ABOUT AJMR

The African Journal of Microbiology Research (AJMR) is published weekly (one volume per year) by Academic Journals.

The African Journal of Microbiology Research (AJMR) provides rapid publication (weekly) of articles in all areas of Microbiology such as: Environmental Microbiology, Clinical Microbiology, Immunology, Virology, Bacteriology, Phycology, Mycology and Parasitology, Protozoology, Microbial Ecology, Probiotics and Prebiotics, Molecular Microbiology, Biotechnology, Food Microbiology, Industrial Microbiology, Cell Physiology, Environmental Biotechnology, Genetics, Enzymology, Molecular and Cellular Biology, Plant Pathology, Entomology, Biomedical Sciences, Botany and Plant Sciences, Soil and Environmental Sciences, Zoology, Endocrinology, Toxicology. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles are peer-reviewed.

Contact Us

Editorial Office: ajmr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/AJMR
Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Adriano Gomes da Cruz
University of Campinas (UNICAMP), Brazil.

Prof. Ashok Kumar
School of Biotechnology
Banaras Hindu University
Uttar Pradesh, India.

Dr. Mohd Fuat Abd Razak
Infectious Disease Research Centre,
Institute for Medical Research, Jalan Pahang, Malaysia.

Dr. Adibe Maxwell Ogochukwu
Department of Clinical Pharmacy and Pharmacy Management,
University of Nigeria
Nsukka, Nigeria.

Dr. Mehdi Azami
Parasitology & Mycology Department
Baghaeei Lab.
Isfahan, Iran.

Dr. Franco Mutinelli
Istituto Zooprofilattico Sperimentale delle Venezie Italy.

Prof. Ebiamodon Andi Brisibe
University of Calabar,
Calabar,
Nigeria.

Prof. Nazime Mercan Dogan
Department of Biology
Faculty of Science and Arts
University Denizli Turkey.

Prof. Long-Liu Lin
Department of Applied Chemistry
National Chiayi University
Chiayi County Taiwan.

Prof. Natasha Potgieter
University of Venda
South Africa.

Dr. Tamer Edirne
Department of Family Medicine
University of Pamukkale
Turkey.

Dr Kwabena Ofori-Kwakye
Department of Pharmaceutics
Kwame Nkrumah University of Science & Technology
Kumasi, Ghana.

Dr. Tülin Askun
Department of Biology
Faculty of Sciences & Arts
Balikesir University Turkey.

Dr. Mahmoud A. M. Mohammed
Department of Food Hygiene and Control
Faculty of Veterinary Medicine
Mansoura University Egypt.
Editors

Dr. James Stefan Rokem
Department of Microbiology & Molecular Genetics
Institute of Medical Research Israel – Canada
The Hebrew University – Hadassah Medical School Jerusalem, Israel.

Dr. Afework Kassu
University of Gondar
Ethiopia.

Dr. Wael Elnaggar
Faculty of Pharmacy
Northern Border University
Rafha Saudi Arabia.

Dr. Maulin Shah
Industrial Waste Water Research Laboratory
Division of Applied & Environmental Microbiology, Enviro Technology Limited
Gujarat, India.

Dr. Ahmed Mohammed
Pathological Analysis Department
Thi-Qar University College of Science
Iraq.

Prof. Naziha Hassanein
Department of Microbiology
Faculty of Science
Ain Shams University
Egypt.

Dr. Shikha Thakur
Department of Microbiology
Sai Institute of Paramedical and Allied Sciences India.

Dr. Samuel K Ameyaw
Civista Medical Center
USA.

Dr. Anubrata Ghosal
Department of Biology
MIT - Massachusetts Institute of Technology
USA.

Dr. Bellamkonda Ramesh
Department of Food Technology
Vikrama Simhapuri University
India.

Dr. Sabiha Yusuf Essack
Department of Pharmaceutical Sciences
University of KwaZulu-Natal
South Africa.

Dr. Navneet Rai
Genome Center
University of California Davis
USA.

Dr. Iheanyi Omezuriike Okonko
Department of Virology
Faculty of Basic Medical Sciences
University of Ibadan
Ibadan, Nigeria.

Dr. Mike Agenbag
Municipal Health Services,
Joe Gqabi,
South Africa.

