al., 2005). It was enhanced at field level, conserving surface runoff water to productive purposes by storing water in the form of soil moisture (Rockström et al., 2002). According to Grubb (1977), geographic distributions also determine tree seedling establishment. Because, seedlings of some trees are sensitive to drought, and may be killed by even short dry spells (Engelbrecht et al., 2007).

In the degraded lands of Borana rangeland, particularly, Gerduba watershed, pastoralists have been planting many tree seedlings species year after year but the survival of those seedlings are poor and variable as the area is mainly affected by moisture stress and soil fertility problems. The impact of in-field rainwater harvesting technique (IRWH) practices on the number of planted seedling survival per unit area has so far scarcely been investigated. Again, the area has not been given much research attention and are still lacking regarding the title. Therefore, the general objective of this study was to evaluate the performance of selected IRWH structures in conserving moisture and tree seedling survival as well as physical soil quality under area enclosure of rangeland.

MATERIALS AND METHODS

Description of the study area

The study was carried out in Gerduba watershed which is found in Yabello district of Borana zone in the southern part of Oromia National Regional State. Yabello is the capital town for the Borana zone and is situated south to Addis Ababa at a distance of 570 km. The Borana lowland is usually known as the southern rangelands. The Gerduba catchment is located in the southern parts of Ethiopian lowlands (Figure 1) and they cover a total land of 3220 ha (WLRC and CDE, 2013). It extends from 4° to 5° latitude and 38 to 40° longitude and the maximum and minimum altitudes of the watershed are 1970 and 1550 m above sea level, respectively. The annual average temperatures and rainfall is (19-24°C) and (300 - 1000 mm), respectively. The annual precipitation distribution is bimodal, with 60% falling from April to May and 30% from October to November.

The vegetation comprised in Borana is mainly a mixed savanna which is dominated by perennial grasses (Cenchrus, Pennisetum, and Chrysopogon species) and woody plants (Desta and Coppock, 2004).

In terms of age composition (Figure 2), most of the family members are youthful, in which the age groups under 15 years comprise 46.9%.

The Borana pastoralists traditionally depend mainly on cattle, but also on goat and sheep and nowadays though few on camel for household food security and a few donkeys and camels for transport.

Site selection and field layout

The different conservation practices with planted seedling in enclosure catchment area, at variable slope positions are sought for this study were: pits, level soil bund embankments and half-moon or semi-circular bunds. Area enclosure was selected due to the presence of the three types of in-situ rainwater harvesting structures with planted tree seedling to control the variations from human or livestock’s on seedling survival as well as on structures or to accommodate the similar data of survived seedlings.

The reconnaissance survey and discussion was made with experts who have a deep knowledge of the site starting from its initial management practices to its present situation. In order to establish similar topographical position, the slope position was classified into three slope classes. The three catchment parts identified for this study were bottom part (0-5%), (5-10%), and (>10%). Because, soil moisture and nutrient availability mostly influenced by natural slope gradient. These classifications were done based on recommended in-situ rainwater harvesting suitability. The way of classification is similar with that of slope position classification adopted by Engda (2009) and Alem et al. (2016). Then, 10 × 10 m² size quadrants were used to sample the transplanted seedling for the survival counting. The area of interest was clearly identified in such a way that detail observation was made around the area to be sampled to assure that the sampled plots do not fall in the area of least dense seedling area.

Experimental sampling and study

The present study was carried out at three different topography positions classified into similar classes in the protected parts of the catchment. The study components were tree seedling survivals in different in-situ rainwater harvesting methods (infiltration pits which was prepared with depth of 0.5 m, width=0.5 m, space across the slope=0.5 m, along the slope in staggered manner=2 m apart, half-moon (semicircular micro basin) which was prepared with diameter of 1.5 m, space across the slope=0.5 m, ridge around periphery=0.3 m high and 0.6 m wide, down the slope in staggered manner=2 m apart and pits which was prepared with diameter=0.4 m, depth=0.4 m, and soil level bund embankments which was constructed with of depth=0.5 m, length=38 m and 1.1 m wide)
and selected soil physical properties. The topographic position was classified into upper parts, middle parts and bottom area used in the whole studies. The details of the methodologies and field plot layout are here under (Figure 3).

