ABOUT AJMR

The African Journal of Microbiology Research (AJMR) is published weekly (one volume per year) by Academic Journals.

The African Journal of Microbiology Research (AJMR) provides rapid publication (weekly) of articles in all areas of Microbiology such as: Environmental Microbiology, Clinical Microbiology, Immunology, Virology, Bacteriology, Phycology, Mycology and Parasitology, Protozoology, Microbial Ecology, Probiotics and Prebiotics, Molecular Microbiology, Biotechnology, Food Microbiology, Industrial Microbiology, Cell Physiology, Environmental Biotechnology, Genetics, Enzymology, Molecular and Cellular Biology, Plant Pathology, Entomology, Biomedical Sciences, Botany and Plant Sciences, Soil and Environmental Sciences, Zoology, Endocrinology, Toxicology. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles are peer-reviewed.

Contact Us

Editorial Office: ajmr@academicjournals.org

Help Desk: helpdesk@academicjournals.org

Website: http://www.academicjournals.org/journal/AJMR

Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Adriano Gomes da Cruz
University of Campinas (UNICAMP),
Brazil.

Prof. Ashok Kumar
School of Biotechnology
Banaras Hindu University
Uttar Pradesh,
India.

Dr. Mohd Fuat Abd Razak
Infectious Disease Research Centre,
Institute for Medical Research, Jalan Pahang,
Malaysia.

Dr. Adibe Maxwell Ogochukwu
Department of Clinical Pharmacy and Pharmacy Management,
University of Nigeria
Nsukka, Nigeria.

Dr. Mehdi Azami
Parasitology & Mycology Department
Baghaeei Lab.
Isfahan, Iran.

Dr. Franco Mutinelli
Istituto Zooprofilattico Sperimentale delle Venezie Italy.

Prof. Ebiamadon Andi Brisibe
University of Calabar,
Calabar,
Nigeria.

Prof. Nazime Mercan Dogan
Department of Biology
Faculty of Science and Arts
University Denizli Turkey.

Prof. Long-Liu Lin
Department of Applied Chemistry
National Chiayi University
Chiayi County Taiwan.

Prof. Natasha Potgieter
University of Venda
South Africa.

Dr. Tamer Edirne
Department of Family Medicine
University of Pamukkale
Turkey.

Dr Kwabena Ofori-Kwakye
Department of Pharmaceutics
Kwame Nkrumah University of Science & Technology
Kumasi, Ghana.

Dr. Tülin Askun
Department of Biology
Faculty of Sciences & Arts
Balikesir University Turkey.

Dr. Mahmoud A. M. Mohammed
Department of Food Hygiene and Control
Faculty of Veterinary Medicine
Mansoura University Egypt.
Editors

Dr. James Stefan Rokem
Department of Microbiology & Molecular Genetics
Institute of Medical Research Israel – Canada
The Hebrew University – Hadassah Medical School Jerusalem, Israel.

Dr. Afework Kassu
University of Gondar
Ethiopia.

Dr. Wael Elnaggar
Faculty of Pharmacy
Northern Border University
Rafha Saudi Arabia.

Dr. Maulin Shah
Industrial Waste Water Research Laboratory
Division of Applied & Environmental Microbiology, Enviro Technology Limited
Gujarat, India.

Dr. Ahmed Mohammed
Pathological Analysis Department
Thi-Qar University College of Science
Iraq.

Prof. Naziha Hassanein
Department of Microbiology
Faculty of Science
Ain Shams University
Egypt.

Dr. Shikha Thakur
Department of Microbiology
Sai Institute of Paramedical and Allied Sciences India.

Dr. Samuel K Ameyaw
Civista Medical Center
USA.

Dr. Anubrata Ghosal
Department of Biology
MIT - Massachusetts Institute of Technology
USA.

Dr. Bellamkonda Ramesh
Department of Food Technology
Vikrama Simhapuri University
India.

Dr. Sabiha Yusuf Essack
Department of Pharmaceutical Sciences
University of KwaZulu-Natal
South Africa.

Dr. Navneet Rai
Genome Center
University of California Davis USA.

Dr. Iheanyi Omezuruike Okonko
Department of Virology
Faculty of Basic Medical Sciences
University of Ibadan
Ibadan, Nigeria.

Dr. Mike Agenbag
Municipal Health Services,
Joe Gqabi,
South Africa.

Dr. Abdel-Hady El-Gilany
Department of Public Health & Community Medicine, Faculty of Medicine
Mansoura University
Egypt.
Prevalence, cytotoxicity and antibiotic susceptibility of *Campylobacter* species recovered from retail chicken meat in Mansoura, Egypt 501
A. A. Hafez, G. Younis, M. M. El-Shorbagy and A. Awad

Assessment of microbiota in root canals with pulp necrosis by means of Gram test 508
Amaro de Mendonça Cavalcante, Natalia Maria Luccas Tenório Soares, Isabel Cristina Secandes Santos, Eulália Camelo Pessoa de Azevedo Ximenes, Marcos Aurélio Bomfim da Silva and Karlos Antonio Lisboa Ribeiro Junior

Thermotolerant bacteria of biotechnological potential from hot springs in Eritrea 512
Amanuel Menghs Ghilamicael, Nancy L. M. Budambula, Sylvester Elkana Anami, Tadesse Mehari and Hamadi Iddi Boga
Full Length Research Paper

Prevalence, cytotoxicity and antibiotic susceptibility of Campylobacter species recovered from retail chicken meat in Mansoura, Egypt

A. A. Hafez¹, G. Younis¹, M. M. El-Shorbagy² and A. Awad¹*

¹Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
²Department of Bacteriology, Animal Health Research Institute, Dokki, Giza, Egypt.

Received 7 April, 2018; Accepted 21 May, 2018

This study was performed to determine the prevalence of Campylobacter species in retail chicken meat and chicken by-product, determine their in vitro cytotoxicity, as well as, examine their susceptibility to different antimicrobials. A total of 300 raw chicken meat samples were collected from different retail chicken meat outlets located at Mansoura city, Egypt classified into 120 thighs, 120 breasts, and 60 livers. All samples were subjected to conventional culture techniques and confirmed as Campylobacter jejuni by real time polymerase chain reaction (PCR). Antimicrobial susceptibility of Campylobacter species was determined using disc diffusion method to determine their susceptibility to 12 different antimicrobial agents. In addition, C. jejuni isolates were examined for their cytotoxicity against Vero cells. The overall prevalence of Campylobacter spp. was 10.3% (31/300) classified into 20 (18.2%) C. jejuni and 11 (10.7%) Campylobacter coli. Among C. jejuni isolates (n=20), 15 strains belonged to biotype I and 5 isolates belonged to biotype II. The isolation rate from chicken thighs, breasts and livers was 12.5, 10 and 6.6%, respectively. A total of 15 (75%) C. jejuni strains revealed cytopathic effect (CPE) against Vero cells. Campylobacter spp. displayed a high antimicrobial resistance against penicillin G, gentamicin, trimethoprim-sulfamethoxazole, cephalothin, erythromycin, and chloramphenicol. On the other hand, Campylobacter spp. displayed high sensitivity to ciprofloxacin and nalidixic acid. Multidrug resistance was observed in 85 and 81.82% of C. jejuni and C. coli isolates, respectively. High frequency of cytotoxicity and multidrug resistance in Campylobacter spp. from chicken meat indicates an important epidemiological role of Campylobacter spp. in human infections which necessitate proper hygienic measures on poultry farms and control measures during carcass slaughtering and processing.

Key words: Campylobacter; retail chickens meat, real time polymerase chain reaction (PCR), cytotoxicity, antimicrobial susceptibility.

INTRODUCTION

Campylobacter jejuni is a major zoonotic pathogen that causes food-borne gastroenteritis worldwide (Bronowski

*Corresponding author. E-mail: amalabdo@mans.edu.eg.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
et al., 2014). Poultry meat and poultry by-products are the major sources of infection to humans (EFSA, 2016). Campylobacter is considered a part of saprophytic microflora in the digestive tract of poultry and frequently transmitted from contaminated chicken meat either by ingestion of undercooked or raw chicken meat contaminated with the Campylobacter or handling of poultry meat and meat products during food processing procedures (EFSA, 2016).

Campylobacter infections in human are self-limiting and the infection usually lasts for only one week, but the illness may relapses in some untreated cases. Campylobacter infections symptoms range from mild to severe symptoms. It usually started after 2 to 5 days after ingestion of the contaminated food including, fever, headache, nausea and diarrhea (Campbell et al., 2006).

Infrequently, Campylobacter infections cause life threatening infection if it spread to blood stream and causes multiple diseases all over including, pseudoappendicitis, abdominal cavity, central nervous system, gallbladder, or urinary tract infection (Campbell et al., 2006). C. jejuni infection may result in serious post-infectious sequelae, the most important sequel are Reiter’s syndrome or Hemolytic Uremic Syndrome (HUS), and rarely resulted in neurological disorder known as Guillain-Barré syndrome (GBS), which manifests as sever neurological signs and paralysis which may result in respiratory dysfunction, and eventually death (Murray et al., 2007; Nachamkin, 2008).

Campylobacter has numerous virulence factors which contribute to its survival and establishment of the disease, but four major virulence factors have been identified which include motility, adherence, invasion and toxin production and these toxins had biological activity on tissue culture cell lines (Wassenaar, 1997).

The excessive and misuse of antibiotics in the treatment of infections, prophylaxis, as well as a growth promoters in Egypt has resulted in the development and spread of drug resistances which represents a public health problem (Levy and Marshall, 2004). Hence, the aims of this study were to recognize the prevalence and antimicrobial susceptibility of Campylobacter species isolated from retail chicken meat and chicken products sold in Mansoura city outlets, and to investigate the cytotoxic distending toxin (CDT) activity of C. jejuni against Vero cells.

MATERIALS AND METHODS

Collection of samples

A total of 300 raw chicken meat samples and chicken products classified into 120 thighs, 120 breasts and 60 livers were collected from retail outlets in Mansoura city, Dakahlia Governorates, Egypt. Samples were obtained from three street markets (n = 100), four supermarkets (n = 100), and two slaughterhouses (n = 100). Poultry samples were collected, 20 specimens by visit during the period between March and August, 2016. Each chicken sample was individually packed into a clean polyethylene bag and transferred directly to the laboratory in an ice box under aseptic conditions.

Isolation of Campylobacter spp.

