ABOUT JIDI

The Journal of Infectious Diseases and Immunity (JIDI) is published monthly (one volume per year) by Academic Journals.

Journal of Infectious Diseases and Immunity (JIDI) is an open access journal that provides rapid publication (bimonthly) of articles in all areas of the subject such as immunodeficiency, transplant rejection, immunotherapy, microbiological culture etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JIDI are peer-reviewed.

Contact Us

Editorial Office: jidi@academicjournals.org

Help Desk: helpdesk@academicjournals.org

Website: http://www.academicjournals.org/journal/JIDI

Submit manuscript online http://ms.academicjournals.me/
Editors

Dr. Louis DeTolla
University of Maryland School of Medicine,
10 S. Pine St., MSTF, G-100, Baltimore, MD 21201,
USA.

Dr. Waniqiu Hou, PhD
Department of Microbiology-Immunology
Northwestern University Medical School
303 E. Chicago Ave, Chicago, IL 60611
USA

Dr. Murali Gururajan, DVM, PhD
Research Scientist I
Department of Medicine
Cedars-Sinai Medical Center
Los Angeles,
USA

Prof. Wihaskoro Sosroseno
Faculty of Dentistry,
AIMST University, Semeling, 08100 Bedong, Kedah,
Malaysia.

Prof. Alan Fenwick
Imperial College, London,
Faculty of Medicine, St Marys W21PG,
United Kingdom.

Dr. Claro N. Mingala
Institution - Philippine Carabao Center,
Philippines.
Editorial Board

Prof. Ludmila Viksna
Riga Stradins University
Linezera str.3, Riga, LV 1006, Latvia.

Dr. Tommy R. Tong
Montefiore Medical Center of Albert Einstein College of Medicine,
USA.

Dr. Fabrizio Bruschi
universita’ di pisa,
school of Medicine,
Italy.

Dr. Chang-Gu Hyun
Jeju Biodiversity Research Institute(JBRI),
Jeju Hi-Tech Industry Development Institute(HiDI),
Korea.

Dr. Raul Neghina
Victor Babes University of Medicine and Pharmacy,Timisoara,
Romania.

Dr. Shabaana A. Khader
Children’s Hospital of Pittsburgh,
University of Pittsburgh School of Medicine,
Pittsburgh, PA 15201,
USA.

Prof. Fukai Bao
Kunming Medical University,
Kunming, Yunan 650031,
China.

Dr. Liting Song, MD, MSc
Scientist,
Hope Biomedical Research
Toronto
Canada.

Dr. Namrata Singh
(ACRP) Association of Clinical Research professional and
doing courses in Clinical research and Good Clinical practices
(GCP),
USA.

Dr. Nuno Cerca
University of Minho,
Portugal.

Dr. Amar Safdar
M. D. Anderson Cancer Center,
1515 Holcombe Blvd, 1460, Houston, Texas 77030,
USA.

Dr. Liba Sebastian
Department of Microbiology,
Vijayanagara Institute of Medical Sciences, Bellary,
Karnataka,
India.

Dr. Robert W. Tolan, Jr.
Saint Peter’s University Children’s Hospital,
MOB 3110, 254 Easton Avenue, New Brunswick, NJ 08901,
USA.

Dr. Nanthakumar Thirunarayanan
National Institutes of Health (NIH),
NIDDK,
50 South Dr. Rm 4126,
Bethesda, MD 20850,
USA.

Dr. Siloni Sachdeva
Carolena Skin & Laser Center,
1312, Urban Estate, Phase 1 Jalandhar, Punjab-144022,
India.

Dr. Zi-Gang Huang
Institute of Computational Physics and Complex Systems,
School of Physical Science & Technology,
Lanzhou University, Lanzhou 730000,
China.

Dr. Andrew Taylor-Robinson
Institute of Cellular & Molecular Biology,
University of Leeds,
United Kingdom.

Dr. Seth M. Barribreau
ETH Zürich,
Experimental Ecology, Universitätstrasse 16, 8092 Zürich,
Switzerland.