Dr. Abdel-Hady El-Gilany
Department of Public Health & Community Medicine, Faculty of Medicine
Mansoura University
Egypt.
Antimicrobial activity of crude extracts of endophytic fungi from *Oryctanthus alveolatus* (Kunth) Kuijt (Mistletoe) 263

Physiochemical factors affecting in vitro growth of Pasteurella multocida 269
Mehmood M. D., Zia S., Javed F., Gul M., Ashraf M. and Anwar H.
Full Length Research Paper

Antimicrobial activity of crude extracts of endophytic fungi from *Oryctanthus alveolatus* (Kunth) Kuijt (Mistletoe)

Sanay Feitosa Lima Ribeiro¹, Armando da Costa Garcia¹, Hathyla Eduarda Dias dos Santos¹, Quimi Vidaurre Montoya², André Rodrigues², João Marcos de Oliveira¹ and Camila Martins de Oliveira*¹

¹Institute of Exact Sciences and Technology, UFAM - Federal University of Amazonas, Itacoatiara, Amazonas, Brazil.
²Department of Biochemistry and Microbiology, UNESP - São Paulo State University, Rio Claro, São Paulo, Brazil.

Received 26 November, 2017; Accepted 21 February, 2018

The use of antibiotics has unleashed high bacterial resistance. This outcome triggered the urgent need for effective new antibacterial agents to treat infectious diseases. A promising source for the production of antibiotics and several other bioactive substances are endophytic fungi. These microorganisms inhabit in and bring benefits to living plant tissues. Thus, the aim of this paper was to know the endophytic fungi associated with *Oryctanthus alveolatus* (mistletoe) and assess their potential to inhibit pathogenic bacteria. A total of 86 endophytic fungi were isolated from the stems and leaves of *O. alveolatus*. Of these fungi, 29 were selected for the assessment of antimicrobial activity. The antimicrobial activity of the obtained extracts was evaluated using the agar diffusion method towards two Gram-positive pathogenic bacteria (*Staphylococcus aureus* and *Staphylococcus epidermidis*) and two Gram-negative bacteria (*Pseudomonas aeruginosa* and *Escherichia coli*). The extracts were tested at concentrations of 200, 500, 700, 800, 900 and 1000 µg.mL⁻¹. The antimicrobial test showed that two (COA 009 and 014) of the 29 extracts inhibited bacterial growth of at least one of the strains each, from both Gram-positive and Gram-negative bacteria. The extracts with the inhibitory activity were derived from the fungi *Curvularia* sp. (COA 009) and *Diaporthe* sp. (COA 014).

Key words: Gram-positive and Gram-negative bacteria, microorganisms, Loranthaceae.

INTRODUCTION

There are an estimated 2.2 to 3.8 million fungal species worldwide, and more than 120,000 of these have been formally described (Hawksworth and Lücking, 2017). These microorganisms include endophytic fungi, which, according to the definition of Bacon and White, inhabit internal plant tissue without causing any immediate harm (Chapla et al., 2013; Kharwar et al., 2011; Kaul et al., 2012). Endophytes are an important component of plant microbiota. They reside in the living tissue of almost all plants in a range of relationships, from symbiosis to
balanced antagonism (Qadri et al., 2014). This group of microorganisms has multiple functions within plant communities, including nutritional effects, protection against pathogens that harm roots, modifications of environmental tolerances, and involvement in the dynamics of plant communities (Bonfim et al., 2016).

For this study, we assessed the production of antimicrobial secondary metabolites produced by endophytic fungi obtained from the species Oryctanthus alveolatus. This plant, commonly known as mistletoe, like other species of the family Loranthaceae, is a parasite found on the branches and trunks of trees (Vinod et al., 2005). The species occurs in temperate to tropical climates of Central and South America, Europe, Africa, the Middle East, and throughout Asia and Australia, and it currently consists of 76 genera and 1076 species (Grimsson et al., 2017). The species O. alveolatus is used in folk medicine to treat several diseases, such as stomach cancer (Scudeller et al., 2009), malaria, and the treatment of fractures (Salgado, 2007). It has antioxidant properties and chemical studies have shown the presence of flavonoids, tannins, and polyphenols in its leaves and stems (Coba et al., 2010).