Isolation of Campylobacter from the chicken meat samples was performed according to ISO 10272-1:2006 (ISO, 2006); briefly, 10 g of chicken meat was aseptically taken and placed into a clean sterile plastic bag. The plastic bag was filled with 90 ml of Bolton broth (CM0983, Oxoid) with selective supplement (SR0183, Oxoid), and the samples were mixed in a stomacher for 1 min and incubated at 37°C for 4 to 6 h under microaerobic conditions (Campygen, Oxoid) followed by 41.5 ± 0.5°C for 48 h. Approximately, 10 μl of the previous enrichment broth was streaked into the surface of mCCDA (POS091A, Oxoid, Basingstoke, UK) with supplement (SR0155, Oxoid) plates media and incubated under microaerobic conditions at 41.5 ± 0.5°C for 48 h. Presumptive colonies of Campylobacter were purified onto Columbia blood agar (Oxoid) plates and incubated under microaerobic conditions at 41.5 ± 0.5°C for 24 h. Presumptive colonies that displayed typical growth on the mCCDA, Gram-negative with corkscrew-like darting motility, oxidase-positive were considered to be Campylobacter Biotyping of C. jejuni were performed according to Benjamín and Skirrow (1980). To confirm the biochemical identification, the isolates were subjected to Real Time PCR targeted hippuricase enzyme encoded by hipO gene.

Real time PCR for C. jejuni

A real-time probe based quantitative PCR (qPCR) reaction was used for the confirmation of C. jejuni isolates. DNA extraction of C. jejuni was performed using boiling method according to De Medici et al. (2003). The sequences of primers and probe used for amplification of hippurO gene specific for C. jejuni are listed in Table 1 (Benson et al., 2002). PCR reaction was performed in a total volume of 25 μl containing 0.4 mM of each dNTP, 1× reaction buffer, 2.5 mM MgCl2 (Thermo Fisher Scientific, USA), and 1 U Platinum Taq DNA Polymerase (Life Technologies, USA). A positive control tube was also included. PCR condition concerning the MX3000P of Stratagene Cycle included initial denaturation at 94°C for 30 s followed by denaturation at 94°C for 30 s (40 cycles), annealing and extension ranged from 57 to 64°C for 60 s (Benson et al., 2002). The probes were conjugated with the fluorescent reporter dyes FAM and VIC (DNA Technology, Aarhus, Denmark) for C. jejuni, respectively, at the 5′ ends with the quencher dye MGBNFQ (Minor groove binder-non fluorescent quencher) at the 3′ ends. The nucleotide sequences were retrieved from the Gene Bank sequence database under accession numbers Z36940 (HipO).

Cytotoxic effect of C. jejuni live cells and their cytotoxins on Vero cells

Extraction of cytotoxins

Campylobacter cells growth were harvested in 10 ml of Brucella broth (Difco) supplemented with Campylobacter growth supplements (Oxoid), and then incubated at 42°C for 48 h (Misawa et al., 1994). Bacterial density was determined from absorbance measurement at 55 mm (Schmiec, Germany) and correlated to colony forming units (cfu). Then, cultures were centrifuged at 5000 g/15 min and the supernatant was filtrated through a 0.22 Mm Nitrocellulose Membrane filter (Millipore). The resultant supernatant was tested for sterility using Campylobacter selective media (mCCD).
Table 1. Primers sequences and fluorogenic probe used for detection of hipO gene in *C. jejuni.*

<table>
<thead>
<tr>
<th>Target species</th>
<th>Primer and probe</th>
<th>Type</th>
<th>Target gene</th>
<th>Sequence (5’ – 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Jejuni</td>
<td>hipO-F</td>
<td>F-primer</td>
<td>hipO</td>
<td>5-CTGCTTCTCTTCTGTTGTCGCTTT -3_</td>
</tr>
<tr>
<td></td>
<td>hipO-R</td>
<td>R-primer</td>
<td>hipO</td>
<td>5-GCTCCTAGCTTACAACGTGCTAAT-3_</td>
</tr>
<tr>
<td></td>
<td>hipO-P</td>
<td>CJ-probe</td>
<td></td>
<td>5-FAM-CATTGCCGAGATACGTGCTTGMGBNFQ-3_</td>
</tr>
</tbody>
</table>

Table 2. Prevalence of *Campylobacter* species isolated from examined chicken samples.

<table>
<thead>
<tr>
<th>Type of sample total</th>
<th>No. of examined samples</th>
<th>C. jejuni</th>
<th>C. coli</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Biotypes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biotype 1</td>
<td>Biotype 2</td>
<td>No. (%)</td>
</tr>
<tr>
<td>Thighs</td>
<td>120</td>
<td>10 (8.3)</td>
<td>8 (6.6)</td>
<td>2 (20)</td>
</tr>
<tr>
<td>Breasts</td>
<td>120</td>
<td>8 (6.6)</td>
<td>5 (6.25)</td>
<td>3 (37.5)</td>
</tr>
<tr>
<td>Livers</td>
<td>60</td>
<td>2 (3.3)</td>
<td>2 (100)</td>
<td>0 (0.00)</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td>20 (18.2)</td>
<td>15 (75)</td>
<td>5 (25)</td>
</tr>
</tbody>
</table>

Vero cells

Determination of cytotoxicity of *C. jejuni* isolates obtained was performed on Vero cells. They were used for live bacterial cells as well as for cytotoxins assay and they were from African green monkey kidney (Vero) cells which is being supplied from Animal Health Research Institute, Dokki, Giza, Egypt. The cell viability was determined by trypan blue dye uptake. Suspension of all cell lines were prepared in eagle minimal essential media (MEM, Sigma) supplemented with 7.5% sodium bicarbonate, 10% fetal calf serum, 3% glutamine, 100 I.U/ml penicillin and 100 Mg/ml streptomycin. Cells were seeded in sterile screw capped glass Leighton tube (KIMAX) and incubated at 37°C for 24 h to allow adhering under normal atmosphere condition. When the cells become confluent, the growth medium was removed. Confluent monolayer of these cell lines were incubated with bacterium free supernatant fluids of various dilutions at 37°C (two fold dilutions of supernatant tested 1/2 to 1/4). The control groups included sterile Brucella broth was inoculated into cell culture and incubated at 42°C for 48 h, under the same condition described earlier. The cover slip was fixed with 95% methanol for 5 min and stained with 10% Giemsa stain for 20 min, then, it was washed with water and used cover slips were air-dried (Al-Delaimi, 2009).

Antimicrobial susceptibility of Campylobacter isolates

Campylobacter isolates were subjected to antimicrobial susceptibility testing including 20 *C. jejuni* and 11 *Campylobacter coli* strains tested using agar disk diffusion method (CLSI, 2014) on Muller-Hinton agar (Oxoid, CM0337) supplemented with 5% defibrinated horse blood. Plates were incubated at 42°C for 48 h under microaerobic condition. Antimicrobial agents used in this study included 12 different antimicrobials belonging to different classes including, penicillin (10 μg), ampicillin (10 μg), amoxicillin/clavulanic acid (30 μg), erythromycin (15 μg), oxytetracycline (30 μg), nalidixic acid (30 μg), ciprofloxacin (5 μg), cephalothin (30 μg), gentamicin (10 μg), streptomycin (10 μg), and sulphonamethoxazole/thrimethoprim (25 μg) and chloramphenicol (30 μg).

RESULTS AND DISCUSSION

Poultry and meat products represent the main vehicle for the distribution of *Campylobacter* infection (Pitk’anen, 2013). In this study, the prevalence rate of *Campylobacter* spp. in chicken meat was 10.3% (31/300) classified into *C. jejuni* 64.5% (20/31) and *C. coli* 35.48% (11/31) which was in agreement with Nisar et al. (2018). All *C. jejuni* isolates were confirmed by real time PCR (Figure 2). The distribution of *Campylobacter* spp. in thighs, breasts and livers samples was 12.5, 10 and 6.6%, respectively (Table 2). Among *C. jejuni* samples, 15 strains belonged to biotype I and five strains belonged to biotype II (Table 3). The occurrence of *Campylobacter* spp. in chicken meat could be explained by unhygienic slaughter techniques including searing of carcasses with feces and rinsing, which leads to contamination of carcasses. A higher prevalence of *Campylobacter* spp. (56.0%) in poultry meat was recorded by Bardon’ et al. (2011) in Czech Republic. Moreover, Strachan et al. (2012) recorded a high prevalence of *Campylobacter* spp. (81.0%) of chicken livers in broiler chickens at retail. In Northern Poland, Andrzejewska et al. (2015) assessed the prevalence of *Campylobacter* spp. in poultry meat and recovered a total of 309 (41.6%) *Campylobacter* isolates. In France, Guyard-Nicod’ et al. (2015) examined 361 chicken products samples and recovered *Campylobacter* from 76.0% of the examined samples. In Estonia, M’aesaar et al. (2014) reported 89.0% prevalence rate of *C. jejuni*. In addition, a literature survey conducted by Suzuky and Yamamoto (2009) on the presence of *Campylobacter* in retail poultry meats and meat by-products, the results showed high detection frequencies ranging between 28.1% in South Africa and 100% in Argentina, Belarus and Russia. Diversity in the
prevalence rates of *Campylobacter* from retail chicken meat may result from the difference in the sanitation level during handling and processing of chicken, the sampling time of the year (hot or cold season), the sampling design, as well as diagnostic methods followed (Shin, 2000; Willis and Murray, 1997); which is definitely, the first contamination rate of poultry meat depending on post slaughter treatments, temperature control and hygiene management during the food processing or storage (Campbell et al, 2006). In the present study, *C. jejuni* was the most prevalent species identified from chicken samples which is in close agreement with those reported world-wide in different studies in which *C. jejuni* was the most prevalent than other *Campylobacter* spp. (Andrzejewska et al., 2015; Guyard-Nicodème et al. 2015; Suzuki and Yamamoto, 2009; Whyte et al., 2004)

Among *C. jejuni* positive samples, *C. jejuni* biotype I was the predominant biotype detected in the current study shown in Table 2. Similarly, Adesiyun et al. (1992) and Shaheen et al. (1994) concluded that *C. jejuni* biotype I was the predominant *C. jejuni* biotype isolated from poultry meat and poultry meat products and being frequently associated with human enteric infection.