Dr. Ikonomopoulos John
Agricultural University of Athens,
Thrasyboulou 44, 15234, Xalandri, Athens,
Greece.
ARTICLE

Typhoid fever outbreak investigation in Ofla Woreda, Southern Zone of Tigray Region, Ethiopia, 2016: An unmatched 1:2 case-control
Zerihun Degebasa Mamo, Aselefech Addisu and Taklu Marama

27
Typhoid fever outbreak investigation in Ofia Woreda, Southern Zone of Tigray Region, Ethiopia, 2016: An unmatched 1:2 case-control

Zerihun Degebasa Mamo¹, Aselefech Addisu² and Taklu Marama³

¹Department of Public Health Emergency Management, North Shoa Zone, Ethiopia.
²Ethiopian Field Epidemiology Training Program, College of Health Sciences, Mekelle University, Ethiopia.
³Department of Midwifery, College Health sciences and Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia.

Received 3 December, 2017; Accepted 19 March, 2018

Typhoid fever (TF) is a systemic infection caused by the bacterium, Salmonella typhi. Globally, 22 million illnesses and 216,000 deaths occurred annually. The woreda WAS have alerted the outbreak on 27 July, 2016. The objective of this study was to investigate typhoid fever outbreak in Dera Kebele of Ofia woreda, Tigray Region, Ethiopia. Here, we defined a suspected TF case as any person with gradual onset of remittent fever in the first week, headache, arthralgia, anorexia, constipation and or abdominal pain. We compared 45 cases to 90 controls via unmatched case-control study (1:2) using pretested structured questionnaire. Cases were selected randomly. Nine blood and water samples from two sites were collected for microbiological analysis. Data were entered into Epi info 3.5.1 and analyzed using SPSS version 16, multivariate logistic regression was utilized to identify independent factors associated with TF contraction. The significance of association was constructed using odds ratio with its 95% confidence intervals. Results revealed that a total of 98 cases with one death were identified within one week (August 1 to 8, 2016). Overall, 23.2 per 1000 population attack rate with 37 per 1000 population of highest age-specific attack rate in the age group of 25-44. Faecal coliforms were isolated from two water samples and all the nine blood samples were reactive for Salmonella Typhi H (Flagella) and O (somatic) antigen. Not washing hand after toilet [AOR 4.7; 95% CI (1.75-12.6)] and unhygienic house and environment [AOR 3.09; 95%CI (1.36-7.06)] were risk factors for contracting disease but not storing food for later use [AOR .28; 95 % (0.12, 0.67)] was protective factor. Thus, not washing hand after toilet and unhygienic house and environment were risk factors; hence not storing food for later use was a protective factor. Monitoring environmental sanitation, food hygiene and hand washing practices should be promoted to prevent the disease.

Key words: Typhoid fever, Outbreak investigation, Ofia Woreda, Ethiopia.

INTRODUCTION

Globally, typhoid fever remains important public health problems and major causes of morbidity in the

*Corresponding author. E-mail: sagnfuny2015@gmail.com.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
developing world (Alberta Health, 2014). It is a systemic infection characterized by fever, malaise, headache, abdominal pain, and other gastrointestinal symptoms caused by Gram-negative bacteria, Salmonella enteric serotype Typhi (S. Typhi) and Paratyphi A, B and C. (Buckle, 2012).

The incubation period is usually 8–14 days but can range from 3 to 60 days depending on the size of infecting dose and host factors. The period of communicability lasts as long as the bacilli are present in the excreta. About 10% of untreated typhoid cases can continue to discharge bacilli for three months (Alberta Health, 2014) and between 2-5% of all cases become chronic carriers (WHO, 2011). About 22 million illnesses and 216,000 deaths occurred annually in the worldwide and the majority seen in resource-poor countries like in South Asia and Sub-Saharan Africa (Blum et al., 2014), where clean water and sanitation is inadequate (Buckle, 2012). In Africa, the burden of typhoid fever is largely unknown mainly because diagnosis of typhoid fever like culture is non-existent in many endemic countries (Samuel, 2008).

In Sub-Saharan Africa, an estimated typhoid fever associated morbidity and mortality (725 cases and 7 deaths per 100,000 person-years) occurred (Slayton, 2013).

More than 8,000 suspected cases of typhoid fever outbreak resulted in last decade in Sub-Saharan African Countries. The outbreak reported in some African countries was associated with high case-fatality rates (Samuel, 2008; Sejvar, 2012; Slayton et al, 2013; Vera von et al., 2016).