Antibiotics or antimicrobial substances are a special group of therapeutic agents, usually produced and obtained from living organisms (Cowan, 1999). Endophytic fungi are known to produce important bioactive agents that inhibit or eliminate a wide variety of microorganisms, including plant pathogens, bacteria, fungi and protozoa, considered harmful to humans and animals (Cai et al., 2017).

These microorganisms produce a broad spectrum of antimicrobial substances belonging to various structural classes, including peptides, steroids, alkaloids, terpenoids, phenols, phenylpropanoids, aliphatic compounds, polyketides, quinones, and flavonoids (Malhadas et al., 2017). In the genus Phoma for example, the antimicrobial activity of dominant species isolated from the plant Salvia involucrata in China, together with Cladosporium, can fight human pathogenic fungi and bacteria (Bonfim et al., 2016). As in the study of Zhao et al. (2015), one of the isolated substances of the endophytic fungus Neopestalotiopsis sp. showed antimicrobial activity against three bacteria. The fungi Colletotrichum pisii, Fusarium oxysporum, Fusarium solani, Phoma terrestris, and another two unknown fungi showed antimicrobial activity against some of the pathogens of ginseng (Park et al., 2015). These data indicate endophytic fungi help synthesise bioactive agents used by plants as protection against other pathogens (Ayob and Simarani, 2016).

The bacterial species known ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter) cause most hospital-acquired infections and effectively "escape" from the effects of antibacterial drugs. The resistance of these bacteria to antibiotics has become a global concern and calls for the search for new antibacterial agents (Radić and Strukelj, 2012).

Consequently, the aim of this paper was to assess the crude extracts of 29 endophytic fungi isolated from leaves and stems of the plant O. alveolatus against Gram-positive and Gram-negative bacteria.

METHODOLOGY

Plant materials

Samples of healthy-looking leaves and stems of the species O. alveolatus were collected from the Institute of Exact Sciences and Technology/UFAM, Campus in Itacauíra – AM, in March and May 2013. A voucher herbarium specimen (n° 244064) was deposited at the herbarium of the National Research Institute of the Amazon (INPA).

Isolation of endophytic fungi

Following the method of Maier (1997), the stems were washed, immersed in a sequence of 70% ethanol (3 min), 1% NaClO (5 min), again in 70% ethanol (3 min), and double washed in sterile water for 5 min per wash. The leaves were soaked in 70% ethanol (1 min), 1% NaClO (3 min) and again in 70% ethanol (1 min), followed by double washing in sterile water for 5 min per wash. A small portion of the second water collected during from the second double washing of the stems and leaves were plated as negative control. After disinfection, parts of the stems and leaves were cut with a scalpel into fragments with approximate 0.5 cm². The fragments were placed in Petri dishes containing potato dextrose agar medium supplemented with gentamicin (100 µg.mL⁻¹) to prevent bacterial growth. The plates were incubated for 24 to 72 h in incubator at 25°C and microbial growth was monitored with the naked eye. After fungal growth, samples were purified in a solid medium, characterised and enumerated with codes according to part of the plant that was removed.

The isolates were coded as follows: FOA corresponds to the fungi removed from the leaves and COA corresponds to the fungi removed from the stems of the plant. Once the colonies were isolated, the endophytic fungi were preserved in agar slants and sterile water.

Preparation of extracts

The extracts were prepared according to the method of Oliveira et al. (2011). Each of the 29 fungi were picked and placed into two Petri dishes containing a potato dextrose agar medium and incubated at 26°C in incubator for up to ten days, depending on the growth period of each fungus. After this time, each isolate was picked and transferred into four Erlenmeyer flasks containing 200 mL of the potato dextrose broth medium, totalising 800 mL of fungus culture. The cultures were grown statically at room temperature (28°C) for 20 days. After incubation, the broth was separated from the mycelium by filtration and extracted with EtOAc three times (50% of the broth volume each). The fraction containing organic solvent was placed in a rotational-evaporator under reduced pressure to obtain the crude extracts.

Antimicrobial activity test

The test to determine antimicrobial activity was conducted using the
agar diffusion method originally described by Bauer et al. (1966) and updates from the National Committee for Clinical Laboratory Standards (NCCLS, 2009). The bacteria used were Gram-positive bacteria S. aureus (ATCC 25923), Staphylococcus epidermidis (ATCC 12228) and Gram-negative P. aeruginosa (ATCC 27853) and Escherichia coli (ATCC 25922).