In vitro demonstration of cytotoxins produced by *C. jejuni* isolates suggests a correlation between pathogenic virulence factors and clinical symptoms. Vero cells are employed to study the effect of microbial toxins and provide a useful, sensitive and reproducible experimental method for the study of pathogenic mechanism. Other investigators referred to association of cytotoxins production with a clinical history of bloody diarrhea, but enterotoxin production with watery diarrhea (Lee et al., 2000; Prasad et al., 2006). In this study, cytotoxin-producing capacity was detected in most of the strains tested (75%, 15/20). Moreover, Vero cells cytotoxicity was represented by rounding and detachment of cells. This activity was observed after 24, 48 and 72 h after incubation with titers which varied from 1/2 to 1/4 for cytotoxic isolates (Table 3 and Figure 1). High prevalence of cytotoxicity in *Campylobacter* spp. indicates a significant epidemiological role of Campylobacter in human infections which was in agreement with many previous investigators (Klipstien et al., 1985; Johnson and Lior, 1986; Florin and Antillon, 1992).

In Egypt, due to the excessive use of antibiotics for treatment and prophylaxis as well as growth promotion in chickens, poultry meat is considered a serious vehicle of antimicrobial-resistant *Campylobacter* transmission to human. Antibiotic susceptibility rates of *Campylobacter* isolates are shown in Table 4. There was a remarkably high resistance rate displayed by *C. jejuni* and *C. coli* to penicillin (95 and 90.1%), chloramphenicol (90 and 90.1%) and gentamicin (80 and 81.81%), respectively. *Campylobacters* also revealed a high antibiotic resistance against trimethoprim- sulfamethoxazole (85 and 81.81%), cephalothin (75 and 72.72%), erythromycin (75 and 72.72%), ampicillin (70 and 54.5%), amoxicillin-clavulanic acid (65 and 63.63%), oxytetracycline (65 and 63.63%), and streptomycin (65 and 63.63%), while they revealed a lower resistance against nalidixic acid (30 and 36.36%) and ciprofloxacin (10 and 18.81%) for *C. jejuni* and *C. coli*, respectively. Multidrug resistance (Resistance to three or more classes of antimicrobials) was observed in 85% (17/20) and 81.82% (9/11) of *C. jejuni* and *C. coli* isolates respectively. While, none of the *Campylobacter* isolates were resistant to all of the antimicrobials tested. In this study *C. jejuni* showed remarkable higher incidence in antimicrobial resistance than *C. coli*. These findings were in agreement with that previously reviewed in many studies (Saleha, 2002; Sáenz et al., 2000; Aarestrup and Engberg, 2001; Taremi et al., 2006). In contrary, *C. coli* showed a higher prevalence of antimicrobial resistance than *C. jejuni* by Signorini et al. (2018)

In this study, *Campylobacter* isolates were more sensitive to ciprofloxacin which is in agreement with McDermott et al. (2002) and Moore et al. (2005) who stated that ciprofloxacin was the drug of choice for empirical therapy of bacterial food borne diarrhea, including that caused by *Campylobacter*. In addition, Kassa et al. (2007) found that *C. jejuni, C. coli* and *C. lari* isolated from food animals were sensitive to

Table 3. Results of inoculation of live *C. jejuni* and their cytotoxins on Vero cells.

<table>
<thead>
<tr>
<th>C. jejuni and cytotoxins</th>
<th>Incubation period (h)</th>
<th>Morphological changes on Vero cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live C. Jejuni</td>
<td>24</td>
<td>Cell destruction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rounding and detachment of Vero cell</td>
</tr>
<tr>
<td>1/2 Cytotoxins dilution</td>
<td>48</td>
<td>Degenerative change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Detachment of Vero cell</td>
</tr>
<tr>
<td>1/4 Cytotoxins dilution</td>
<td>48</td>
<td>Elongation of epithelial cell</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrinkage with cytoplasmic vacuolation</td>
</tr>
<tr>
<td>1/4 Cytotoxins dilution</td>
<td>72</td>
<td>Pleomorphic cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pyknosis and multinucleated giant cell</td>
</tr>
</tbody>
</table>

In addition, it was shown that *C. jejuni* was a major cause of human diarrheal infections which was in agreement with many previous investigators (Klipstien et al., 1985; Johnson and Lior, 1986; Florin and Antillon, 1992).
Hafez et al. 505

Figure 1. (A) Localized cell destruction, rounding and detachment of Vero cells after 24 h incubation with live bacteria (X 1000). (B) CPE characterized by degenerative changes and detachment of Vero cells, incubated with 1/2 Cytotoxins dilution at 24 to 48 h (X400). (C) Elongation, shrinkage with cytoplasmic vacuolation after incubation with 1/4 Cytotoxins dilutions at 24 to 48 h (X1000). (D) Polymorphic cells, rounding with pyknosis and multinucleated giant cell with 1/4 Cytotoxins dilutions at 72 h (X 400).

Table 4. Susceptibility of C. jejuni and C. coli to different antimicrobial agents.

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>Antimicrobial class</th>
<th>C. jejuni (20)</th>
<th>C. coli (11)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensitive (%)</td>
<td>Resist (%)</td>
<td>Sensitive (%)</td>
</tr>
<tr>
<td>Penicillin</td>
<td>Beta-Lactam</td>
<td>1 (5)</td>
<td>19 (95)</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>Beta-Lactam</td>
<td>6 (30)</td>
<td>14 (70)</td>
</tr>
<tr>
<td>Amoxicillin-Clavulanic acid</td>
<td>Beta-Lactam</td>
<td>7 (35)</td>
<td>13 (65)</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>Macrolides</td>
<td>5 (25)</td>
<td>15 (75)</td>
</tr>
<tr>
<td>Oxytetracycline</td>
<td>Tetracycline</td>
<td>7 (35)</td>
<td>13 (65)</td>
</tr>
<tr>
<td>Nalidixic acid*</td>
<td>quinolones</td>
<td>14 (70)</td>
<td>6 (30)</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>Fluoroquinolones</td>
<td>18 (90)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Cephalothin</td>
<td>Beta-Lactam</td>
<td>8 (25)</td>
<td>12 (75)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>Amino glycosides</td>
<td>4 (20)</td>
<td>16 (80)</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>Amino glycosides</td>
<td>7 (35)</td>
<td>13 (65)</td>
</tr>
<tr>
<td>Trimethoprim sulfamethoxazole</td>
<td>Folate Pathway Inhibitors</td>
<td>3 (15)</td>
<td>17 (85)</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>Phenicols</td>
<td>2 (10)</td>
<td>18 (90)</td>
</tr>
</tbody>
</table>

*Nalidixic acid and cephalocin were tested as recommended for the identification of Campylobacter isolates.

chloramphenicol and ciprofloxacin. Finally, a complete comparison in the susceptibility of Campylobacter to different antimicrobials is impossible as the strains numbers examined differ from one study to another.

Conclusion

The results obtained from this study suggest an important role of chicken meat as a source of cytotoxic and
Figure 2. Amplification curve of suspected C. jejuni using probe based qPCR.

multidrug resistant *Campylobacter* spp.; therefore, there is a possible risk to human when dealing with the raw poultry carcass or consumption of undercooked chicken products. So effective vaccine against *Campylobacter* infection should be recognized to protect against infection by this group of organisms with appropriate hygienic measures during carcass slaughtering and processing. In addition, one of our future studies will be focused on developing strategies to decrease *Campylobacter* colonization in broilers chicken.

CONFLICT OF INTERESTS

The authors have not any conflict of interests.

REFERENCES

Assessment of microbiota in root canals with pulp necrosis by means of Gram test

Amaro de Mendonça Cavalcante¹, Natalia Maria Luccas Tenório Soares¹, Isabel Cristina Secandes Santos¹, Eulália Camelo Pessoa de Azevedo Ximenes², Marcos Aurélio Bomfim da Silva¹ and Karlos Antonio Lisboa Ribeiro Junior³

¹Faculdade de Odontologia, Universidade Federal de Alagoas-57072-000-Maceió-AL, Brasil.
²Departamento de Antibióticos, Universidade Federal de Pernambuco-57040-521-Recife-PE, Brasil.
³Instituto de Química e Biotecnologia, Universidade Federal de Alagoas–57072-000-Maceió-AL, Brasil.

Received 14 November, 2017; Accepted 1 June, 2018

The aim of this study was to evaluate the type of microbiota present in root canals with pulp necrosis, with and without periapical lesion. Nineteen patients were selected for the study and 30 root canals were analysed in unirradicular and/or multi-radicular permanent teeth, asymptomatic, with pulp necrosis, with or without periapical lesion, and no communication between root canal and oral cavity. Absorbent paper cones were introduced in the canal for 20 s. Then, the contaminated paper cones were inoculated in a Brain Heart Infusion Agar-BHI culture medium and incubated in an oven for 48 h at 37°C. The data were analysed by non-parametric statistical method of the Cochran-test. The results revealed that there was no statistically significant difference between the amount of Gram-positive and negative bacteria in endodontic infections, indicating that the microbiota of these endodontic infections is mixed.

Key words: Microbiota, lipopolysaccharide, endodontics, root canals, pulp necrosis.

INTRODUCTION

Treatment of infections in the root canal space of the teeth is a challenge in endodontics. One of the aims of endodontic treatment is the complete elimination of existing microorganisms, hence, the importance of chemical means of disinfection has aroused to accomplish complete sterilization of canal and to improve the treatment prognosis (Reddy et al., 2017). For this reason, the knowledge on endodontic microbiota, its organization and its distribution within the root canal system, is of vital importance in understanding the infectious process and the establishment of therapeutic strategies that aims to eradicate the infection. Since some symptoms are associated with the presence of specific bacteria, if they are not completely eliminated from the root canals, they may perpetuate a pathological condition that causes treatment failure (Pajari et al., 1993; Lopes and Siqueira-Júnior, 2004).

However, microorganisms that cause endodontic infections are generally of low virulence. Their pathogenesis and survival are influenced by the release...
of lipopolysaccharide (LPS), bacterial toxins and synthesis of enzymes (Nair, 2004). The presence of bacteria within root canals contributes to the beginning of pulp necrosis and the possible involvement of the periapical region of the teeth (Dubei, 2016). These lesions are associated with a mixed microbiota, which consist of aerobic, anaerobic, Gram positive and negative microorganisms (Kakehashi et al., 1965; Cheung et al., 2001).

The aim of this study was to analyse the type of microbiota present inside the necrotic root canals with or without periapical lesions. The microbiota was identified through the coloured Gram method and its morphological classification.

