The African Journal of Pharmacy and Pharmacology (AJPP) is published weekly (one volume per year) by Academic Journals.

African Journal of Pharmacy and Pharmacology (AJPP) is an open access journal that provides rapid publication (weekly) of articles in all areas of Pharmaceutical Science such as Pharmaceutical Microbiology, Pharmaceutical Raw Material Science, Formulations, Molecular modeling, Health sector Reforms, Drug Delivery, Pharmacokinetics and Pharmacodynamics, Pharmacognosy, Social and Administrative Pharmacy, Pharmaceutics and Pharmaceutical Microbiology, Herbal Medicines research, Pharmaceutical Raw Materials development/utilization, Novel drug delivery systems, Polymer/Cosmetic Science, Food/Drug Interaction, Herbal drugs evaluation, Physical Pharmaceutics, Medication management, Cosmetic Science, pharmaceuticals, pharmacology, pharmaceutical research etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in AJPP are peer-reviewed.

Contact Us

Editorial Office: ajpp@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/AJPP
Submit manuscript online http://ms.academicjournals.me/
Editors

Himanshu Gupta
Department of Pharmacy Practice
University of Toledo
Toledo, OH
USA.

Prof. Zhe-Sheng Chen
College of Pharmacy and Health Sciences
St. John’s University
New York,
USA.

Dr. Huma Ikram
Neurochemistry and Biochemical
Neuropharmacology Research Unit,
Department of Biochemistry,
University of Karachi
Karachi-75270
Pakistan

Dr. Shree Sh Kumar Ojha
Molecular Cardiovascular Research Program
College of Medicine
Arizona Health Sciences Center
University of Arizona
Arizona,
USA.

Dr. Vitor Engracia Valenti
Departamento de Fonoaudiologia
Faculdade de Filosofia e Ciências,
UNESP
Brazil.

Dr. Caroline Wagner
Universidade Federal do Pampa
Avenida Pedro Anunciação
Brazil.

Dr. Ravi Shankar Shukla
Macromolecule and Vaccine Stabilization Center
Department of Pharmaceutical Chemistry
University of Kansas
USA.

Associate Editors

Dr. B. Ravishankar
SDM Centre for Ayurveda and Allied Sciences,
SDM College of Ayurveda Campus,
Karnataka
India.

Dr. Natchimuthu Karmegam
Department of Botany,
Government Arts College,
Tamil Nadu,
India.

Dr. Manal Moustafa Zaki
Department of Veterinary Hygiene and
Management
Faculty of Veterinary Medicine,
Cairo University
Giza,
Egypt.

Prof. George G. Nomikos
Takeda Global Research & Development Center
USA.

Prof. Mahmoud Mohamed El-Mas
Department of Pharmacology,
Faculty of Pharmacy
University of Alexandria,
Alexandria,
Egypt.

Dr. Kiran K. Akula
Electrophysiology & Neuropharmacology Research
Unit
Department of Biology & Biochemistry
University of Houston
Houston, TX
USA.
Editorial Board

Prof. Fen Jicai
School of Life Science, Xinjiang University, China.

Dr. Ana Laura Nicoletti Carvalho
Av. Dr. Arnaldo, 455, São Paulo, SP. Brazil.

Dr. Ming-hui Zhao
Professor of Medicine
Director of Renal Division, Department of Medicine
Peking University First Hospital
Beijing 100034
PR. China.

Prof. Ji Junjun
Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, China.

Prof. Yan Zhang
Faculty of Engineering and Applied Science, Memorial University of Newfoundland, Canada.

Dr. Naoufel Madani
Medical Intensive Care Unit
University hospital Ibn Sina, Univesity Mohamed V
Souissi, Rabat, Morocco.

Dr. Dong Hui
Department of Gynaecology and Obstetrics, the 1st hospital, NanFang University, China.

Prof. Ma Hui
School of Medicine, Lanzhou University, China.

Prof. Gu Huijun
School of Medicine, Taizhou University, China.

Dr. Chan Kim Wei
Research Officer
Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra, Malaysia.

Dr. Fen Cun
Professor, Department of Pharmacology, Xinjiang University, China.