In both endemic and large outbreaks areas, most cases of typhoid fever is seen in those aged 3–19 years (WHO, 2011). In a study conducted from suspected patients, 52% of cases are from children younger than 10 years and 40% from 15 to 45 years (Ramani et al., 2012). Even though there is limited scope of studies in Ethiopia, the outbreak in Gondar College of Health Sciences revealed that 79 students had manifested typhoid disease (Admasu, 2011). In a study conducted from suspected patients, 52% of cases are from children younger than 10 years and 40% from 15 to 45 years (Ramani et al., 2012). Even though there is limited scope of studies in Ethiopia, the outbreak in Gondar College of Health Sciences revealed that 79 students had manifested typhoid disease (Admasu, 2011). The total population of the woreda is estimated to be 139,621 of which 70,927 (50.8%) were females which projected from 2007 Central Statistical Agency of Ethiopia (Central Statistical Agency [Ethiopia], August 2013). Under 1 year, less than 5 and less than 15 years constitutes 2.91, 14.59 and 43.7%, respectively (Ofala woreda Health Office, 2016).

Study area
The investigation was conducted in Dera “kebele” (small administration in Ethiopia), Ofala woreda (the third-level administrative divisions of Ethiopia) of the southern zone of Tigray Region. It is found 620 km far away from Addis Ababa (Capital city of the country) and 172 km far away from the Mekelle. Ofala woreda has 21 rural kebeles and 6 health centers with 24 health posts (Admasu, 2011).

The total population of the woreda is estimated to be 139,621 of which 70,927 (50.8%) were females which projected from 2007 Central Statistical Agency of Ethiopia (Central Statistical Agency [Ethiopia], August 2013). Under 1 year, less than 5 and less than 15 years constitutes 2.91, 14.59 and 43.7%, respectively (Ofala woreda Health Office, 2016).

Study design and period
An unmatched case-control study was conducted to recruit the study participants from August 11 to 20, 2016.

Sample size determination
The sample size recruited to this study was calculated by using unmatched case-control study formula considering the following assumption like 95% confidence intervals, 80% power with the exposure of 20 and 43% respectively.

\[n_2 = \frac{(\frac{1}{2} + 3.84)^2}{(0.5 - 0.2)^2} \]

Where \(p = \frac{(p1 + rp2)}{r+1} \)

\[(1.96+.84)^2 (0.2767+0.7233)^3/2*(0.43-0.2)^2=n_1=45 \text{ cases and } n_2=2n_1=2(45) = 90 \text{ is controls k investigation.} \]

For Cases =45 and for controls= 90; total sample size = 135.

Data collection
Data were collected by the principal investigator and co-
investigators including woreda Public Health Emergency Management (PHEM) Officer, Health Centers and Health Extension workers. We have reviewed records of line lists and samples were taken by laboratory technician for confirmation. Cases were selected from the line lists using random sampling by random number methods and active cases search was conducted by house-to-house visits. We interviewed cases and controls using pretested structured questionnaire. The questionnaire was adopted by reviewing different studies related to this investigation (Tadesse, 2014). Controls (person without signs/symptoms of Typhoid fever within one month) were recruited from the family or neighborhood of the cases using WHO standard typhoid fever case definitions.

Operational definition

Fair hygiene: If the compound was free of observable feces and has functional latrine during the study, having no observable feces around squat hole and the footpath was not covered by grass.

Medium hygiene: If the compound was free of observable feces and has functional latrine during the study, but feces is observed around the squat hole.

Poor hygiene: If the feces observed and latrine does not exist in the compound as well as the house is not cleaned during observation.

Standard cases definition and outbreak declaration

Outbreak declaration: Unusual increase of the cases or doubling of cases on subsequent weeks.

Standard cases definition

Suspected case: Any person with gradual onset of steadily increasing and then persistently high fever, chills, malaise, headache, sore throat, cough, and, sometimes, abdominal pain and constipation or diarrhea.

Confirmed case: A suspected case with Widal test, “O” titer of 1/160 and more is very suggestive and done for this investigation.

Inclusion criteria

Cases: Individuals with a disease of interest in the community (similar geographic areas) who meet the standard WHO case definition.

Controls: Those with no signs and symptoms of typhoid fever history within the previous one month were included.

Laboratory investigation

Blood samples from nine cases were collected for a Widal test, which measures agglutinating antibody levels against the O and H antigens was conducted.