MATERIALS AND METHODS

Sample selection

Nineteen patients were selected, regardless of age and sex. The research was performed at the College of Odontology, of the Federal University of Alagoas (UFAL), after the project approval by the Ethics Committee of Research of the same unit (No. 007418/2009-35). For this study, 30 root canals were analysed, taking into account, the sampling error, approximately 0.05%, with permanent teeth single-rooted or multi-rooted, asymptomatic, with pulp necrosis, with or without periapical lesion, and not presenting communication between root canal and the oral cavity. Only one exclusion criteria that the patients did not use any antibiotics for a minimum period of three months (Weiger et al., 1995).

Clinical procedures

After signing the consent term, a clinical file of the patient was filled up and an evaluation of the patient's general health was performed. For diagnosis, radiographs were examined and pulp sensitivity to cold was tested.

Prior to intervention, the patient made a mouthwash with 10 ml of 0.12% chlorhexidine (Periogard®, Colgate - Palmolive Industry and Trade LTDA, São Paulo, Brazil). After that, the carious tissue was removed. After isolating the tooth, the working station (tooth, clamp, rubber dam and arch) was cleaned with NaOCl 2.5% (Brilux, Pernambuco, Brazil), followed by a surgery to access the pulp chamber.

Collection of samples

Two to four sterile absorbent paper cones (Dentsply Industry and Commerce Ltda., Petrópolis, Brazil) were introduced into the canal for 20 s. In cases where the canal was dry, it was moistened with sterile distilled water (Laborclin Laboratory Products Ltda., Paraná, Brazil) to ensure a viable sample. Then, the contaminated paper cones were inoculated in a Brain Heart Infusion (BHI) Agar (Interlab Scientific Products Distributor S / A, São Paulo, Brazil) culture medium and incubated in an oven for 48 h at 37°C.

Laboratory analysis

The analyses were done in the Laboratory of Biochemistry and Physiology in the Department of Antibiotics, at Federal University of Pernambuco (UFPE).

The Gram methodology was used according to the methodology of Winn et al. (2005). A thin scrub was prepared and the material was left to air dry. After this step, the material was passed 3 to 4 times by a flame of a Bunsen burner to be fixed on a lamina, so that it will not be detached during the colouring process. Then, the material was covered with ethanol for 4 min. Next, it was put on a holder and its surface was covered with crystal violet solution for 1 min, washed with distilled water and covered with Gram iodide solution for 1 min. Subsequently, it was washed again with distilled water. Then, acetone was dropped on the material until the purple colour disappeared, within 10 s, washed with distilled water. The scrub surface was covered with safranin for 1 min and washed with distilled water. After this step, the material was placed in an upright position on a holder and left to dry. The stained lamina was examined through an optic microscope with objective lens, 100x, using a drop of immersion oil. Gram-positive bacteria were coloured in dark blue and Gram-negative, in pink-red. Optical microscope (Nikon E200) observation of the lamina for morphological classification of microorganisms was performed with an objective lens, 100x.

Statistical analysis

The data were analyzed by non-parametric statistical method of Cochran-test, using the software Assistat, Beta version 7.0; the data do not follow a normal distribution (p<0.05).

RESULTS

Thirty root canals with pulp necrosis were analysed, from which 24 presented periapical lesions. All the root canals with pulp necrosis and periapical lesions examined showed Gram-negative bacilli (100%), whereas in the canals of 23 teeth, it was possible to find cocci and Gram-positive bacilli (95.8%). In 13 teeth canals with pulp necrosis and periapical lesions, yeast infections were observed (54.1%) as described in Table 1. In the 6 cases evaluated with pulp necrosis without periapical lesions, there was a balance in the presence of Gram-positive and negative microorganisms (100%). However, yeast cells were found in three of these six root canals (50%, p <0.05) evaluated (Table 1).

For 24 teeth studied with periapical lesions, five cases of granuloma were diagnosed through radiographs and all of them presented Gram-negative and positive microorganisms (100%). Furthermore, one canal also had yeast cells (20%). In the five cases of chronic abscess with fistula, A balance of Gram-positive and negative bacteria was also observed in all the root canals (100%) and in 3 out of 5 canals, leavens cells were found (60%). Studying the six cases of chronic apical periodontitis, all of them presented Gram-positive microorganisms and yeast cells (100%), and in 5 out of the 6 canals, Gram-negative bacteria (83.33%) were found. Moreover, seven canals were diagnosed with thick apical periodontal, all these canals presented Gram-positive and negative microorganisms (100%), and in 3 canals, yeast cells (42.85%) were found. In this research, one canal with phoenix abscess was diagnosed. In this canal, Gram-negative and positive microorganisms (100%) were found. However, yeast cells were not present (Table 2).
DISCUSSION

Due to its complexity, the endodontic microbiota has been extensively studied through macroscopic and microscopic observations, and also through the classification of the microorganisms by means of Gram colour and evaluation of the presence of yeasts, aerobic microorganisms, strict anaerobes and facultative bacteria, which supports the claim that endodontic infections are polymicrobial in nature (Jacinto et al., 2003; Pazelli et al., 2003; Pinheiro et al., 2003; Gomes et al., 2004; Vianna et al., 2006). In this research, the presence of a mixed microbiota colonizing the root canals with pulp necrosis was observed presenting aerobic, anaerobic, Gram positive, Gram negative microorganisms, Cocci, Bacillus and yeasts. In previous researches (Jacinto et al., 2003; Gomes et al., 2004; Pourhajibagher et al., 2017), there was a prevalence of Gram-negative microorganisms in the primary endodontic infections, both symptomatic and asymptomatic, which is in line with the data presented here. In the current study, there was no significant difference (p> 0.05) in the presence of Gram-positive and negative microorganisms in the root canals with pulp necrosis, as reported by Nobrega et al. (2016) but in the study of Vianna et al. (2006) and Sakko et al. (2016), the prevalence of Gram-positive microorganisms was found. Other researches showed that the microbiota of untreated teeth is different from that in which failure in endodontic treatment occurred. In the case of retreatment of root canals, there is a prevalence of Gram-positive microorganisms. These findings indicate that the microbiota differs from primary to secondary endodontic infections (Gomes et al., 2004; Silva et al., 2006; Sousa, 2000).

In the analysis of teeth with periapical abscess, Siqueira and Rôças (2013) and Sousa (2000) found a predominance of Gram-positive anaerobic bacteria in most of the root canals observed, although less frequent facultative anaerobic bacteria had also been found, demonstrating the presence of a mixed microbiota in the infected root canals associated with periapical abscesses. In the current research, a predominance of strict anaerobic bacteria was also verified, but there are no major Gram-positive or negative bacteria. However, Saini et al. (2004) observed the predominance of aerobic microorganisms in the abscesses. In another study, Penarrocha et al. (2007) evaluated microbiologically and histopathologically, 30 cases of periapical lesions. A total of 137 bacterial strains, including *Fusobacterium nucleatum* (Bacillus, Gram-negative, Anaerobic), Gram-negative anaerobic bacilli, *Peptostreptococcus sp.* (Cocci, Gram positive, Anaerobic), *Streptococcus mitis* Anaerobic facultative) and Gram-positive non-spor anaerobic bacilli were, in descending order, the most commonly isolated bacteria from the lesions. Histopathological analysis revealed the prevalence of periapical granuloma. However, in this study, the presence of Gram positive and negative bacteria in granulomatous lesions was observed.

On the other hand, study on the composition of the bacterial flora of infected root canals with apical periodontitis was carried out (Jacinto et al., 2003; Gomes et al., 2004). The presence of a mixed microbiota with the prevalence of Gram-negative anaerobic bacteria was observed, which corroborates the results of the current study study.

Gram-negative bacteria were found in all root canals of the chronic apical periodontitis affected teeth. Gram-positive bacteria was also found in 5 of the 6 evaluated teeth, corroborating with the findings of Foschi et al. (2005) and Vengerfeldt et al. (2014), which demonstrated the presence of Gram-positive coccus *E. faecalis,*

Table 1. Comparison of the presence of microorganisms in root canals with or without periapical lesions (p<0.05).

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Root canals with periapical lesion (24)</th>
<th>Root canals without periapical lesion (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram+</td>
<td>23</td>
<td>06</td>
</tr>
<tr>
<td>Gram-</td>
<td>24</td>
<td>06</td>
</tr>
<tr>
<td>Yeast cells</td>
<td>13</td>
<td>03</td>
</tr>
</tbody>
</table>

Table 2. Association of periapical lesions with the presence of microorganisms in the root canals.

<table>
<thead>
<tr>
<th>Types of periapical lesion (24)</th>
<th>Gram+ bacteria (%)</th>
<th>Gram- bacteria (%)</th>
<th>Leaven cells (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periapical granuloma (5)</td>
<td>100</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Chronic abscess with fistula (5)</td>
<td>100</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>Chronic apical periodontics (6)</td>
<td>83.33</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Canals with thick apical periodontal (7)</td>
<td>100</td>
<td>100</td>
<td>42.85</td>
</tr>
<tr>
<td>Phoenix abscess (1)</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>
suggesting that these species play critical roles in endodontics pathology.

Pinheiro et al. (2003) and Pourhajibagher et al. (2017) examined teeth with failure in endodontic treatment and in the presence of periapical lesions, and observed Candida albicans. In the present study, the existence of C. albicans was observed in both canals, with and without periapical lesions. Therefore, fungi may play a significant role in the pathogenesis of periapical diseases, as they have the ability to adapt to a variety of environmental conditions, adhere to different surfaces, produce hydrolytic enzymes, form biofilms and modulate hosts immunity (Siqueira et al., 2004). In this way, Gomes et al., (2008) analyzed teeth with pulp necrosis (primary infection) associated with the periapical lesion and reported the presence of C. albicans. Lana et al. (2001) studied channels without periapical lesion and indicated the presence of fungi. These data confirmed the presence of fungi both in channels with necrotic pulp associated with periapical lesion or not.

Conclusion

The result of this research showed a predominance of Gram negative microorganisms, in root canals with periapical lesion in comparison with Gram positive microorganisms and yeast.

In root canals without periapical lesion, there was a balance between the presence of Gram positive and negative microorganism; however, presenting a lower amount of yeast. In all the canals analysed with periapical lesion only in those affected by chronic apical periodontitis, there was a balance regarding the presence of Gram positive, negative and yeast bacteria.

