ABOUT JECE

The Journal of Environmental Chemistry and Ecotoxicology (JECE) is published bi-monthly (one volume per year) by Academic Journals.

Journal of Environmental Chemistry and Ecotoxicology (JECE) is an open access journal that provides rapid publication (bi-monthly) of articles in all areas of the subject such as ocean acidification, pesticides use and regulation, arsenic induced genotoxicity by curcumin, heavy metals and its environmental effect etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JECE are peer-reviewed.

Contact Us

Editorial Office: jece@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JECE
Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Peter Massanyi
Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Animal Physiology, Management,
Tr. A. Hlinku 2, SK-949 76 Nitra, Slovak Republic, Slovak Republic.

Prof. Toyin Ayodele Arowolo
Department of Environmental Management & Toxicology,
College of Environmental Resources
University of Agriculture,
P.M.B. 2240,
Abeokuta 110001,
Ogun State,
Nigeria.

Prof. Mostafa El-Sheekh
Faculty of Science, Tanta University,
Tanta 31527,
Egypt.

Dr. Xue Song Wang
Department of Chemical Engineering,
Huaihai Institute of Technology,
CangWu Road 59#, Lianyungang, Jiangsu, PR.

China

Prof. Minghua Zhou
Nankai University,
No. 94, Road Weijin,
Nankai District,
Tianjin 300071,
China.

Dr. Mohamed Nageeb Rashed
Aswan Faculty of Science, South Valley University,
Aswan,
Egypt.

Prof. Muhammad Abdul Rauf
United Arab Emirates University,
United Arab Emirates.

Prof. Hamayun Khan
Department of Chemistry
Islamia College University
Peshawar-25120,
Pakistan.

Prof. Shao Hongbo
Qingdao University of Science Technology,
Zhengzhou Road 53, Qingdao266042, China,
China.

Prof. Ghasem D. Najafpour
Oshirvani University of Technology
Babol, Iran
Iran.
Editorial Board

Dr. Mohammad Al-Hwaiti
Al-Hussein Bin Talal University
Environmental Engineering Department
O. Box (20) M'd'an-Jordan
Jordan.

Prof. Ajai Kumar Srivastav
DDU Gorakhpur University
Department of Zoology, DDU Gorakhpur University, Gorakhpur, INDIA.

Nathaniel C. Añasco
University of the Philippines Visayas
Miagao, Iloilo 5023 Philippines
Philippines.

Prof. El-Refaie Kenawy
King Saud University, Faculty of Science, Department of Chemistry, Petrochemicals Research Chair, B.O.Box 2455 Riyadh 11451, Saudi Arabia
Saudi Arabia.

Dr. K. Senthil Kumar
TÜV SÜD South Asia Pvt. Ltd., No: A-151, 2nd C Main, 2nd Stage, Peenya Industrial Estate, Bangalore 560058, Karnataka State, INDIA
India.

Dr. Omotayo Sarafadeen Amuda
Ladoke Akintola University of Technology
Ilorin Road, Ogbomoso, Nigeria.

Dr. Jitendra Pandey
Banaras Hindu University
Environmental Science Division, Department of Botany, Banaras Hindu University, Varanasi - 221005, India.

Dr. Soumya Chatterjee
Defence Research Laboratory, Tezpur (DRDO)
Post Bag No. 2, Tezpur 784001, Assam, India.

Prof. Bechan Sharma
University of Allahabad
Department of Biochemistry, Allahabad-211002, India.

Dr. Ghausia Begum
Indian Institute of Chemical Technology, Hyderabad 500 007, A.P; India
Prof. Gang Yang
Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University
26 Hexing Road, Harbin
China.

Dr. Anindita Bhattacharyya
Indian Statistical Institute
203, B. T. Road, Kolkata 700108, West Bengal, India.

Dr. Onome Davies
Rivers State University of Science & Technology, Port Harcourt, Rivers State
Dept. of Fisheries & Aquatic Environment, P.M.B. 5080, Port Harcourt, Nigeria.