Environmental investigation

A team of investigators inspect the hygiene and sanitation of the community, their water supply. Water sample of 200-ml from two sites (river and spring) in Dera kebele was collected using standard Water sampling procedure with the sterilized glass bottle and transported to the regional laboratory for bacteriological analysis in the ice box.

Data quality control

Training for data collectors and woreda experts was given for one day. Completeness of collected data was verified by daily supervision during the investigation period. Additionally, when entering the data into the computer the missing variables and consistency of filling of questionnaires were ensured carefully.

Data management and analysis

Collected data from the questionnaire was checked for completeness, coded and entered into Epi info 3.5.1 and analyzed using SPSS 16. Binary and multivariable logistic regressions were used to identify possible associated factors with the outcome. The results were presented in the form of tables, figures and summary statistics. Adjusted odds ratio (AOR) with its 95% confidence intervals (CI) was used to report statistical significance.

Ethical issue

Permission letter was obtained from the Regional Health Bureau. Before commencement of the investigation, we obtained support and willingness to conduct the study from Woreda Health Office. The objective of the investigation was told to study participants briefly. Afterwards, their oral consent and support were asked to participate in this study and the investigation was commenced with the Woreda Health Office and a verbal consent of interviewees to finish and interrupt the interview was discussed to respect their confidentiality which was assured.

RESULTS

Descriptive epidemiology

A total of 98 cases and one death with 1% case fatality rate of typhoid fever were identified within one week (32-week) by reviewing line list. Trends of an increased number of cases were seen as the following (Figure 1).

The overall attack rate (AR) was 23.2 per 1000 populations. The highest Age Specific Attack Rate (ASAR) was 37 per 1000 populations which were observed between 25-44 years and 18 per 1000 populations of 15-24 and 45-64 years age group was the lowest AR. From the total Typhoid fever cases, 56(57.1%) were females. The median ages of the cases and controls were 32 (ranges 2-66 years) and 22 (range 3 – 61 years) respectively (Figure 2).

The major symptoms among cases were fever, abdominal cramp, nausea and weakness. All patients (98) showed fever and weakness (Table 1).

Duration of illness for most cases before visiting the health center was less than three days up to greater than ten days. Only 2 (2%) of them visited the health center within three days of their onset of illness. The median duration of onset of illness before visiting the health
The onset date of the primary case (index case) was identified at July 29, 2016. The highest cases were registered on August 5, 2016. Date of onset of cases facility was 11.8 (ranges 2-28 days) (Table 2).

Table 1. Symptoms of Typhoid fever, Ofla woreda, the Southern zone of Tigray, Ethiopian, 2016.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Signs and symptoms</th>
<th>Frequency</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fever</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Vomiting</td>
<td>28</td>
<td>28.6</td>
</tr>
<tr>
<td>3</td>
<td>Abdominal cramp</td>
<td>81</td>
<td>82.6</td>
</tr>
<tr>
<td>4</td>
<td>Weakness</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>Nausea</td>
<td>41</td>
<td>41.8</td>
</tr>
<tr>
<td>6</td>
<td>Rash</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Diarrhea</td>
<td>41</td>
<td>41.8</td>
</tr>
<tr>
<td>8</td>
<td>Headache</td>
<td>68</td>
<td>69.4</td>
</tr>
</tbody>
</table>

Figure 1. Trend of Typhoid fever via week from Ofla Woreda Health Office, the Southern zone of Tigray, Ethiopian, 2016.

Figure 2. Age Specific Attack Rate (ASAR) per 1000 populations, Ofla woreda, the Southern zone of Tigray, Ethiopian, 2016.
distribution (Figure 3).

Analytic epidemiology

The total of 45 cases and 90 controls were involved in this investigation. The median age of cases and controls were 32 (range 2 – 66 years) and 22 (range 3 – 61 years) years respectively. Among the forty-five patients and ninety controls interviewed, 26 (57.8%) and 48 (53.3%) were females respectively.

We found no statistical significant differences between case patients and controls with respect to time to collect water, the frequency of cleaning water storage, washing hand without soap, prepare food without washing hand. Even though, 22% of case patients and 38% of controls were reported eating bread.

Educational status of participant [COR 6.87; 95%CI (1.97, 23.99), Hygienic condition in the house and compound [COR 2.58; 95%CI (1.22, 5.49), not washing hand after toilet [COR 4.5; 95%CI (1.78, 11.36) were associated factors and not storing food for later use [COR 0.296; 95% (0.13, 0.66) was a protective factor for typhoid fever outbreak (Table 3).