The results obtained demonstrated that the microbiota of the root canals studied is mixed with a predominance of Gram negative bacteria.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Thermotolerant bacteria of biotechnological potential from hot springs in Eritrea

Amanuel Menghs Ghilamicael¹, Nancy L. M. Budambula², Sylvester Elkana Anami¹, Tadesse Mehari³ and Hamadi Iddi Boga⁴

¹Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.
²Board of Postgraduate Studies, University of Embu, Embu, Kenya.
³National Commission for Higher Education in Eritrea, Asmara, Eritrea.
⁴Vice Chancellor’s Office, Taita Taveta University, Taita, Kenya.

Thermophiles are excellent sources of enzymes that can withstand and carry out reactions efficiently under high temperatures. This study isolated and characterised thermotolerant bacteria that produce enzymes of potential industrial value from five hot springs in Eritrea. A total of 65 bacterial isolates were obtained from the five hot springs. Out of the 65 isolates; 19 isolates produced a positive reaction for amylases, 36 for carboxymethyl cellulases, eight for proteases, 10 for xylanases and 11 for pectinases. More than half (36 out of 65) were able to produce carboxymethyl cellulases. Six isolates which showed carboxymethyl cellulase activity were from the genus Bacillus, while those belonging to Brevibacillus were seven. BLAST analysis of the partial sequences showed that 19 out of the 24 isolates sequenced showed high similarity (> 99%) to those of reference strains of the genera Bacillus and Brevibacillus available in the Genebank and EZ-taxon databases. The five isolates (E5, G2, G8, M1 and M13) that showed moderate similarities (97.2-99%) to strains from the Genebank and EZ-taxon databases were further characterized. Physiological characterization of the five selected isolates based on tolerance to NaCl, temperature and production of hydrolytic enzymes indicated that these isolates are potentially novel. Isolates G8 and M13 showed significantly higher amylase activity (p < 0.05) than the other three isolates. Caseinase activity recorded by the five isolates was the highest (p < 0.05) compared to other enzyme activities. The enzymes produced by thermotolerant bacteria from the five hot springs may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes.

Key words: Thermophilic, bacteria, thermozymes, hot springs, Eritrea.

INTRODUCTION

The discovery of extremophiles has been a remarkable impetus for biotechnology industries. The products

*Corresponding author. E-mail: amenghs@gmail.com.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
secured from extremophiles such as proteins, enzymes (extremozymes) and compatible solutes have great biotechnological potential. The inherent stability of thermostable enzymes, which have been isolated mainly from thermophilic or thermotolerant organisms, has made them suitable candidates for a number of commercial applications (Singh et al., 2011). The chemical production of polymer intermediates, pharmaceuticals, specialty chemicals and agrochemicals is hindered by expensive processes due to low selectivity and undesired byproducts (Angelaccio, 2013). The lack of enzyme stability of mesophilic enzymes renders them inefficient for the harsh reaction conditions required in industrial processes. For this reason, the use of biocatalysts in organic reactions represents only a small fraction of the potential industrial market (Meyer et al., 2012). Thermostable enzymes have attracted industrial and biotechnological attention as their enzymes are well suited for harsh industrial processes (Abdel-Rahman et al., 2016; Archna et al., 2015; Verma et al., 2015). Proteases obtained from thermophilic or thermotolerant bacteria (Adhikari et al., 2015; Bozoglu et al., 2015; Lele and Deshmukh, 2016; Panda et al., 2013; Remigio et al., 2012; Verma et al., 2014) bacteria, for example, have found applications such as hide dehairing in the leather industry and stain removal in laundry detergents (Chandrashekhar and Narayan, 2015; Dughgara et al., 2015; Jaouadi et al., 2013). Cellulases have shown great potential in the production of bioethanol and other speciality chemicals from renewable agricultural residues (Hardiman et al., 2010). Brewing and sugar production require α-amylases that are stable at high temperatures for gelatinization and liquefaction of starch to run processes at a relatively low cost (Rasooli et al., 2008). Xylanases active at high temperature and pH have attracted special interest in the pulp and paper industry as they reduce the need for toxic chlorinated compounds (Srinivasan and Rele, 1999). Pectinases are of importance in cotton scouring in textile industries (Dhiman et al., 2008). However, only a few of actual applications of these biocatalysts have reached the market (Coker, 2016).

Hot springs are potential habitats for thermophilic microorganisms. During the last few decades, hot spring environments from around the world have been targeted for the isolation of novel thermostolerant or thermophilic microorganisms that produce stable thermostymes (Lele and Deshmukh, 2016; Shahinyan et al., 2015; Verma et al., 2014). Even though Eritrea is endowed with plenty of thermal springs, aside from their prospects in geothermal energy, the thermal hot springs in Eritrea have not yet been studied with respect to biotechnological prospects. In Eritrea, thermal springs are located scattered in the eastern low lands. This study aimed to isolate and characterize thermostolerant bacteria from hot springs in Eritrea that produce enzymes such as amylases, cellulases, pectinases, xylanases and proteases.

MATERIALS AND METHODS

Sampling

Five hot springs; Maiwoo, Akwar, Garbanabra, Gelti and Elegedi were selected for sampling from three different locations, Gahtelai area, Irafayle and Alid area (Figure 1). Maiwoo (15° 32′ 53"N 39° 06′ 38"E) and Akwar (15° 33′ 34"N 39° 05′ 37"E) are located near Gahtelai at elevations of 330.1 and 344.5 m, with temperatures of 51.9 and 49.0°C and pH range of 7.54 and 6.97 respectively (Figure 1). These are low energy hot springs which discharge near-neutral bicarbonate waters (Yohannes, 2010). Garbanabra (15° 03′ 38"N 39° 46′ 27"E) and Gelti (15° 03′ 39"N 39° 46′ 46"E) are located near Irafayle on the shore of Gulf of Zula at elevations of 0.0 and 0.0 m, temperatures of 51.0 and 52.7°C and pH range of 7.05 and 7.01 respectively. Elegedi (14° 52′ 55"N 39° 55′ 37"E) is located in Alid volcanic center at elevation of 512.7 m, with a temperature of 100°C and pH range of 7.19. Elegedi which is located about 30 km south of the Gulf of Zula and is associated with a high temperature geothermal system underlying the Alid volcanic centre in the northern Danakil depression of Eritrea (Yohannes, 2010). The bubbling water discharged from this hot spring is typical of the fumarolic steam condensate with high temperatures. Triplicate samples of water, wet sediment and microbial mat were collected from each hot spring.

Samples were collected in 20-ml autoclaved test tube containers and immediately placed in a thermostostat to keep the temperature of the water samples constant (Khalil, 2011). The samples were transported to the College of Health Science Laboratory in Asmara, Eritrea for further processing.

Isolation and enumeration of thermotolerant bacteria

Five millilitre from each water sample was used to inoculate 100 ml of culture media in 250-ml Erlenmeyer flask. The enrichment culture media contained: 5 g of NaCl (BLULUX), 9 g of peptone (BLULUX) and 2 g of yeast (BLULUX) per litre. The inoculated flasks were incubated at 55°C with shaking at 240 rpm for 94 h.

One hundred microlitre of culture from each flask was spread on agar media containing: 5 g of NaCl (BLULUX), 9 g of peptone (BLULUX), 2 g of yeast (BLULUX) and 20 g of bacteriological agar (BLULUX) per litre and was incubated at 55°C in a bench top incubator for 24 to 48 h (Khalil, 2011). To obtain pure cultures, distinctive colonies were picked, transferred to fresh agar medium and incubated at 55°C for 24 and 48 h. Purified colonies were grown on tryptic soy broth (Difco) and stored in 20% glycerol at -80°C.

Morphological characterization

Colony and cell morphology were performed according to the standard protocols. Isolates were grown for 24-72 h at 50°C on the agar media described above. All the 65 isolates were examined using binocular microscope (BX100 Olympus) and characterised by Gram and spore staining (Moses et al., 2009).

Detection of enzymes

Hydrolase production by thermostolerant bacterial isolates was screened by plateing on starch (Khalil, 2011), carboxymethyl cellulose (Teather and Wood, 1982), skimmed milk (Zilda et al., 2012), pectin (Huang et al., 2012) and xylan (Gessesse and Gashe, 1997) agar plates for amylase, cellulose, protease, pectinase and xylanase activity respectively. All the assays were conducted at 55°C for 48 h.
Molecular characterization using partial 16S rRNA gene

Bacterial isolates were grown in Luria Broth medium (Tryptone, 10 g/L; yeast extract, 5 g/L; NaCl, 10 g/L; pH 7.0) at 55°C for 48 h. The cultures were centrifuged at 10,000 × g for 1 min, and the supernatant was removed and the pellet was retained. DNA was extracted as previously described (Sambrook and Russell, 2001) and was stored at -80°C until further analysis. Bacterial universal primers 8F (5’-AGRCTTTGATCCTGGCTCAG-3’) and 1492R (5’-CGGCTACCTTGTTACGACTT-3’) were used to amplify the 16S rDNA from genomic DNA (Heuer et al., 1997). Polymerase chain reaction (PCR) was performed in a thermocycler (PeQLab, VWR, Germany). Each reaction mixture (50 µl) contained 25 μl of 10× PCR master mix (BIOLINE), 2.5 U of Taq DNA polymerase (BIOLINE), 0.2 μM of each primer and 25 ng of template DNA. The amplification was performed as follows. Initial denaturation for 5 min at 94°C, 30 cycles each of denaturation for 30 s at 94°C, annealing for 30 s at 55°C, primer extension for 1.5 min at 72°C and final extension for 10 min at 72°C. The PCR products were checked by gel electrophoresis using 1.2% (w/v) agarose gels stained with ethidium bromide (10 mg/l) and stored at -20°C.

Sequencing of PCR products of the 65 bacterial isolates was carried out by Macrogen, South Korea. Sequencing was conducted in one direction using the forward primer (27 F) as previously described (Sanger et al., 1977). The BioEdit program was used to remove ambiguity and comparisons were done with the NCBI GenBank databases using Basic Local Alignment Tool (BLAST) algorithm (Altschul et al., 1990). Sequences were submitted to the GenBank database and were assigned the accession numbers KX549080-KX549103. The differences in the nucleotides were converted into distance matrices using Maximum Likelihood method (Saitou and Nei, 1987). A phylogenetic tree was constructed using MEGA 7 (Kumar et al., 2016).