Dr. B. Stephen Inbaraj
Fu Jen University
Department of Nutrition & Food Science, Taipei 242, Taiwan
Environmental Chemistry & Analytical Chemistry
Taiwan.

Dr. Hala A. Awney
Institute of Graduate Studies and Research, Alexandria University, Egypt.

Dr. Suhel Parvez
Leibniz Institute for Neurobiology
Brennekestr. 6, Magdeburg 39118, Germany.

Dr. Mayalagu Rajkumar
Institute of Oceanology, Chinese Academy of Sciences
7 Nanhai Road, Qingdao, 266071 China.

Dr. Eldon Raj Rene
University of La Coruna
Department of Chemical Engineering, Spain

Vyacheslav Khavrus
L. V. Pisarzhevskii Institute of Physical Chemistry of NAS of the Ukraine (permanent position)
Ukraine.
Heavy metal remediation from municipal waste water using arrowroots (Amaranta arundinacea)
Joan Mwiluka Tenge, John Kituyi Lusweti and Gideon Ng, wena Magak
Full Length Research Paper

Heavy metal remediation from municipal waste water using arrowroots (*Amaranta arundinacea*)

Joan Mwiluka Tenge¹; John Kituyi Lusweti¹ and Gideon Ng' wena Magak²

¹Department of Chemistry, University of Eldoret, P. O. Box 1125-30100, Eldoret-Kenya.
²Department of Medical Physiology, Maseno University, P. O. Box 333, Maseno-Kenya.

Received 16 April, 2015; Accepted 18 July, 2018

Municipal wastewater contains high levels of pollutants since it is a collection of wastes from various sources of human activities. Municipal treatment of such wastewater is usually aimed at lowering the levels of pollutants to permissible amounts before discharge into recipient environment. Several conventional methods are available for treatment of wastewater. However, most of them are costly and not economically feasible due to their secondary environmental impact. Wastewater treatment using natural plants has been considered the most environmentally friendly method. A study has been conducted to establish the metal removal rates from waste water using arrowroots. To establish if arrowroots can tolerate high levels of pollutants under natural conditions, raw arrowroots and raw wastewater were used. Pollutant removal efficiency levels was carried out by setting up a model constructed wetland where arrowroots were planted in raw influent of municipal wastewater and concentration levels of both planted and unplanted influent and effluent determined. Pollutant removal efficiency was compared using the relative treatment efficiency index technique. The results of the metal removal rates in wastewater cultivated with arrowroots were: Fe (68%), Mn (98%), Zn (54%) and Cu (50%) while pollutant removal in wastewater without arrowroots were: Fe (38%), Mn (48%), Zn (9%) and Cu (9%). The percent pollutant removal rate when arrowroots were planted in the effluent from unplanted maturation ponds was: Fe (97%), Mn (97%), Zn (48%) and Cu (50%) with relative treatment efficiency of 0.28, 0.34, 0.71, and 0.65, respectively and p < 0.002 at 5% confidence interval. The difference in percent removal showed that more metal ions could be removed both from the raw sewage and final effluent when cultivated with arrowroots than in uncultivated maturation ponds, suggesting that arrowroots can be of significant benefit as a tertiary wastewater treatment alternative.

Key words: Wastewater, treatment, efficiency, influent, effluent, pollutants

INTRODUCTION

Constructed wetlands of natural plants are proving to be a valid treatment option for hazardous wastewaters, petroleum refinery wastes, compost and landfill leachates, agricultural wastes and pre-treated industrial wastewaters.