Initially, bacterial strains were inoculated on a sterile Muller Hinton agar plate and incubated at 37°C for 24 h. Bacterial strains were then sub-cultured in tryptic soy broth medium for 24 h before testing. Antibiotic discs were placed on the surface of the plate containing the bacteria using sterile tweezers. The crude extracts were diluted in dimethyl sulfoxide at concentrations of 200-1000 µg.mL⁻¹. For each concentration, 10 µL of liquid extract was placed on filter paper discs of approximately 6 mm in diameter. All plates were incubated at 37°C for 24 h. The term active is attributed to paper discs containing crude extracts displaying any halo zone of inhibition of bacterial growth (CLSI, 2009). The diameter of inhibition zones were recorded (in mm) using a calliper. All the trials were conducted in triplicate, considering the average diameter of the respective inhibition halos (Bauer et al., 1966). As the positive control, 5µg ciprofloxacin was used for the bacteria S. aureus and S. epidermidis and discs of amikacin at 30 µg were used for the bacteria P. aeruginosa and E. coli. As the negative control 10 µL dimethyl sulfoxide was used.

Fungal identification

The fungal isolates that produced extracts with inhibitory activity were identified by morphology and DNA sequencing. Since the fungi exhibited asexual spores, we carried out axenic cultures by single-spore isolation. Subsequently, the fungi were grown on malt agar 2% (MA2%) at 25°C for seven days, in darkness. The macroscopic characteristics of the colonies and the microscopic reproductive structures (conidiophores and conidia) were examined. For the latter assessment, semi-permanent slides were prepared using water as the mounting fluid. The structures were examined under a compound microscope (Leica DM5000).

Genomic DNA was extracted from mycelia of seven days-old cultures grown in MA2% (conditions same as above). DNA extraction followed the protocol used in Montoya et al. (2016). The DNA barcoding region ITS (Internal Transcribed Spacer) was amplified using primers ITS4/ITS5 and bidirectionally sequenced by the Sanger method in an ABI sequencer. PCR and sequencing protocols were the same as in Montoya et al. (2016).

The generated sequences were assembled in consensus sequences in Bioted v. 7.0.5 which were later compared with those deposited in NCBI-GenBank and MycoBank. Sequences were deposited in the NCBI-GenBank under accessions #: MG847099 (for isolate COA 009) and MG847100 (for isolate COA 014).

Homologous sequences as well as others from previous studies (Udayanga et al., 2012; Jeon et al., 2015) were retrieved from the NCBI-GenBank. Alignments were performed separately for each isolate using MAFFT v.7. The phylogenetic trees were inferred in MEGA7 using the neighbor joining method with 1000 pseudoreplicates to calculate the bootstrap value.

RESULTS AND DISCUSSION

A total of 86 fungi were isolated, of which 29 were active for posterior use in the study. Of the 29 crude extracts, only extracts COA 009 and COA 014, showed activity against two or more bacteria. The present finding is in agreement with Nascimento et al. (2015) and Sebastianes et al. (2013), that the stem is the most vascularized organ of the plant, allows greater nutrient acquisition and favours the development of other microorganisms such as bacteria, leading the fungus to produce antimicrobial substances for its protection.

The COA 014 extract displayed antimicrobial potential against the bacteria P. aeruginosa and S. aureus at a concentration of 1000 µg.mL⁻¹. Similar data were obtained in the studies of Atiphasaworn et al. (2017) for the crude extract obtained from the endophytic fungus Aspergillus sp. MFUCC16-0613, active in this same concentration. However, when compared to activities against E. coli, the COA 014 extract had an average inhibition halo of 9 mm with no variations in the three samples. This value is higher than the value obtained for the fungus Aspergillus sp. MFUCC16-0613 of (7.1±1.2) at a concentration of 1000 µg.mL⁻¹. None of the extracts exhibited inhibitory activity against the bacterium S. epidermidis. The higher susceptibility of extracts in the Gram-negative bacteria can be related to the morphological differences between them and the Gram-positive bacteria. The Gram-negative bacteria exhibited greater sensitivity, indicating the raw extracts have selective action against the chemical composition of the bacterial cell wall. This positive action may be caused by the polarity of the extract and its chemical constituents. The concentrations of 900 µg.mL⁻¹ and 1000 µg.mL⁻¹ were active in the tests.