Biochemical and physiological characterization of the selected isolates

Biochemical tests including indole production, motility test, catalase, oxidase, sugar fermentation test, casein hydrolysis test, Tween 20 hydrolysis test and gelatin liquefaction test were performed on the five isolates designated E5, M1, M13, G2 and G8 (Sneath et al., 1986). The ability to grow at different temperatures was evaluated by inoculating the isolates into LB agar medium (Difco) at 15, 20, 30, 40, 50, 60 and 70°C (Aanniz et al., 2015). The pH range for growth was determined by growing the isolates at 55°C in 10 ml LB broth (Difco) adjusted to pH 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 using HCl or NaOH (Allan et al., 2005). Salt tolerance was determined by...
growing the cultures in 10 ml LB broth supplemented with NaCl to total concentrations of 1 to 13% (w/v) at 55°C (Nakamura and Swezy, 2017). Turbidities of both pH and salt tolerance series were determined using a dual-beam spectrophotometer (Versamax, Germany) set at 680 nm, at 24 h intervals.

Enzyme activities of the selected isolates

Direct quantification of enzyme activities by measuring the diameter of clearing zones on petri dishes was used to compare the five selected isolates. The enzyme activity assay included α-amylase (Khalil, 2011), cellulase using cellulose powder and carboxymethyl cellulose (CMC) as substrates (Teather and Wood, 1982), caseinase (Adhikari et al., 2015), pectinases (Huang et al., 2012) and xylanases (Gessese and Gashe, 1997). Incubation was done at 55°C for 48 h. The diameter of the clear zones was measured using a ruler. Multivariate analysis (MANOVA) was used to compare enzyme activity between the five selected isolates. Significance was tested at p = 0.05.

RESULTS

Morphological and cellular characterization of isolates

Based on colony morphology, 65 thermotolerant bacterial isolates were obtained from the five hot springs in Eritrea. The highest number (21) of the isolates was obtained from Garbanabra while the lowest (5) was from Gelti. The colony forming units of thermotolerant bacteria that grew at 55°C varied from 5.4×10^3 in Akwar to 1.4×10^5 cfu ml$^{-1}$ in Elegedi (Table 1).

The number of isolates obtained from Akwar and Maiwooi were almost twice those from Gelti and Elegedi. The 65 isolates were Gram positive, rod-shaped, and endospore forming (Table 2). The spores observed were terminal as shown in Figure 2.

Hydrolase activity

A positive result for hydrolase activity was indicated by the clear zone formed around the colony (Figure 2). Out of the 65 isolates; 19 isolates produced a positive reaction for amylases, 36 for carboxymethyl cellulases, eight for proteases, 10 for xylanases and eleven for pectinases (Table 2). More than half (36 out of 65) were able to produce carboxymethyl cellulases. Six isolates which showed CMCase activity were from the genus *Bacillus*, while seven belonged to *Brevibacillus*. The five selected isolates; E5, G2, G8, M1 and M13 showed CMCase activity. However, only E5, G2 and M1 showed positive activity when cellulose powder was used as a substrate.

16S rRNA analysis

Genomic DNA was extracted from all the 65 thermotolerant isolates. 16S rRNA gene amplification with bacterial specific primers yielded an amplification product of approximately 1500 bp. From the 65 amplified PCR products sent for sequencing, only 24 appeared to be unambiguous and were considered for phylogenetic analysis. The 24 isolates were submitted to the NCBI database and were assigned accession numbers (KX549080-KX549102).

Sequence comparison with the Genebank and EZ-taxon databases using BLAST pairwise alignment was done and the affiliations of the 24 isolates to the closest reference strain were determined. The identification of the 24 isolates based on the sequence comparison with the Genebank, NCBI and reference strains belonging to genera *Bacillus* and *Brevibacillus* is shown in Table 3. BLAST analysis of the partial sequences showed that 19 out of the 24 isolates showed high similarity (> 99%) to reference strains of the genera *Bacillus* and *Brevibacillus* available in the Genebank and EZ-taxon databases. Five isolates (E5, G2, G8, M1 and M13) showed moderate sequence similarity (97.2 - 99%) to reference strains. Isolates G8, G9, M9 and M12 showed similarity (99.0 - 99.6%) to *Bacillus aerius* strain 24K (AJ831843) described by Shivaji et al. (2006). Four isolates (E5, G4, G5 and M5) were shown to affiliate (98.0 - 99.7%) with *Bacillus sonorenensis* strain NRBC AYTN01000016 (Palmisano et al., 2001). M13 was the only isolate which affiliated with *Bacillus licheniformis* strain 9945A (Gwinn and Thorne, 1964). The other 15 isolates (G1, G2, G3, G6, G11, G12, G14, G18, G19, G20, M1, M3, M10, M11 and M14) showed 98.1 to 100% similarity to *Brevibacillus borsteliiens* strain NRRL (Shida et al., 1996).

The five isolates that showed moderate similarity are indicated in bold letters. Out of 13 isolates sequenced from Garbanabra, nine affiliated with the genus *Brevibacillus* while the other five belonged to *Bacillus*. In

Table 1. Bacterial count and number of isolates in the five hot springs.

<table>
<thead>
<tr>
<th>Sampling site</th>
<th>cfu ml$^{-1}$</th>
<th>Number of isolates</th>
<th>% of thermotolerant isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maiwooi</td>
<td>1.1×10^4</td>
<td>16</td>
<td>24.6</td>
</tr>
<tr>
<td>Akwar</td>
<td>5.4×10^3</td>
<td>16</td>
<td>24.6</td>
</tr>
<tr>
<td>Garbanabra</td>
<td>1.1×10^5</td>
<td>21</td>
<td>32.3</td>
</tr>
<tr>
<td>Gelti</td>
<td>8.0×10^4</td>
<td>5</td>
<td>7.7</td>
</tr>
<tr>
<td>Elegedi</td>
<td>1.4×10^5</td>
<td>7</td>
<td>10.8</td>
</tr>
</tbody>
</table>
Table 2. Morphological and biochemical characteristics of bacterial isolates from hot springs in Eritrea that produced extracellular enzymes.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Colour</th>
<th>Colony characterization</th>
<th>Cell characterization</th>
<th>Extracellular enzymes detected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amylase</td>
</tr>
<tr>
<td>A1</td>
<td>Brown</td>
<td>Curled</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>A2</td>
<td>Brown</td>
<td>Round</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>A3</td>
<td>Cream</td>
<td>Curled</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>A4</td>
<td>Cream</td>
<td>Irregular</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>A5</td>
<td>Cream</td>
<td>Round</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>A6</td>
<td>Cream</td>
<td>Irregular</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>A7</td>
<td>White</td>
<td>Round</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>A8</td>
<td>Brown</td>
<td>Curled</td>
<td>Raised</td>
<td>Medium</td>
</tr>
<tr>
<td>A9</td>
<td>Yellow</td>
<td>Round</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>A10</td>
<td>Cream</td>
<td>Round</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>A11</td>
<td>Cream</td>
<td>Round</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>A12</td>
<td>Cream</td>
<td>Irregular</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>A13</td>
<td>Cream</td>
<td>Irregular</td>
<td>Flat</td>
<td>Big</td>
</tr>
<tr>
<td>A14</td>
<td>Watery gray</td>
<td>Round</td>
<td>Flat</td>
<td>Big</td>
</tr>
<tr>
<td>A15</td>
<td>Dark brown</td>
<td>Round</td>
<td>Flat</td>
<td>Small</td>
</tr>
<tr>
<td>A16</td>
<td>Light brown</td>
<td>Curly</td>
<td>Raised</td>
<td>Medium</td>
</tr>
<tr>
<td>E1</td>
<td>Brown</td>
<td>Round</td>
<td>Flat</td>
<td>Small</td>
</tr>
<tr>
<td>E2</td>
<td>Brown</td>
<td>Wrinkled</td>
<td>Flat</td>
<td>Big</td>
</tr>
<tr>
<td>E3</td>
<td>Cream</td>
<td>Waivy</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>E4</td>
<td>Cream</td>
<td>Round</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>E5</td>
<td>White</td>
<td>Irregular</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>E6</td>
<td>Cream</td>
<td>Concentric</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>E7</td>
<td>Cream</td>
<td>Round</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>G1</td>
<td>Cream</td>
<td>Round</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>G2</td>
<td>Watery brown</td>
<td>White</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>G3</td>
<td>Brown</td>
<td>Wrinkled</td>
<td>Flat</td>
<td>Big</td>
</tr>
<tr>
<td>G4</td>
<td>Yellow</td>
<td>Contoured</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>G5</td>
<td>Brown</td>
<td>Wrinkled</td>
<td>Flat</td>
<td>Big</td>
</tr>
<tr>
<td>G6</td>
<td>Yellow</td>
<td>Contoured</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>G7</td>
<td>Shiny cream</td>
<td>Shell-like</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>G8</td>
<td>Cream</td>
<td>Round</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>G9</td>
<td>Brown</td>
<td>Curled</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>G10</td>
<td>Cream</td>
<td>Concentric</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>G11</td>
<td>White</td>
<td>Filamentous</td>
<td>Flat</td>
<td>Medium</td>
</tr>
<tr>
<td>G12</td>
<td>White</td>
<td>Filamentous</td>
<td>Flat</td>
<td>Medium</td>
</tr>
</tbody>
</table>
Maiwooi, five out of nine isolates had shown similarity (98.1 to 100%) to *Brevibacillus*. The phylogenetic tree of the 16S rRNA partial sequences of the 24 isolates revealed two major clusters (Figure 3). One cluster containing strains belonging to the genus *Bacillus* and the other