Transplanted tree seedling sampling techniques

Stratified, random samplings of 10 × 10 m² size quadrants from each slope classes were taken repeatedly after transact walk thoroughly the slope classes. A single quadrant cannot be expected as a representative sample of the whole seedling population adequately. So, once collected, the sampled data from all quadrants added together and considered to constitute an adequate sample of survived seedling at each slope classes in conservation systems. At each quadrant, the total numbers of survived tree seedlings transplanted were thoroughly counted. Samplings less than 2 cm of diameter at breast height were excluded because most likely they would not survive. In each slope classes, a total of 45 quadrants of 10 × 10 m² size were used to count seedling survival in the each conservation devices of area enclosure parts. Fifteen quadrant samples that were collected from each slope class (plots) were bulked together to represent a block. The numbers of quadrants were determined based on number of transplanted seedling survived.

Sampling of soil physical parameters

Soil texture was determined by using hydrometer method (Day,
1965), while bulk density was determined by core method (Blake, 1965). A known volume of core sampler with a radius of 2.983 cm was used for determination of soil bulk density for the three depth levels, that is, 0-10, 11-20 and 21-30 cm. When the intended depths were attained, the soil core was pulled out of the soil with care and then struck by a rubber hammer that does not harm the coring ring to release the soil contained in the soil core into a bucket. Soil core sampling was done from five points per plot and then the soil samples from the five points were composited to represent a plot according to their respective depths. The composited soil samples by their depths were then oven dried at 105°C for 24 h. Bulk density was finally calculated as the ratio of the mass of oven dried soil sample to its core volume.

Methods of data analysis

The survived seedling was calculated as the proportion of surviving trees to total number of trees of the same species planted in the enclosure parts of different in-situ rainwater harvesting structures. Plots means for three variables were calculated. Treatment comparisons of means were made at 5% level of significances using Least Significant Difference test (Steel and Torrie, 1980), independently and dependently. Independent analyses were executed for tree survival in different in-situ rainwater harvesting and then combined analysis was done to observe if there is significant variation between slope classes in relation to planting techniques. The tree seedling survival and soil attributes data were analyzed using the statistical analysis system (SAS, 2002). The analysis of variance (ANOVA) was attributed to all data that were generated from tree seedling survival and Least Significant Difference (LSD) test with p < 0.05 employed for mean comparison. The data that was generated from soil attributes were analyzed as 3×3 factorial experiments with RCBD using SAS (SAS, 2002); the three in-situ rainwater harvesting method practices and three levels of slope classes were used as the two factors with both three levels, respectively. The model included the effect of in-situ rainwater harvesting methods, slope classes and their interactions.

RESULTS AND DISCUSSION

The role of in-situ rainwater harvesting methods on tree seedling survivals

The impacts of selected conservation devices, namely, infiltration pits, semi-circular bunds and level soil bund embankments on moisture availability across the slope classes were evaluated indirectly using some indicators. Different grass regeneration and maintaining around structures, namely, infiltration pits and level of soil bund as well as transplanted tree seedlings alive are excellent indicators of moisture availability (Figure 4). This finding supports Abraham (2014) who reported that the effects of moisture stress account for more than 87.9% in the death of tree seedlings. In similar ways, the moisture stress commonly limits growth, survival and distribution of tree seedlings (Warren et al., 2005). These reduced soil moisture conditions may be viewed as a significant barrier to artificial reforestation (Padilla and Pugnaire, 2007).

The ANOVA revealed that the interaction of seedling survival with planting methods was found to be insignificant (P>0.05), particularly, in half-moon and infiltration pits implemented in enclosure parts of the study area. The main effect of moisture conservation structures on conserving and storing moisture was not significant except level soil bund embankment (Table 1). Because, in embankment, tree seedling raised at nursery
Figure 4. Tree seedling survived in (a) pits and (b) level soil bund embankments.

Table 1. Mean survival (%) of the tree seedling in different planting methods at three slope classes at enclosure parts of Gerduba watershed.