In the statistical analyses (Table 1), the average

<table>
<thead>
<tr>
<th>Concentration (µg.mL⁻¹)</th>
<th>Bacteria</th>
<th>Halo diameter (mm±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COA 014 (1000)</td>
<td>E. coli</td>
<td>9.00±0.00³</td>
</tr>
<tr>
<td>COA 014 (1000)</td>
<td>P. aeruginosa</td>
<td>8.50±0.71¹²</td>
</tr>
<tr>
<td>COA 009 (1000)</td>
<td>S. aureus</td>
<td>7.67±1.15abc</td>
</tr>
<tr>
<td>COA 014 (900)</td>
<td>E. coli</td>
<td>7.02±0.50bc</td>
</tr>
<tr>
<td>COA 009 (1000)</td>
<td>E. coli</td>
<td>7.00±0.00³</td>
</tr>
<tr>
<td>COA 014 (1000)</td>
<td>S. aureus</td>
<td>6.00±0.00⁵</td>
</tr>
</tbody>
</table>

The data presented are means ± the standard deviation of three independent experiments. Different letters indicate significant differences (P <0.05) by the Tukey’s test.
inhibition halo measurements of the endophytic fungi (COA 009 and COA 014) against the bacteria (*E. coli*, *S. aureus* and *P. aeruginosa*) were compared using the Tukey test (*p*<0.05). Extracts COA 009 (1000 µg.mL⁻¹) and COA 014 (900 µg.mL⁻¹) against the bacterium *E. coli* only exhibited a significant difference with extract COA 014 (1000 µg.mL⁻¹) against the same bacterium. The COA 014 extract (1000 µg.mL⁻¹) showed no significant difference against the bacteria *E. coli* and *P. aeruginosa* but showed a significant difference when compared with *S. aureus*. The COA 009 extract (1000 µg.mL⁻¹) against the bacterium *S. aureus* showed no significant difference with any other case.

The morphological characteristics of each fungi coupled with the phylogenetic analyses made it possible the identification of isolates COA 009 and COA 014 to the genus level (Figures 1 and 2). Isolate COA 009 showed 99% similarity with sequences belonging to *Curvularia* species. The ITS sequence of isolate COA 014 showed 97% similarity with sequences of two *Diaporthe* species:

\[
\text{Figure 1. Phylogenetic tree of *Curvularia* species including isolate COA009 (in red).}
\]

The phylogenetic analysis was based in 29 sequences of the ITS region. The final alignment has 476 bases pair. The tree was built using the neighbour joining algorithm with 1000 of pseudoreplicates. The numbers on branches indicate bootstrap values. *Alternaria alternata* was used as outgroup.
Figure 2. Phylogenetic tree of *Diaporthe* species including the strain COA014 (in red). The phylogenetic analysis was based in 36 sequences of the ITS region. The final alignment has 587 bases pair. The tree was built using the neighbour joining algorithm with 1000 of pseudoreplicates. The numbers on branches indicate bootstrap values. *Valsa ambiens* was used as outgroup.

D. miriciae BRIP 54736j and *D. ambigua* CBS 114015 deposited in NCBI-GenBank. Contig COA 014 also showed 97% similarity with an unidentified *Diaporthe* species deposited in Mycobank. Due to the low similarity with sequences found in the databases, isolate COA 014 may represent an undescribed species. To further identify both isolates to the species level, further taxonomic studies including analysis of additional DNA regions and an in-depth morphological analysis is required.

Conclusion

The results of this work indicate the potential of
endophytic fungi *Diaporthe* sp. and *Curvularia* sp. isolated from the species *O. alveolatus* as producers of compounds with antimicrobial activity. Further studies to isolate and identify the biologically active compounds of these endophytic fungi will be conducted to explore their potential. It should be stressed, however, that these were the first isolated microorganisms to be obtained from the plant species *O. alveolatus*.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors thank the FAEAM and CNPq for the funding and grants. The assistance rendered by Prof Ilia Gilmar MSc (ICET- UFAM) in providing the bacterial strains and Prof Welma Sousa Silva MSc (ICET- UFAM) in identifying the vegetable is gratefully appreciated.