Table 2. Contd.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Colony characterization</th>
<th>Cell characterization</th>
<th>Extracellular enzymes detected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Colour</td>
<td>Shape</td>
<td>Elevation</td>
</tr>
<tr>
<td>G13</td>
<td>Brown</td>
<td>Wrinkled</td>
<td>Flat</td>
</tr>
<tr>
<td>G14</td>
<td>Shiny cream</td>
<td>Shell-like</td>
<td>Flat</td>
</tr>
<tr>
<td>G15</td>
<td>Shiny cream</td>
<td>Shell-like</td>
<td>Flat</td>
</tr>
<tr>
<td>G16</td>
<td>Brown</td>
<td>Wrinkled</td>
<td>Flat</td>
</tr>
<tr>
<td>G17</td>
<td>Shiny cream</td>
<td>Shell-like</td>
<td>Flat</td>
</tr>
<tr>
<td>G18</td>
<td>Light brown</td>
<td>Curly</td>
<td>Raised</td>
</tr>
<tr>
<td>G19</td>
<td>White</td>
<td>Contoured</td>
<td>Flat</td>
</tr>
<tr>
<td>G20</td>
<td>White</td>
<td>Filamentous</td>
<td>Flat</td>
</tr>
<tr>
<td>G21</td>
<td>Brown</td>
<td>Round</td>
<td>Flat</td>
</tr>
<tr>
<td>J1</td>
<td>Yellow</td>
<td>Contoured</td>
<td>Flat</td>
</tr>
<tr>
<td>J2</td>
<td>Brown</td>
<td>Wrinkled</td>
<td>Flat</td>
</tr>
<tr>
<td>J3</td>
<td>Shiny cream</td>
<td>Shell-like</td>
<td>Flat</td>
</tr>
<tr>
<td>J4</td>
<td>Brown</td>
<td>Curled</td>
<td>Flat</td>
</tr>
<tr>
<td>J5</td>
<td>Brown</td>
<td>Wrinkled</td>
<td>Flat</td>
</tr>
<tr>
<td>M1</td>
<td>Cream</td>
<td>Round</td>
<td>Flat</td>
</tr>
<tr>
<td>M2</td>
<td>Cream</td>
<td>Round</td>
<td>Flat</td>
</tr>
<tr>
<td>M3</td>
<td>White</td>
<td>Filamentous</td>
<td>Flat</td>
</tr>
<tr>
<td>M4</td>
<td>White</td>
<td>Wrinkled</td>
<td>Flat</td>
</tr>
<tr>
<td>M5</td>
<td>Yellow</td>
<td>Round</td>
<td>Flat</td>
</tr>
<tr>
<td>M6</td>
<td>Cream</td>
<td>Round</td>
<td>Flat</td>
</tr>
<tr>
<td>M7</td>
<td>Brown</td>
<td>Curled</td>
<td>Flat</td>
</tr>
<tr>
<td>M8</td>
<td>Brown</td>
<td>Round</td>
<td>Flat</td>
</tr>
<tr>
<td>M9</td>
<td>Watery brown</td>
<td>White</td>
<td>Flat</td>
</tr>
<tr>
<td>M10</td>
<td>Cream</td>
<td>Round</td>
<td>Flat</td>
</tr>
<tr>
<td>M11</td>
<td>Yellow</td>
<td>Contoured</td>
<td>Flat</td>
</tr>
<tr>
<td>M12</td>
<td>White</td>
<td>Filamentous</td>
<td>Flat</td>
</tr>
<tr>
<td>M13</td>
<td>Brown</td>
<td>Round</td>
<td>Flat</td>
</tr>
<tr>
<td>M14</td>
<td>Faint brown</td>
<td>Round</td>
<td>Flat</td>
</tr>
<tr>
<td>M15</td>
<td>Cream</td>
<td>Round</td>
<td>Flat</td>
</tr>
<tr>
<td>M16</td>
<td>White</td>
<td>Contoured</td>
<td>Flat</td>
</tr>
</tbody>
</table>

¹Protease activity was done using ¹skimmed milk and ²casein as substrates. + indicates positive activity while - signifies negative reaction or no observable activity.
Spores (green) and vegetative cells (pink) of the isolate E5 obtained from the Elegedi hot spring in Eritrea. Ellipsoidal spores lie terminally as shown by the arrows.

Table 3. Affiliation of partial sequences of 24 bacterial isolates from hot springs in Eritrea with the 16S rDNA gene sequences in the GenBank.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Sampling site</th>
<th>Accession number</th>
<th>Affiliated to</th>
<th>Closest match in BLAST</th>
<th>Length (bp)</th>
<th>%</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5</td>
<td>Elegedi</td>
<td>KX549080</td>
<td>AYT0100001</td>
<td>Bacillus sonorensis NBRC</td>
<td>270</td>
<td>98.0</td>
<td>Palmisano et al. (2001)</td>
</tr>
<tr>
<td>G1</td>
<td>Garbanabra</td>
<td>KX549081</td>
<td>D78456</td>
<td>Brevibacillus borstelensis NRRL</td>
<td>390</td>
<td>100</td>
<td>Shida et al. (1996)</td>
</tr>
<tr>
<td>G2</td>
<td>Garbanabra</td>
<td>KX549082</td>
<td>D78456</td>
<td>Brevibacillus borstelensis NRRL</td>
<td>317</td>
<td>97.2</td>
<td>Shida et al. (1996)</td>
</tr>
<tr>
<td>G3</td>
<td>Garbanabra</td>
<td>KX549083</td>
<td>D78456</td>
<td>Brevibacillus borstelensis NRRL</td>
<td>566</td>
<td>100</td>
<td>Shida et al. (1996)</td>
</tr>
<tr>
<td>G4</td>
<td>Garbanabra</td>
<td>KX549084</td>
<td>AYT0100001</td>
<td>Bacillus sonorensis NBRC</td>
<td>565</td>
<td>99.9</td>
<td>Palmisano et al. (2001)</td>
</tr>
<tr>
<td>G5</td>
<td>Garbanabra</td>
<td>KX549085</td>
<td>AYT0100001</td>
<td>Bacillus sonorensis NBRC</td>
<td>560</td>
<td>99.7</td>
<td>Palmisano et al. (2001)</td>
</tr>
<tr>
<td>G6</td>
<td>Garbanabra</td>
<td>KX549086</td>
<td>D78456</td>
<td>Brevibacillus borstelensis NRRL</td>
<td>577</td>
<td>100</td>
<td>Shida et al. (1996)</td>
</tr>
<tr>
<td>G8</td>
<td>Garbanabra</td>
<td>KX549087</td>
<td>AJ831843</td>
<td>Bacillus aerius 24K</td>
<td>570</td>
<td>99.0</td>
<td>Shivaji et al. (2006)</td>
</tr>
<tr>
<td>G9</td>
<td>Garbanabra</td>
<td>KX549088</td>
<td>AJ831843</td>
<td>Bacillus aerius 24K</td>
<td>430</td>
<td>99.5</td>
<td>Shivaji et al. (2006)</td>
</tr>
<tr>
<td>G11</td>
<td>Garbanabra</td>
<td>KX549089</td>
<td>D78456</td>
<td>Brevibacillus borstelensis NRRL</td>
<td>498</td>
<td>100</td>
<td>Shida et al. (1996)</td>
</tr>
<tr>
<td>G12</td>
<td>Garbanabra</td>
<td>KX549090</td>
<td>D78456</td>
<td>Brevibacillus borstelensis NRRL</td>
<td>519</td>
<td>100</td>
<td>Shida et al. (1996)</td>
</tr>
<tr>
<td>G14</td>
<td>Garbanabra</td>
<td>KX549091</td>
<td>D78456</td>
<td>Brevibacillus borstelensis NRRL</td>
<td>392</td>
<td>99.5</td>
<td>Shida et al. (1996)</td>
</tr>
<tr>
<td>G18</td>
<td>Garbanabra</td>
<td>KX549092</td>
<td>D78456</td>
<td>Brevibacillus borstelensis NRRL</td>
<td>562</td>
<td>100</td>
<td>Shida et al. (1996)</td>
</tr>
<tr>
<td>G19</td>
<td>Garbanabra</td>
<td>KX549093</td>
<td>D78456</td>
<td>Brevibacillus borstelensis NRRL</td>
<td>513</td>
<td>100</td>
<td>Shida et al. (1996)</td>
</tr>
<tr>
<td>G20</td>
<td>Garbanabra</td>
<td>KX549094</td>
<td>D78456</td>
<td>Brevibacillus borstelensis NRRL</td>
<td>420</td>
<td>100</td>
<td>Shida et al. (1996)</td>
</tr>
<tr>
<td>M1</td>
<td>Maiwooi</td>
<td>KX549095</td>
<td>D78456</td>
<td>Brevibacillus borstelensis NRRL</td>
<td>440</td>
<td>98.1</td>
<td>Shida et al. (1996)</td>
</tr>
<tr>
<td>M3</td>
<td>Maiwooi</td>
<td>KX549096</td>
<td>D78456</td>
<td>Brevibacillus borstelensis NRRL</td>
<td>475</td>
<td>100</td>
<td>Shida et al. (1996)</td>
</tr>
<tr>
<td>M5</td>
<td>Maiwooi</td>
<td>KX549097</td>
<td>AYT01000016</td>
<td>Bacillus sonorensis NBRC</td>
<td>349</td>
<td>99.7</td>
<td>Palmisano et al., (2001)</td>
</tr>
<tr>
<td>M9</td>
<td>Maiwooi</td>
<td>KX549098</td>
<td>AJ831843</td>
<td>Bacillus aerius 24K</td>
<td>367</td>
<td>99.3</td>
<td>Shivaji et al. (2006)</td>
</tr>
<tr>
<td>M10</td>
<td>Maiwooi</td>
<td>KX549099</td>
<td>D78456</td>
<td>Brevibacillus borstelensis NRRL</td>
<td>497</td>
<td>100</td>
<td>Shida et al. (1996)</td>
</tr>
<tr>
<td>M11</td>
<td>Maiwooi</td>
<td>KX549100</td>
<td>D78456</td>
<td>Brevibacillus borstelensis NRRL</td>
<td>466</td>
<td>100</td>
<td>Shida et al. (1996)</td>
</tr>
<tr>
<td>M12</td>
<td>Maiwooi</td>
<td>KX549101</td>
<td>AJ831843</td>
<td>Bacillus aerius 24K</td>
<td>442</td>
<td>99.6</td>
<td>Shivaji et al. (2006)</td>
</tr>
<tr>
<td>M13</td>
<td>Maiwooi</td>
<td>KX549102</td>
<td>766760</td>
<td>Bacillus licheniformis 9945A</td>
<td>567</td>
<td>98.7</td>
<td>Gwinn and Thorne (1964)</td>
</tr>
<tr>
<td>M14</td>
<td>Maiwooi</td>
<td>KX549103</td>
<td>D78456</td>
<td>Brevibacillus borstelensis NRRL</td>
<td>530</td>
<td>100</td>
<td>Shida et al. (1996)</td>
</tr>
</tbody>
</table>
containing strains affiliated with *Brevibacillus* with bootstrap values of 92 and 94 respectively.

Characterization of five bacterial isolates with moderate similarity

The five isolates (E5, G2, G8, M1 and M13) that showed moderate similarities (97.2 - 99.0%) with strains in Genebank and EZ-taxon databases were further characterized. The partial sequences of E5, G8 and M13 revealed similarity with *Bacillus* (98.0 - 99%) while G2 and M1 affiliated with the genus *Brevibacillus* (97.2 - 98.1%). The five isolates were Gram positive endospore forming rods. The growth of E5 was observed to occur between 20 - 60°C (Table 4).