<table>
<thead>
<tr>
<th>Planting method</th>
<th>Mean survival (%) of tree seedlings at different slope classes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slope class (0-5)</td>
</tr>
<tr>
<td>Infiltration pits</td>
<td>66.53<sup>a</sup></td>
</tr>
<tr>
<td>Half-moon</td>
<td>66.53<sup>a</sup></td>
</tr>
<tr>
<td>Level soil bund embankment</td>
<td>55.47<sup>b</sup></td>
</tr>
<tr>
<td>CV (%)</td>
<td>12.39</td>
</tr>
<tr>
<td>P-value</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Means in columns with the same letters are not significantly different.

site transplanted to the embankment of structures, that is, on the dig out soils. The finding confirmed the previous finding of Malik and Bhatt (2016) who concluded that the amount of moisture conserved in soil profile mostly influenced by type and design of in-situ rainwater harvesting devices. In order for the moisture to be conserved in the structure, which is not nearby to the transplanted seedling roots, as a result needs more energy to absorb weak and short rooting system. The finding is in line with the previously stated from some scholars which indicated that the major limitations of plantation survival are soil nutrients and moisture availability within the rooting zone and a planted seedling’s ability to access it (Grossnickle, 2005). On the other hand, level of soil bund embankment covers a large open space exposed to sunlight for more evaporation than infiltration pits and half-moon conservation methods. Moreover, reduced precipitation combined with evaporation commonly decrease soil moisture in the upper soil profile to below the requirement for seedlings to easily access (Warren et al., 2005).

With respect to planting methods, species planted, that is, Grevillea robusta in pit and half-moon pits relatively highly survived when compared with soil bund, respectively (Figure 5). This is in line with the previous findings of Malik and Bhatt (2016) that as shape and design of conservation methods have contributed to the establishment of seedlings. In similar way, Boers and Ben-Asher (1982) suggested that poor tree seedling establishments are related to an insufficiency of moisture available within rooting zone rather than to an insufficiency of rainfall.

Pits and half-moon showed good performance at bottom parts, while soil bund embankments are relatively least performed at bottom parts (Table 1). The finding strengthens the report that seedling survival and establishment is significantly decreased from lower slope gradient to upper (Yu et al., 2013). The previous study stated indicated that the efficiency of conservation method in conserving and storing rainwater for the dry season is determined by its depth, design and slope position (Hudson, 1987; Hatibu et al., 2001). Pits attain significantly higher performance at both 0 - 5 and >10% slope position where the soil is relatively better in moisture status and infiltration capacity as compared to half-moon and level soil bund embankments, respectively. Although the ANOVA reveals that there was no significant difference in survival (%) of seedlings with respect to planting methods during the assessment periods, the mean survival of seedlings planted in half-moon (41.80%), infiltration pit (46.13%) and level of soil bund embankment (42.60%) at 6-10% slope classes (Table 1). But there was significant difference in survival % of Grevillea robusta species at >10% slope classes for the mean survival of seedlings planted in half-moon (25.67%), infiltration pit (28.80%) and level soil bund
embankment (20.40%).

At bottom parts of the catchments, 66.53, 66.53 and 55.47% of tree seedlings survived in infiltration pits, half-moon and level soil bund embankments, respectively (Figure 6). In contrast, 28.80, 25.67, and 20.40% tree seedlings survived at upper parts in infiltration pits, half-moon and soil level bund embankments, respectively. This explains that almost all in-situ rainwater harvesting structures play a crucial role at bottom rather than middle and upper parts of the catchment. This finding was in congruent with previous results of Daws et al. (2002) that slope site with an upslope area is a niche that could contribute to the translocations of essential soil nutrient and moisture while plateau sites had no upslope area, so the water standing is very important for tree seedling survival.

During the assessment of quadrant, the mean tree seedling survival in infiltration pits increases from lower to upper, namely, in quadrants 8 and 15 within slope class III (Appendix Table 1). For reason that, there was stoniness in planting structures and additionally might be from inappropriate seedling plantation due to carelessness during site selection and seedling roots pruning. This is in agreement with Wolancho (2015), who pointed out that under lack of appropriate structure site selection, design and spacing, appropriate tree species selection resulted in poor seedling survival rate (<5%) observed in micro-watersheds.