After controlling the effects of confounding associated factors that statistically significant with disease contraction were not washing hand after toilet [AOR 4.7, 95% CI (1.75, 12.6) and poor hygienic of the house and compound [AOR 3.09, 95%CI (1.36, 7.06) were statistically associated factors and not store food for later use [AOR 0.28, 95%(0.12, 0.67) was a protective factor for this outbreak cases (Table 4).
Table 3. Bivariate analysis of risk factors for typhoid fever, Ofla woreda, southern zone of Tigray, Ethiopia, 2016.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency</th>
<th>COR(95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cases (%)</td>
<td>Control (%)</td>
</tr>
<tr>
<td>Socio-demographic factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not read and write</td>
<td>24(53.3)</td>
<td>66(73.3)</td>
</tr>
<tr>
<td>Read write</td>
<td>4(8.9)</td>
<td>12(13.3)</td>
</tr>
<tr>
<td>Elementary</td>
<td>5(11.1)</td>
<td>5(5.6)</td>
</tr>
<tr>
<td>Secondary</td>
<td>2(4.4)</td>
<td>3(3.3)</td>
</tr>
<tr>
<td>NA</td>
<td>10(22.2)</td>
<td>4(4.4)</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>7(15.6)</td>
<td>10(11.1)</td>
</tr>
<tr>
<td>Married</td>
<td>21(46.7)</td>
<td>69(76.7)</td>
</tr>
<tr>
<td>Divorced</td>
<td>2(4.4)</td>
<td>1(1.1)</td>
</tr>
<tr>
<td>Widowed</td>
<td>2(4.4)</td>
<td>5(5.6)</td>
</tr>
<tr>
<td>NA</td>
<td>13(28.9)</td>
<td>5(5.6)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤15</td>
<td>16(35.6)</td>
<td>7(7.8)</td>
</tr>
<tr>
<td>16-30</td>
<td>12(26.7)</td>
<td>34(37.7)</td>
</tr>
<tr>
<td>31--45</td>
<td>10(22.2)</td>
<td>30(33.3)</td>
</tr>
<tr>
<td>>46</td>
<td>7(15.6)</td>
<td>19(21.1)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>19(42.2)</td>
<td>42(46.7)</td>
</tr>
<tr>
<td>Female</td>
<td>26(57.8)</td>
<td>48(53.3)</td>
</tr>
<tr>
<td>Risk factors :Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time take to collect water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-10min</td>
<td>5(11.1)</td>
<td>16(17.8)</td>
</tr>
<tr>
<td>10-20min</td>
<td>27(60)</td>
<td>60(66.7)</td>
</tr>
<tr>
<td>20-30min</td>
<td>10(22.2)</td>
<td>12(13.3)</td>
</tr>
<tr>
<td>>30min</td>
<td>3(6.7)</td>
<td>2(2.2)</td>
</tr>
<tr>
<td>Frequency of clean water storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td><week</td>
<td>7(15.6)</td>
<td>24(26.7)</td>
</tr>
<tr>
<td>Weekly</td>
<td>21(46.7)</td>
<td>47(52.2)</td>
</tr>
<tr>
<td>2 weeks</td>
<td>12(26.7)</td>
<td>14(15.6)</td>
</tr>
<tr>
<td>> 2 weeks</td>
<td>5(11.1)</td>
<td>5(5.6)</td>
</tr>
<tr>
<td>Hygienic status in the house and compound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fair</td>
<td>1(2.2)</td>
<td>6(6.7)</td>
</tr>
<tr>
<td>Medium</td>
<td>21(46.7)</td>
<td>59(65.6)</td>
</tr>
<tr>
<td>Poor</td>
<td>23(51.1)</td>
<td>25(27.8)</td>
</tr>
<tr>
<td>Use River for drinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2(4.4)</td>
<td>14(15.6)</td>
</tr>
<tr>
<td>Yes</td>
<td>43(95.6)</td>
<td>76(84.4)</td>
</tr>
<tr>
<td>Fetch water by deeping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>18(40)</td>
<td>34(37.8)</td>
</tr>
<tr>
<td>Yes</td>
<td>27(60)</td>
<td>56(62.2)</td>
</tr>
<tr>
<td>Animals live in the house</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>36(80)</td>
<td>78(86.7)</td>
</tr>
<tr>
<td>Yes</td>
<td>9(20)</td>
<td>12(13.3)</td>
</tr>
<tr>
<td>Wash hand without soap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1(2.2)</td>
<td>4(4.4)</td>
</tr>
<tr>
<td>Yes</td>
<td>44(97.8)</td>
<td>86(95.6)</td>
</tr>
<tr>
<td>Prepare food without washing hand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>41(91.1)</td>
<td>89(98.9)</td>
</tr>
</tbody>
</table>
Table 3. Contd.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Case (%)</th>
<th>Control (%)</th>
<th>AOR(95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not washing hand after toilet</td>
<td>16(35.6)</td>
<td>8(8.9)</td>
<td>4.7(1.75, 12.6)</td>
</tr>
<tr>
<td>Yes</td>
<td>29(64.4)</td>
<td>82(91.1)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2(4.4)</td>
<td>1(1.1)</td>
<td></td>
</tr>
<tr>
<td>Eat Injera with wot</td>
<td>6(13.3)</td>
<td>9(10)</td>
<td>1.38(0.46, 4.16)</td>
</tr>
<tr>
<td>Yes</td>
<td>39(86.7)</td>
<td>81(90)</td>
<td></td>
</tr>
<tr>
<td>Not washing hand after toilet</td>
<td>23(51.1)</td>
<td>52(57.8)</td>
<td>0.76(0.37, 1.57)</td>
</tr>
<tr>
<td>Yes</td>
<td>22(48.9)</td>
<td>38(42.2)</td>
<td></td>
</tr>
<tr>
<td>Eat vegetables without thinly cooking</td>
<td>30(66.7)</td>
<td>65(72.2)</td>
<td>0.77(0.36, 1.67)</td>
</tr>
<tr>
<td>Yes</td>
<td>15(33.3)</td>
<td>25(27.8)</td>
<td></td>
</tr>
<tr>
<td>Use bread</td>
<td>37(82.2)</td>
<td>76(84.4)</td>
<td>0.85(0.33, 2.2)</td>
</tr>
<tr>
<td>No</td>
<td>8(17.8)</td>
<td>14(15.6)</td>
<td></td>
</tr>
<tr>
<td>Not store food for later use</td>
<td>11(24.4)</td>
<td>47(52.2)</td>
<td>0.296(0.13, 0.66)**</td>
</tr>
<tr>
<td>Yes</td>
<td>34(75.6)</td>
<td>43(47.8)</td>
<td></td>
</tr>
</tbody>
</table>