REFERENCES

Bridges, however, that these were the first isolated microorganisms to be obtained from the plant species *O. alveolatus*.

REFERENCES

Bridges, however, that these were the first isolated microorganisms to be obtained from the plant species *O. alveolatus*.

REFERENCES

Bridges, however, that these were the first isolated microorganisms to be obtained from the plant species *O. alveolatus*.

REFERENCES

Bridges, however, that these were the first isolated microorganisms to be obtained from the plant species *O. alveolatus*.**
Full Length Research Paper

Physiochemical factors affecting in vitro growth of Pasteurella multocida

Mehmood M. D. 1*, Zia S. 1, Javed F. 1, Gul M. 2, Ashraf M. 2 and Anwar H. 3

1Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan.
2General Hospital, Lahore, Pakistan.
3Ottoman Pharma Immuno Division, Lahore, Pakistan.

Received 25 June, 2017; Accepted 1 September, 2017

Pasteurella multocida causes fowl cholera (FC), a contagious bacterial disease of domestic and wild avian species. It is a Gram negative coccobacilli causing acute highly fatal septicemia with high morbidity and mortality rate. Control of fowl cholera is primarily performed by good management practice and vaccination in areas where disease is endemic. For a quality vaccine, high density growth of P. multocida along with its capsule and outer membrane protein (OMP) is necessary. In the present study, physiochemical factors (growth medium, temperature, pH, incubation time and stirring along with aeration affecting growth density) were evaluated. Growth density was determined by colony forming unit (CFU) and dry mass. Physiochemical factors used in maximum growth density (1.32×10^12 CFU or 9 mg/ml) of bacteria were between 35 to 40°C, 7.2 to 8.2 pH and 1000 rpm stirring along with aeration during incubation of 24 h in Brain Heart infusion (BHI) broth. P. multocida showed maximum growth (1.32×10^12 or 9 mg/ml) in BHI broth with continuous stirring and aeration (1000 rpm) at 38°C for 24 h. Thus, there was a positive co-relation between colony forming unit (CFU) and dry mass of bacteria.

Key words: Brain heart infusion (BHI), aeration, agitation, fermentor, dry mass.

INTRODUCTION

Pasteurella multocida causes fowl cholera (a bacterial disease) in domestic and wild birds (Xiao et al., 2015). The disease is characterized by facial edema, blackening of comb and wattles, diarrhea, dull depressed with high morbidity (up to 50%) and less than 10% mortality in infected flock (Glisson et al., 2003; Choudhury et al., 1985; Kwon and Kang, 2003; Moemen et al., 2012).

Post mortem lesions are enteritis, petechial hemorrhages on the epicardium and serosal membranes, reactive liver and spleen with white to yellow foci (Galnek et al., 1997; Shivachandra et al., 2005; Christensen, 2013). P. multocida can be classified into five different capsular serogroups (A, B, D, E and F) and 16 serotypes. It is further divided into 1: A, 5: A, 9: A serotypes (Rimler and Rhoades, 1989; Benkirane and De Alwis, 2002; Glisson et al., 2008; Mohamed et al., 2012). It is a fastidious organism which grows on enrichment medium such as Brain Heart Infusion Broth (BHI), CSY broth, tryptic soya broth and serum broth.

Usually, CSY broth is commonly used in the...
development of vaccine and diagnostics (Sarwar et al., 2013). The causative agent is Gram negative, cocco-
bacilli, capsular, non-motile and non-hemolytic on blood agar (De-Alwis, 1999; Boyce et al., 2000; Pedersen et al.,
2003; Tabatabaei et al., 2007). It does not grow on MacConkey agar, but show pure growth on media
containing potassium cyanide.

Different factors such as culture media, temperature, pH and aeration continuous stirring have effect in in vitro
growth of bacteria (Imtiaz, 2001; Shah et al., 2008; Sarwar et al., 2013). Limited number of doses has been
produced due to insufficient growth of bacteria in still culture, using conventional method of vaccine production.
Therefore, this study is designed to investigate the physiochemical factors which enhance growth density of
P. multocida in semi controlled bio fermentor.