The mean seedling survival in level soil bund embankment showed highly significant difference at (p<0.01) in the bottom part with that of upper part (Appendix Table 2). Even if the conserved and stored moisture and nutrients are far from transplanted seedling roots, it stay prolong for infiltration which might be easily accessible for seedling roots at bottom parts. Similarly, moisture and soil nutrients availabilities are the potential sources of spatial heterogeneity in micro-environment to maintain tree seedling survival (Denslow et al., 1990; Pacala et al., 1994). Tree seedlings survived in bottom parts where the soil is relatively better in moisture status and infiltration as compared to upper slope classes. This supports the previous results of Gebretsadik (2009) who reported that most tree species planted to rehabilitate degraded lands are restricted to gentler slopes, and
survival increased in planting pits compared to a significant decline on steep slopes. Because, the infiltration pits conserve and store moisture at <10% slope efficiently due to the fact that there is no variation in moisture availability across the slope. However, half-moon performs well in conserving moisture at bottom parts than middle and upper parts of the catchment, respectively (Appendix Table 2).

There is a significance difference in seedling survival in half-moon at p<0.05 between bottom and upper parts and significant differences at p< 0.05 between middle and upper parts of the catchment (Appendix Table 2). This is because the direct rainwater harvested from the whole corners was collected at the center bottom embankment parts structures. Though, slope position suitability is the most determinant for efficiently conserving of moisture in half-moon. Due to slope gradient, the moisture gets very close to embankment as a result, high probability of absorption and lateral water movement of moisture to unusable by seedling. Similar evidence from Burkina Faso (Zougmore et al., 2003) suggested that the soil moisture and nutrients increases significantly below half-moon. Moreover, successful tree seedling establishment and growth mostly depends on the stored moisture in the structures to ensure survival of tree seedlings into the next growing session.

The important factors determine in-situ rainwater harvesting efficiency

Soil texture

Analyzed soil texture data across depths and slope classes of area closure with selected conservation devices are shown in Table 2. Different plant seedlings have adaptations to and preferences for specific soil types and the distribution of tree seedling survival is often associated with soil properties or moisture with more seedlings survives on sites of the greater nutrient or water availability (Furley, 1992). For instance, this study indicated that the soil textural classes for bottom and middle parts in area enclosure were almost similar which is predominantly sandy with clay contents ranging mostly from 40.5 to 44% clay. However, the textural class for the upper of the area enclosure with some in-situ rainwater harvesting methods was classed under sandy-clay loam as depicted in Appendix Table 3. Hence, the textural classes of the study soil were influenced by the topographical position though the influence was not pronounced between bottom and middle parts of the enclosure (Table 2).

The variation in soil texture of the experimental sites indicates that soil texture can play a role in determining moisture availability which is very important for seedling survival in a certain region. This soil texture in turn could be influenced by in-situ rainwater harvesting devices and slope gradient. The finer textured soils are usually higher in bases and provide a favorable nutrient supply for vegetation. The sandier soils are usually deeper and provide a more favorable root zone for tree seedlings (Troeh and Thompson, 1993). The contents of silt, clay and sand contents of the different topographic positions indicate that the soil is derived from different parent materials which results in geological differences in the study area. So, water holding capacity also varies with different parent materials.

The topographic position through its effects of exposing

Table 2. Means of soil physical parameters across soil depths and slope class of area enclosure with selected (IRWH) practices.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>0-10 cm</th>
<th>10-20 cm</th>
<th>20-30 cm</th>
<th>±SE</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay (%)</td>
<td>33.17ab</td>
<td>36.3ab</td>
<td>40.33a</td>
<td>1.56</td>
<td>0.048</td>
</tr>
<tr>
<td>Sand (%)</td>
<td>54.17a</td>
<td>48.17b</td>
<td>46.83b</td>
<td>0.987</td>
<td>0.0042</td>
</tr>
<tr>
<td>Silt (%)</td>
<td>12.67a</td>
<td>15.5a</td>
<td>12.83a</td>
<td>0.97</td>
<td>0.15</td>
</tr>
<tr>
<td>Bulk density (g/cm³)</td>
<td>1.46a</td>
<td>1.56b</td>
<td>1.66a</td>
<td>0.01</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Means with the same letter superscripts across the rows of each respective factor that is soil depths and slope classes in area enclosure with selected in-situ rainwater harvesting practices are not significantly different at 0.05 and/or 0.01 level of significance. SD: Soil depth, ns: non-significant at 0.05 and/or 0.01 level of significance, SE: standard error of the mean.
land to agents of erosion has an impact on variation in soil texture classes. Silt and clay size particles are more easily removed by agents of erosion than sand particles. High sand and low contents of clay and silt can therefore be expected in erosion susceptible parts of slope classes. As it was depicted in Table 2, there were increment in percentage of silt and clay from the upper parts through enclosure to bottom area enclosure with selected IRWH practices. The low percentage of silt and clay in the upper parts might be due to the processes of erosion as a result of natural slope gradient which in turn affects IRWH efficiencies in conserving and storing moisture.