Dr. Sirajunnisa Razack
Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamilnadu, India.

Prof. Ehab S. EL Desoky
Professor of pharmacology, Faculty of Medicine
Assiut University, Assiut, Egypt.

Dr. Yakisich, J. Sebastian
Assistant Professor, Department of Clinical Neuroscience
Peking University First Hospital
Beijing 100034
PR. China.

Prof. Dr. Andrei N. Tchernitchin
Head, Laboratory of Experimental Endocrinology and Environmental Pathology LEEPA
University of Chile Medical School, Chile.

Dr. Sirajunnisa Razack
Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Tamilnadu, India.

Dr. Yasar Tatar
Marmara University, Turkey.

Dr. Nafisa Hassan Ali
Assistant Professor, Dow instiute of medical technology
Dow University of Health Sciences,Chand bbi Road, Karachi, Pakistan.

Dr. Krishnan Namboori P. K.
Computational Chemistry Group, Computational Engineering and Networking, Amrita Vishwa Vidyapeetham, Amritanagar, Coimbatore-641 112
India.

Prof. Emmanuel Ghani
University of Sargodha, Pakistan.

Dr. Liu Xiaoji
School of Medicine, Shihezi University, China.
Effect of erythraline alkaloids from *Erythrina lysistemone* on human recombinant caspase-3

Shanta Armwood, Bernard F. Juma, Japheth O. Ombito, Runner R. T. Majinda and Ephraim T. Gwebu
Full Length Research Paper

Effect of erythrinaline alkaloids from Erythrina lysistemon on human recombinant caspase-3

Shanta Armwood¹, Bernard F. Juma², Japheth O. Ombito², Runner R. T. Majinda²* and Ephraim T. Gwebu¹

¹Department of Chemistry and Physics, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, North Carolina 27909, North Carolina, United States.
²Department of Chemistry, University of Botswana, Private Bag UB 00704, Gaborone, Botswana.

Prostate cancer is a leading killer disease among men all over the world. Inducing apoptosis (programmed cell death) is a strategic chemotherapeutic approach. Caspase-3 is a key effector of apoptosis, and its activation promotes apoptosis. It was hypothesized that erythrinaline alkaloids activate caspase-3. The alkaloids were isolated from the flowers and pods of Erythrina lysistemon. Their effect on human recombinant caspase-3 was studied. This study reports that three erythrinaline alkaloids (+)-11α-hydroxyerysotrine N-oxide (1), (+)-11β-hydroxyerysotrine N-oxide (2) and (+)-11β-methoxyerysotrine N-oxide (3) activated human recombinant caspase-3 in a dose-dependent manner. Compound 1 and 2 increased the activity by five-fold while compound 3 increased it by ten-fold. Erythrinaline alkaloids exhibit remarkable ability to activate caspase-3 and may be lead compounds as potential therapeutics for the treatment of cancer as inducers of apoptosis in cancer cells.

Key words: Erythrinaline alkaloids, human recombinant caspase-3, apoptosis, prostate cancer.

INTRODUCTION

There are over 110 species of the genus Erythrina found throughout the tropical and sub-tropical regions of the world existing as orange and red flowered trees, shrubs and herbaceous plants. Six species are found in South Africa (Fabian and Germishuizen, 1997). The Erythrina lysistemon species is a deciduous tree. Traditional medical practitioners use extracts of the leaves, roots, pods and stem bark of this plant to treat various ailments which have been validated through observed biological activities (NAPRALERT, 2016).

In the normal prostate gland, a unique balance between the rates of proliferation and apoptosis rates characterizes homeostasis in such a way that, neither overgrowth nor involution of the gland takes place (Kyprianou et al., 1988; Griffin et al., 2011; Parrish et al., 2013). The evasion of the normal homeostatic control mechanisms gives rise to the tumorigenic growth of prostate due to an increase in cell proliferation and a decrease in apoptotic death (Berges et al., 1995; Tu et al., 1996; Parrish et al., 2013). Enhancing the apoptotic