MATERIALS AND METHODS

Activation of P. multocida

5 mL fresh growth of capsular serotype P. multocida (obtained from Ottoman Pharma 10-km Raiwind Road, Lahore) was transferred
aseptically in 50 mL of BHI broth (Oxoid). The inoculated material
was incubated at 37°C for 24 h and the activated broth culture was
used for further study.

Factors augmenting immunogen/growth

Culture media such as casein sucrose yeast (CSY)- (Oxoid), tryptic
soya (TS)- (Oxoid), (BHI) and nutrient broth (NB)- (Oxoid) were
prepared according to the instruction of the manufacturer. 50 mL of
CSY, TS and NB broths were transferred to conical flat bottomed
flask (Pyrex) while 50 mL of BHI broth was transferred to each of
the fifteen flasks. Each of the flasks was cotton plugged and
autoclaved at 121°C for 15 min. The flasks containing BHI, CSY,
TS and NB broth were inoculated aseptically with 5 mL freshly
growth culture.

The flasks were incubated at 37°C with aeration for 24 h. Each of
the five flasks containing 50 mL of sterile BHI culture broth was
incubated at 35, 37, 38, 40 and 42°C with aeration for 24 h. The pH
of each of the six flasks containing BHI culture broth was adjusted
to 4, 5.2, 6, 7.2, 8 and 9.2 using 4N hydrochloric acid (Sigma) or 4N
sodium hydroxide (Sigma). Also, each of the broth was incubated at
37°C with aeration for 24 h.

Each of the four flasks (A, B, C and D) containing BHI culture
broth, incubated at 37°C for 24 h was aerated at 500, 750 and 1000
rpm, respectively with stirring during whole period of incubation. The flask D was incubated without aeration and stirring (still
culture).

Measurement of growth density

Total viable count in each of the above experiment was determined
by Pour plate method (Van Soestbergen and Lee, 1989) with some
modifications and dry mass was determined according to the
methodology described by Bratbak and Dundas (1984).

RESULTS AND DISCUSSION

Physiochemical factors such as growth media, temperature, pH and agitation affected the growth
potential of P. multocida. Each parameter has critical significance in augmenting the biomass production in vitro (Sawar et al., 2013). BHI broth showed significantly
(P<0.05) higher growth of the organism than that observed with TS broth, CSY broth and nutrient broth
(Figure 1, Table 1). Sucrose at rate 0.1 to 2.0% in culture
Table 1. Effect of culture medium on growth of *P. multocida*.

<table>
<thead>
<tr>
<th>Growth media</th>
<th>Dry mass (mg/mL)- per flask</th>
<th>M±SD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain heart infusion broth</td>
<td>9.9.2, 9.2, 9.4</td>
<td>9.2± 0.163</td>
</tr>
<tr>
<td>Tryptic soya broth</td>
<td>2.5, 2.9, 2.3, 2.5</td>
<td>2.55±252</td>
</tr>
<tr>
<td>Nutrient broth</td>
<td>2.5, 2.7, 2.7, 2.9</td>
<td>2.7±163</td>
</tr>
<tr>
<td>Casein sucrose yeast</td>
<td>3.9, 3.8, 3.8, 3.7</td>
<td>3.8±0.082</td>
</tr>
</tbody>
</table>

Note: Different letters in the same column show significant difference (P>0.05)*= Mean ± Standard Deviation.

Table 2. Effect of temperature on growth of *P. multocida*

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>CFU/mL- per flask</th>
<th>Weight</th>
<th>Dry mass (mg/mL)</th>
<th>M±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>1.32x10^10, 1.32x10^11, 1.32x10^10, 1.32x10^10</td>
<td>5.2, 5.2, 5.1, 5.2</td>
<td>1.33±0.027</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1.32x10^11, 1.32x10^11, 1.32x10^10, 1.32x10^11</td>
<td>7, 7, 6, 7</td>
<td>1.35±0.025</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>1.32x10^11, 1.32x10^11, 1.32x10^11, 1.32x10^11</td>
<td>7, 7, 6.8, 7</td>
<td>1.35±0.025</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1.32x10^12, 1.32x10^12, 1.32x10^12, 1.32x10^12</td>
<td>9.1, 9.0, 8.9, 9.1</td>
<td>1.40±0.025</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>1.32x10^10, 1.32x10^9, 1.32x10^10, 1.32x10^10</td>
<td>5.4, 5.1, 5.2, 5.4</td>
<td>1.30±0.035</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Effect of temperature on growth of *P. multocida*.