Fair: >85%, Medium: 60-85% and Poor: <60%.**Significant Risk factors, NA-Not Applicable.

Table 4. Multivariable logistic analysis of Typhoid fever associated factors, Southern Zone of Tigray, Ethiopian, 2016.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Case (%)</th>
<th>Control (%)</th>
<th>AOR(95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not washing hand after toilet</td>
<td>16(35.6)</td>
<td>8(8.9)</td>
<td>4.7(1.75, 12.6)</td>
</tr>
<tr>
<td>Yes</td>
<td>29(64.4)</td>
<td>82(91.1)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2(4.4)</td>
<td>1(1.1)</td>
<td></td>
</tr>
<tr>
<td>Not store food for later use</td>
<td>11(24.4)</td>
<td>47(52.2)</td>
<td>0.28(0.122, 0.67)</td>
</tr>
<tr>
<td>Yes</td>
<td>34(75.6)</td>
<td>43(47.8)</td>
<td></td>
</tr>
<tr>
<td>Hygienic status of the house and compound</td>
<td>1(2.2)</td>
<td>6(6.7)</td>
<td></td>
</tr>
<tr>
<td>Fair</td>
<td>21(46.7)</td>
<td>59(65.6)</td>
<td>3.09 (1.36, 7.06)</td>
</tr>
<tr>
<td>Medium</td>
<td>23(51.1)</td>
<td>25(27.8)</td>
<td></td>
</tr>
<tr>
<td>poor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Qualitative analysis

Observed community situation

As we observed different villages of the kebele, most of the local communities existing in the observed villages did not have access to safe drinking water and latrine, and they directly fetched water from the river and spring. Additionally, they were not using soap to wash their hands after using toilet even when washing utensils.