E5 grew at a temperature range of 20 - 60°C. The others; G2, G8, M1 and M13 grew at a temperature range between 15 and 60°C. The isolates E5, G8 and M13 formed brown colonies on casein agar plates, whereas G2 and M1 formed white colonies. Isolate E5 grew between pH 5 and pH 11, G2 and M13 between pH 6 and 11, G8 between pH 6 - 10 and M13 between pH 7 and 13. Isolates E5, G2 and G8 tolerate up to 11.6% NaCl while M17 and M13 tolerated up to 10% NaCl. The five selected isolates were indole negative and showed no motility at 55°C. All except E5 were catalase positive. All the five isolates produced acid from glucose, xylose and mannitol. E5, G8 and M13, whose sequence affiliated with the genus *Bacillus*, also produced acid from galactose, inositol as well as melibiose and were shown to hydrolyze Tween 20.

Enzyme activity assay

Halo size, a semi-quantitative method, indicates the efficiency of a colony in producing particular enzyme (Scorsetti et al., 2012). The agar diffusion method was employed to quantify enzyme activities by measuring the
diameter of the zone of clearance (Figure 4). E5, G8 and M13, affiliated with the genus *Bacillus*, showed amylase activity while G2 and M1, belonging to the genus *Brevibacillus*, exhibited no amylase activity. Isolates G8 and M13 showed significantly higher amylase activity (p < 0.05) than the other three isolates.

All the five isolates, E5, G2, G8, M1 and M13, were able to produce extracellular CMCases. Isolate G2 recorded significantly higher activity (p < 0.05) while isolate E5 recorded the least activity. There was no significant difference in caseinase activity between five isolates (p > 0.05). All the five isolates showed positive caseinase activity. Cellulase activity was recorded for isolates E5, G2 and M1, while G8 and M13 showed no activity. G8 and M13 were the only isolates that showed xylanase activity. Pectinase activity was only registered by isolates E5 and G8. Caseinase activity was significantly the highest compared to other substrates (p < 0.05). Amylase and CMCase activities were also significantly higher (p < 0.05) than cellulase, pectinase and xylanase activities.

The hydrodase activities, tolerance to high temperature, pH range and high NaCl concentrations were used to rank the effectiveness of the five isolates (Table 5). From the five selected isolates E5 had the highest score (7) followed by G8 (6). M13 had the lowest score of 3.

A score of one (1) was assigned to the positive reactions of the six hydrodase activities. Temperature tolerance of the five isolates were similar and hence was not considered in the ranking. A score of one (1) was assigned for those isolates that grew at pH 5 or 13. An isolate that grew above 10% NaCl was also given a score of one (1).

DISCUSSION

A total of 65 thermotolerant bacterial isolates were
isolated from five hot springs in Eritrea. Thermotolerant bacteria were present in all samples analyzed. The cfu counts per ml ranged from 5.4×10^3 in Akwar to 1.4×10^5 cfu/ml in Elegedi. Relatively higher cfu counts were retrieved from Elegedi, a boiling hot spring than the other hot springs. The total counts in this study were higher than 50-5000 cfu/ml recorded in Morrocan hot springs (Aanniz et al., 2015) and 170-1330 cfu/ml recorded in the geothermal springs in Saudi Arabia (Khiyami et al., 2012).

The sequences for 24 isolates were without ambiguities. All the 24 isolated microbes belonged to the domain bacteria, phylum *Firmicutes*, class *Bacilli*, order *Bacillales*, within two different families: *Bacillaceae* and *Paenibacillaceae*. Among these were; *B. sonorensis*, *B. licheniformis*, *B. aerius* and *B. borstelensis*. Bacilli were previously isolated from hot springs in Saudi Arabia using the same culture medium (Khalil, 2011). This indicates
that the enrichment culture medium used in this study is suitable for cultivation of the bacilli group. The other reason, which cannot be ruled out, is that *Bacillus* species are spore-forming ubiquitous bacteria in thermal hot springs. They were observed to be the predominant groups isolated from hot springs in Indonesia using other enrichment medium such as spring water enriched with nutrient broth (Yohandini, 2015). *Bacillus* have also been isolated using nutrient broth supplemented with 1% Tween or Olive oil from geothermal springs in Armenia (Shahinyan et al., 2015), Castenholz TYE medium from hot springs in India (Verma et al., 2014), Tryptone Soy Agar (TSY) from hot springs in Morocco (Aanniz et al., 2015) and nutrient agar from hot springs in Fiji (Narayan et al., 2008). The genus *Bacillus* and related genera are reported to be widely distributed in nature. It includes thermophilic, psychrophilic, acidophilic, alkaliphilic and halophilic bacteria that utilize a wide range of carbon sources for heterotrophic growth or are the autotrophs (Panda et al., 2014). In the present study, the isolates were recovered from five hot springs in Eritrea with different temperature regimes (49 - 100°C), as well as different sodium concentration levels ranging from 0.06 to 3640 mg/lt at near neutral pH.

The sequences of the 24 isolates were shown to form two clusters on the phylogenetic tree. One cluster included the genus *Bacillus* and nine other isolates. Included in the other cluster are isolates represented in the genus *Brevibacillus* and the 14 other isolates. All the 14 isolates showed similarity to *B. borstelensis* species. *Brevibacillus* and *Bacillus* are known to co-inhabit in diverse environments including rocks, dust, aquatic environments, guts of various insects and animals (Nicholson, 2002).

The thermotolerant bacteria isolated from the Eritrean hot springs, in the present study, were shown to produce hydrolytic enzymes such as amylases, cellulases, proteases, pectinases and xylanases at 55°C. Plate assays revealed that 19 of the isolates were amylase producers and 45 were protease producers. The increased stability of thermophilic enzymes at high temperature, chemical denaturants and pH changes makes them suitable for harsh industrial processes. Higher reaction rates and process yields of enzymatic reactions are achieved at high temperatures because of the decrease in viscosity, the increase in the diffusion coefficient of substrates as well as an increase in the solubility of substrates and products (Haki and Rakshit, 2003). Screening of microorganisms for amylase production allows for the discovery of novel amylases required for specific industrial applications. Thermostability is the most important property of an effective amylase, because liquefaction and saccharification of starch are performed at high temperature. In the present study, out of 65 isolates from the hot springs in Eritrea, 19 were positive for amylase production. Among the amylase positive isolates, seven were affiliated to *Bacillus* based on their partial 16S rRNA gene sequence similarity and three to *Brevibacillus*. Isolates E5, G8 and M13 which tested positive for amylase activity possessed thermostability and halotolerability. E5 was also able to grow at slightly acidic levels (pH 5). The three of them were also observed to thrive at pH 11. This suggests that the enzymes obtained from these isolates are promising in their application in starch, detergent and textile industries.

Proteases have a long history of application in the food and detergent industries. They are also used in the leather industry for dehairing and bating of hides as a substitute for toxic chemicals. The use of the *Bacillus* species for protease production offers several advantageous like significant activity, stability, substrate specificity, short period of fermentation, mere downstream purification and low cost production (Aqel et al., 2012). In the present study, skimmed milk as well as casein were used as substrates to assess protease activity of the isolates. Eight of the isolates in the present study showed positive protease activity in media supplemented with skimmed milk as a substrate while 45 isolates showed positive activity using casein. The five possible novel isolates exhibited protease activity in medium supplemented with casein as a substrate.

Xylanase and pectinase screening of the isolates was also observed using xylan and pectin as a carbon source. Ten isolates were xylanase positive while those that showed positive pectinase activity were eleven. Isolates E5, G8, M9 and M13 belonging to the genus *Bacillus* were among those that showed positive xylanase and pectinase activities. E5 was shown to grow at a temperature of 60°C and slightly acidic pH of 5. Therefore, its xylanase and pectinase may have potential uses in industries such as detergent, food, pharmaceutical, leather, agriculture, kraft pulp prebleaching process and molecular biology reagents.

Physiological and biochemical characterization of the five isolates revealed some differences from strains in the Genebank and E2-taxon databases. Isolate E5 was shown to grow at a maximum temperature of 60°C and 5-11 pH range, while *B. sonorensis* DSM 13779 which had shown 98% BLAST similarity with E5 did not show growth above 45°C (Shiavji et al., 2006). Notably, E5 isolated from the boiling hot spring with a temperature of 100°C did not grow in cultures above 60°C. *Bacillus* spp. are known to form spores and become dormant during extreme environmental conditions. This could explain why E5 did not grow above 60°C while it was isolated from the boiling hot spring. The other four isolates (G2, G8, M1 and M13), like E5, were shown to grow at 60°C. Isolate E5 was able to grow in the presence of 13% NaCl while *B. sonorensis* DSM 13779 was not able to grow above 10% NaCl (Shiavji et al., 2006). Isolates G2 and M1 showed moderate similarities (97.2 and 98.1, respectively) with strain *B. borstelensis* LMG. The maximum growth temperature (60°C) of the isolates G2
and M1 was 10°C higher than the *B. borstelensis* LMG 16009 (Allan et al., 2005). The isolates G2 and M1, unlike *B. borstelensis* LMG 16009, were shown to produce acid from mannitol. These observations could indicate the potential that these isolates could be novel.

Conclusion

To the best of our knowledge, the present study investigated for the first time thermotolerant bacteria that produce enzymes from five hot springs in Eritrea using culture methods. Most of the isolates were thermotolerant and showed positive hydrolyase activities. The sequences of the 24 isolates showed similarity with *Bacillus* and *Brevibacillus* from the phylum *Firmicutes*. Five isolates (E5, G2, G8, M1 and M13) showed moderate similarities with strains in Genebank and EZ-taxon databases. Moreover, the physiological and biochemical behavior of these isolates was not similar to the strains of the same species. When the five isolates were ranked based on hydrolyase activities, tolerance to high temperature, acidic or alkaline pH levels and high NaCl concentrations, E5 was observed to be the most effective followed by G8, G2, M1 and M13. Taken together, the 16S rDNA data, physiological and biochemical characteristics provide possible evidence for the novel nature of the five isolates.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Palmisano MM, Nakamura LK, Duncan KE, Istock CA, Cohan FM (2001). *Bacillus sonorensis* sp. nov., a close relative of *Bacillus*