Bulk density

Bulk density ranged from 1.64 g/cm3 in the upper part of the catchment to 1.49 g/cm3 in the bottom enclosure parts (Table 2). The three slope gradient classes were almost significantly influenced ($p<0.05$) by soil bulky density. The highest bulk density achieved for the upper parts might be due to risks of soil erosion and only left with very firmed or compacted cobles.

The higher values of soil bulk densities for upper parts areas relative to those of middle and bottom might be due to the lowest incorporation of organic carbon as also reported by Pande and Yamamoto (2006). Loss of vegetative and litter cover coupled with rangeland degradation allows direct impact of rain drops on upper parts, resulting to enhanced splash impacts, crust formation, surface sealing, and may also produce hydrophobic substances that can reduce water infiltration into soil (Stavi et al., 2008). This finding is also in accord with the results of Assefa (2004), who concluded that lands with a higher bulk density more than 1.6 g/cm3 are not at acceptable level for plant root development.

Conclusion

It can be concluded from this study that conservation methods are the most important in conserving and storing soil moisture as well as soil nutrients. It acts as a supplemental moisture and soil nutrients for vegetation growth and survival. Thus, it has a potential to form a chief component in the rehabilitation of degraded land and forest establishment. Particularly, in-situ rainwater harvesting devices are an important way in facilitating favorable conditions for plant growth as well as tree seedling survival in moisture stress areas. The main effect of conservation structures on conserving and storing moisture was not significant except level soil bund embankment. Because the moisture conserved in level soil bund is far from seedling roots which is below the requirement for seedlings to easily access.

Tree seedlings survived in bottom parts where the soil is relatively better in moisture and soil nutrient status as compared to upper slope classes. Natural slope gradient determines soil physical properties which in turn determine the conservation structures efficiencies. Almost all in-situ rainwater harvesting methods play a crucial role in conserving and storing moisture and soil nutrient at the bottom part rather than middle and upper parts of the catchment. Based on the findings of the study, it is recommended that future research and development studies and activities need to focus on the following recommendations. For the best results of tree seedling survival, the moisture conservation suitability evaluation should be carried out for slope, type and runoff storage capacity before transplanting. Further investigation should be carried out on the factors contributing to low seedling survival and appropriate techniques tested in order to recommend appropriate management interventions for tree seedling survival in moisture-stressed areas.

CONFLICT OF INTERESTS

The author has not declared any conflict of interest.

ACKNOWLEDGEMENTS

The author’s greatest gratitude goes to Dr. Awdenegest Moges and Dr. Mihret Dananto, for the valuable comments and Dr. Brien Norton, Mr. Nago Dembo, and Mr. Tamirat Tesema, for their hearty support and peer editorial review, respectively. This work was supported by the Oromia Agricultural Research Institute and Hawassa University.

REFERENCES

Denslow JS, Schultz JC, Vitousek PM, Strain BR (1990). Growth
Related Journals:

- Journal of Plant Breeding and Crop Science
- Journal of Stored Products and Postharvest Research
- Journal of Soil Science and Environmental Management
- African Journal of Agricultural Research
- International Journal of Fisheries and Aquaculture
- International Journal of Livestock Production
- Journal of Agricultural Biotechnology and Sustainable Development
- Journal of Agricultural Extension and Rural Development
- Journal of Cereals and Oilseeds

www.academicjournals.org