medium enhances the biomass of *P. multocida* (Shah et al., 2008) with blood and BHI agar routinely used for the isolation of *P. multocida* (Melody et al., 1994). BHI broth is considered as enrichment medium used for the cultivation of *P. multocida* strains, mammalian and avian origin (Melody et al., 1994).

At temperature range 35 to 40°C, *P. multocida* showed maximum growth in BHI broth (Table 2, Figure 2). However, growth was undetectable when bacteria were incubated at temperature above 40°C. Optimum growth of *P. multocida* was detected when incubated at 35 ± 5°C while no growth was recorded at 25 ± 5°C or above 50°C (Imtiaz, 2001; Shah et al., 2008; Sarwar et al., 2013). At pH range 7.0 to 7.8, the organism showed optimum growth (Table 3, Figure 3). Also, at pH below 3 or above 10, organism shows undetectable growth (Imtiaz, 2001; Shah et al., 2008) which indicated that, the pH of BHI broth is critical in biomass production of *P. multocida*.
Aeration influenced the growth of *P. multocida*. Maximum growth of the bacteria was observed when the solution was agitated at 500 to 550 rpm and growth was declined at higher agitation rate (Table 4, Figure 4). *P. multocida* showed optimum growth when broth is agitated at 50 to 500 rpm (Imtiaz, 2001; Shah et al., 2008). In Ali et al. (2000), when the broth was provided with enrichment media and fresh filtered air, it resulted in a bacterial culture with 5×10^9 CFU/mL and 1.68 mg/mL dry weight. Moreover, when incubated in a flask having BHI broth and agitation at 200 rpm, the bacterial culture showed 10^9 CFU/mL after 3 to 4 h of incubation at 37°C (Tabatabaei et al., 2007). According to Sarwar et al. (2013), dry mass bacterial growth was 8.2 mg/mL measured by centrifugation technique while the bacterial count was 10^{17} CFU/mL.

Repeated culture of *P. multocida in vitro* results in the loss of its capsule. Thus, after every 2nd passage in laboratory medium the bacterial culture, may be injected in susceptible rabbits through intra-muscular route. In this manner, the bacteria regain its capsule and kill the rabbits. Moreover, mice or calves can also be selected for revival of pathogenicity of the bacteria (Muneer et al., 2005). This methodology is used for biomass production of *P. multocida* aimed at biologics (vaccine/diagnostics) production (Sarwar et al., 2013).

Conclusion

From the study, the bacteria showed 1.32×10^{12} CFU/ml of growth in brain heart infusion broth (pH 7.2), when incubated at 37°C for 24 h in the presence of aeration and stirring.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.
Table 4. Effect of aeration on growth of *P. multocida*.

<table>
<thead>
<tr>
<th>Aeration revolution/min*</th>
<th>CFU/mL -10^10 - per flask</th>
<th>M±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1.42×10^12, 1.42×10^11, 1.42×10^12</td>
<td>1.51 ± 0.030</td>
</tr>
<tr>
<td>750</td>
<td>1.42×10^11, 1.42×10^11, 1.42×10^11</td>
<td>1.47 ± 0.000</td>
</tr>
<tr>
<td>500</td>
<td>1.42×10^0, 1.42×10^0, 1.42×10^0</td>
<td>1.40±0.035</td>
</tr>
</tbody>
</table>

*Aquarium pump was used to aerate the culture during incubation time. In one experiment the speed was adjusted to 1000 rpm, in second it was 750 rpm and third it was 500 rpm. Each experiment was repeated four times. At the end of incubation time the Colony forming unit (CFU) of *P. multocida* was measured.*

ACKNOWLEDGEMENT

The authors are highly grateful to Mr. Usman Farooq Khalid the owner of Ottoman Pharma (Immuno Division), for providing financial support and providing access to laboratory facility in executing the research.

REFERENCES