Laboratory investigation

All blood samples (nine) collected from suspected typhoid fever cases were positive for the Widal test. Weil-flex and Rapid Diagnostic Tests (RTDs) were conducted to identify differential diagnosis and were negative. Additionally, fecal coliforms were isolated (100 to 1100 Colony Forming Unit values (CFU) /100 ml) from spring and river water samples which the population uses as drinking water sources and for domestic activities. Based on World Health Organization (WHO) standards, the water is biologically not potable.

Public health action

First, the woreda’s health center workers were treated case-patients with antibiotics and Oral Rehydration Salt (ORS) based on their age. Water purification distribution for water treatment, door to door awareness creation on
personal hygiene, environmental sanitation and food quality issues through health education were conducted. We also monitored the antibiotic treatment and improvement of case-patients. Additionally, spring water was cleaned and fenced by the local community.

DISCUSSION

Due to a combination of factors including poor sanitation and food contamination, typhoid fever remains a major public health problem in most resource-poor countries (Samuel, 2008).

The Federal Ministry of Health PHM guideline sets the threshold for epidemic detection and action as a cluster of Typhoid fever cases in the same settlement in one week. Hence, an unusually increase in the number of the cases or doubling of cases compared to the same weeks were consistent with this outbreak (Katz, 2002; FMOH, 2008).

This outbreak investigation revealed that CFR was 1% which is in line with investigations in Zambia (Hendriksen et al., 2015) which indicates early detection of the outbreak and management of cases. Typhoid fever suspected cases were higher in females than males. This result is consistent with the result from a study in Zimbabwe (Muti et al., 2014; Imanishi et al., 2014; Polonsky et al., 2014) and in Mozambique (Sejvar, 2012). This may be due to females tending to be caregivers of those who are ill at home. Thus, there was the higher likelihood of spreading the disease if appropriate hygiene practices were poorly observed and also exposure through household activities including preparation of food. However, it is in contrast with a study done in Zambia (Hendriksen et al., 2015).

This investigation revealed that the time between the onsets of symptoms of the cases to the first time outbreak cases came to the health facility took the range of 2 to 28 days. The first few cases did not seek health care until they were visited by Health professionals. This may be due to payment fear for health services at the Health Center.

Infections may be acquired from poor environmental sanitation, inappropriate hand washing after toilet and contaminated food. Therefore, the peak of an epidemic curve was seen on August 5, 2016 (WHO week 31) and the curve fell down within few days after getting its peak. This sharp increase and decrease of the epidemic curve is in line with study done in Ethiopia (Getnet, 2014) and poor hygiene of house and compound which is in line with study done in Malawi (Blum et al., 2014), Malaysia (Raman et al., 2012), Zimbabwe (Muti et al., 2014; Imanishi et al., 2014), Kenya (Akullian, 2015) remains significant factors associated with Typhoid fever contraction. During the investigation of this study, some constraint includes late starting of the investigation leading the cases to take antibiotic therapy which prevented collecting of biological samples for culture confirmation. Also, Widal agglutination test is a non-specific test, so some cases with reactive Widal test may be non-typhoid acute febrile illness cases.

Conclusions

Thus, there was an outbreak of Typhoid fever in Ofla woreda due to not washing of hands after toilet, as well as poor hygiene of the house and compound. Not storing food for later use was a protective factor for this outcome. Intervention measures to control the outbreak like cases management, water purification distribution for water treatment and door to door health education to the community via health workers and team investigators were conducted. Therefore, we recommend that health workers should give health education to the community on hand washing practice after toilet and environmental sanitation and promote the community to treat water by boiling because the community faced the shortage of clean water (non-potable).

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors are sincerely grateful to Mekelle University for sponsoring this research and Mrs. Alefech Addisu for the constructive suggestion and comments to final report of this outbreak successfully. Also, all study participants are highly appreciated for their unreserved cooperation during collection of data in the field.

REFERENCES

Related Journals:

Clinical Reviews and Opinions

Journal of Medicinal Plant Research

African Journal of Pharmacy and Pharmacology

Journal of Dentistry and Oral Hygiene

Journal of Parasitology and Vector Biology

Journal of Pharmacognosy and Phytotherapy

Journal of Medical Laboratory and Diagnosis

Journal of Diabetes and Endocrinology

Medical Practice and Reviews

www.academicjournals.org