*Corresponding author. E-mail: majindar@mopipi.ub.bw. Tel: + 267 335 2503, +267 72710520. Fax: + 267 355 2836.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
process, therefore, is a significant therapeutic target for the effective elimination of androgen-dependent and androgen-independent prostate cancer cells (Nicholson et al., 1995; Bruckheimer et al., 2000; Griffin et al., 2011; Liew et al., 2014). Prostate cancer is only next to lung cancer, the second leading cause of cancer-related deaths of men in the United States (Jemal et al., 2004; Alam et al., 2014; Siegel et al., 2016). Anticancer effects of plant-based alkaloids against prostate cancer have been reported (Adhami et al., 2004; Griffin et al., 2011; Christodoulou et al., 2014; Liew et al., 2014). Activation of caspase-3, the apoptosis executioner/effector (Chang and Yang, 2000; Liew et al., 2014) could force cancer cells to undergo apoptosis. Indeed proteolytic activation of caspase-3 is a common event leading to apoptosis of prostate cancer (LNCaP) cells (Marcelli et al., 1999; Liew et al., 2016). Activation of caspase-3 may be a critical therapeutic target for prostate cancer treatment. Alkaloids activate cellular caspase-3-like activity and up-regulate expression of caspase-3 in various cancer cell lines (Fil’chenkov et al., 2006; Ganguy and Khar, 2002; Deng et al., 2006; Ito et al., 2006; Griffin et al., 2007; Griffin et al., 2011). To the best of our knowledge, the direct effect of alkaloids on human recombinant caspase-3 has not been reported, though the effect of alkaloids on prostate cancer cell lines (e.g. LNCaP, PC-3, DU-145 human prostate cancer lines) including over expression of caspase-3, has been reported (Liew et al., 2016; Christodoulou et al., 2014; Griffin et al., 2011). Potential anticancer extracts from *Erythrina* species including flavonoids (Kumar et al., 2013) and erythrinaline alkaloids (Mohammed et al., 2012) have also been reported. It was therefore hypothesized that erythrinaline alkaloids may directly activate human recombinant caspase-3.

MATERIALS AND METHODS

Extraction and isolation of erythrinaline alkaloids

The compounds tested were isolated from the flowers and pods of *Erythrina lysistemon*, obtained in July 2001, in Gaborone, Botswana. The flowers were crushed while still wet using a blender and extracted for 24 h times with 1:1 CHCl₃/MeOH mixture at room temperature. The extract was concentrated in vacuo to give 65 g of a brown residue. The crude extract was suspended in water and partitioned successively between chloroform and n-butanol. The chloroform soluble fraction was chromatographed on silica gel and eluted using n-hexane/CHCl₃, CHCl₃, CHCl₃/MeOH mixtures with increasing polarities to afford ten fractions based on thin layer chromatography (TLC) analysis. Detailed isolation of the individual compounds from these fractions is described elsewhere (Juma and Majinda, 2004). Identification of these compounds was done by comparison of physical and spectral data with those published in the literature (Amer et al., 1991a, b: NAPR-ALERT, 2003), and authenticated by ¹H NMR and ¹³C NMR. A total of fourteen erythrinaline alkaloids were isolated and identified from the *E. lysistemon*. Four of these were new alkaloids, and they were (+)-11α-hydroxyerysotrine N-oxide, (+)-11β-hydroxyerysotrine N-oxide, (+)-11β-hydroxyerysotramidine and (+)-11β-methoxyerysotramidine (Juma and Majinda, 2004). Due to limited sample size only compounds 1-3 were tested in the caspase-3 assay.

Caspase-3 assay

The compounds were screened for activity using CALBIOCHEM Caspase-3 Assay Kit. The assay solution contained assay buffer (100 mM NaCl, 50 mM HEPES, 10 mM DTT, 1 mM EDTA, 10% glycerol, 0.1% CHAPS, pH 7.4), caspase-3 (30 U) and substrate (200 µM). The caspase-3 activity was assayed using a colorimetric assay kit purchased from Calbiochem® (www.calbiochem.com) as previously described (Jackson et al., 2002). The kit is designed to measure the protease activity of caspase-3. The enzyme is a human recombinant caspase-3 supplied as 100 units/µl. The colorimetric assay of caspase-3 activity is based on spectrophotometric detection of the chromophore, para-nitroanilide (pNA), with maximum absorbance at 405 nm upon a cleavage from the conjugated tetrapeptide substrate DEVD-pNA. The assay is performed in a 96-well microtiter plate format (BioRad). Stock solutions of each of the test compound were prepared as 1 mg/ml in dimethyl sulfoxide (DMSO) and diluted with assay buffer. The caspase-3 activity of each test sample was calculated according to the formula:

\[
\text{Caspase-3 activation (Fold of Control)} = \frac{[\text{Absorbance of test sample} - \text{Absorbance of Blank}]}{[\text{Absorbance of Control} - \text{Absorbance of Blank}]} \]

RESULTS AND DISCUSSION

Three structurally related alkaloids, 1 (Figure 1), 2 (Figure 2) and 3 (Figure 3) isolated from flowers and pods of *E. lysistemon* were screened for the activity of human recombinant caspase-3. The results are presented in the graphs shown in Figures 1 to 3, respectively. The hydrolysis of DEVD-pNA with absorbance at 405 nm was considered as the indicator for caspase-3 activity. The caspase-3 solution was incubated with test compound for 2 h at 30°C according to manufacturer’s protocol. Compounds 1 and 2 which are diastereomeric and are C-11 epimers, both induced a five-fold increase in caspase-3 activity over the control, an observation that alludes to the fact that, for these compounds, the activation of caspase-3 does not appear to be dependant stereochemistry at C-11. Compound 3, a methoxy derivative of compound 2 induced a ten-fold increase in caspase-3 activity. It appears conversion of a hydroxyl group to a methoxy derivative doubles the activation of caspase-3. It is interesting to note that other erythrinaline alkaloids, viz, erythraline, erysodine, erysotrine, 8-oxoerythraline and 11-methoxyerysodine have been shown to be cytotoxic against Hep-G2 (hepatocellular carcinoma) cell line with IC₅₀ values of 17.60, 11.80, 15.80, 3.89 and 11.40 µg/ml and against HEP-2 (antinuclear antibody) cell line with IC₅₀ of 15.90, 19.90, 21.60, 18.50 and 11.50 µg/ml respectively. Under the same conditions, the standard doxorubicin gave the IC₅₀ values of 3.64, 4.57, 4.89, 3.74, 2.97 and 3.96 µg/ml respectively, for the same alkaloids (Mohammed et al., 2012). Based on the remarkable ability of Compounds 1
Figure 1. Effect of (+)-11α-hydroxyerysotrine N-oxide on human recombinant caspase-3. Various concentrations of the alkaloids were incubated with the human recombinant caspase-3 for 2 h 30°C. Enzyme activity was determined by monitoring colorimetric absorbance at 405 nm resulting from the hydrolysis of the substrate DEVD-pNA. The results are fold increases over control experiments. For each concentration, n= 6.

Figure 2. Effect of (+)-11β-hydroxyerysotrine N-oxide on human recombinant caspase-3. Various concentrations of the alkaloids were incubated with the human recombinant caspase-3 for 2 h 30°C. Enzyme activity was determined by monitoring colorimetric absorbance at 405 nm resulting from the hydrolysis of the substrate DEVD-pNA. The results are fold increases over control experiments. For each concentration, n = 6.
Effect of (+)-11β-methoxyerysotrine N-oxide on human recombinant caspase-3. Various concentrations of the alkaloids were incubated with the human recombinant caspase-3 for 2 h at 30°C. Enzyme activity was determined by monitoring colorimetric absorbance at 405 nm resulting from the hydrolysis of the substrate DEVD-pNA. The results are fold increases over control experiments. For each concentration, n = 6.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The study was funded in part by the National Center for Minority Health and Health Disparities of the National Institutes of Health (NCMHD/NIH Grant #137 MD001810, University of Botswana’s Department of Chemistry and Elizabeth City State University.

REFERENCES

Ito C, Itoigawa M, Nakao K, Murata T, Tsubo M, Kaneda N, Furukawa (2006). Induction of apoptosis by carbazole alkaloids...
NAPRALERT (Natural Products Alerts) Internet Database, June 25 (2016). Ethnopharmacology, biological activity and phytochemical information on genus *Erythrina*.