*Corresponding author. E-mail: tengejoan@gmail.com Tel: +254(0)726461462.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
such as those from tannery, pulp and paper mills and textile mills, treatment of raw sewage among others (Igwe and Abia, 2007; Volesky, 2007; Karanthanasis and Johnson, 2003; Ramirez, 2002; Tonderski et al., 2005; Maine et al., 2006; Calheiros et al., 2007; Molle et al., 2005). The most significant functions of wetland emergent plants in relation to water purification are the physical effects brought by the presence of the plants, which provide a huge surface area for attachment and growth of microbes. The physical components of plants stabilize the surface of the beds, slow down the water flow, thus assist in sediment settling and trapping process and finally increasing water transparency. Wetland plants play a vital role in the removal and retention of nutrients and help in preventing the eutrophication of wetlands. A range of wetland plants has shown their ability to assist in the breakdown of wastewater. These plants have a large biomass both above (leaves) and below (underground stem and roots), the surface of the substrate. Turnover of root mass in plants creates macropores in a constructed wetland soil system allowing for greater percolation of water, thus increasing effluent/plant interactions (Marchand et al., 2010). The sub-surface plant tissues grow horizontally and vertically, and create an extensive matrix, which binds the soil particles and creates a large surface area for the uptake of nutrients and ions (Reeb and Werckmann, 2005).

Contaminants are removed from wastewater through several mechanisms. Processes of sedimentation, microbial degradation, precipitation and plant uptake remove most contaminants. Heavy metals in a wetland system may be sorbed to wetland soil or sediment, or may be chelated or complexed with organic matter. Metals can precipitate out as sulfides and carbonates, or get taken up by plants. Compounds in sediment, such as iron oxides, show preference for certain metals. This behavior can affect how efficiently a metal is adsorbed in a wetland. A system that has reached the limits of its adsorption capacity can exhibit a reduction in contaminant removal rates. After a system has reached its capacity for metal sorption, metal sulfide formation becomes the main method of metal removal. Sulfate-reducing bacteria oxidize organic matter and reduce sulfate to form hydrogen sulfide. Hydrogen sulfide reacts with metals to form metal sulfides, which precipitate. Compared to sediments, plants do not take up much metal, but they are involved in oxygenation and microbiological processes that contribute to the ability of the wetland to remove metals (Reeb and Werckmann, 2005).

EXPERIMENTAL DESIGN

Pollutant removal efficiency levels from wastewater using arrowroots was carried out by setting up a model constructed wetland where arrowroots were planted in raw influent of wastewater obtained at a waste water treatment plant at a quarry in Eldoret and concentration levels of both influent and effluent determined. Pollutant removal efficiency of both treated and untreated wastewater was compared by using the RTEI technique and RII index as suggested by Marchand et al. (2010). The efficiency of the metal removal with and without the arrowroot was investigated using the differences in metal removal between the influent and the effluent for the treatment (T%) with the arrowroot and compared with the control (C%) which was wastewater without the arrowroots. To obtain this, the simplified equation

\[\text{RTEI} = \frac{T - C}{T + C} \]

was used. Values of RTEI approaching 1 indicated strong benefits of metal removal, values around 0 indicated no effect of the treatment when arrowroots were used, whereas values approaching -1 indicated strong inhibition of the metal removal (Marchand et al., 2010). The effluent of the planted and the unplanted treated wastewater were also compared. The findings were recorded in Tables 1 and 2 and Figure 1 and 2.

RESULTS AND DISCUSSION

Table 1 shows results of percent removal efficiency of metal ions by life arrowroots from wastewater compared to biological method.

From Table 1, the percent removal of metal ions from raw sewage without arrowroots after 7 days of allowing natural biological action in the maturation ponds was: Fe (38%), Mn (48%), Zn (9%) and Cu (9%). However, for the same raw sewage that was cultivated with arrowroots in a model constructed wetland environment, the percent reduction after 7 days was: Fe (68%), Mn (98%), Zn (54%) and Cu (50%) with order of preference of Mn > Fe > Zn > Cu. This trend could have partly been influenced by the initial concentration of the metal ions in the raw sewage and the ionic size. Mn, having higher concentration levels in raw sewage were preferentially adsorbed followed by Fe and the least was Cu probably due to its very low concentration levels. This trend was also similar to that established by Marchand et al. (2010). This percent removal rate using the arrowroots was also found to be comparable with the removal rates of other plant species (Maine et al., 2007). The difference in percent removal showed that more metal ions could be removed both from the raw sewage and final effluent when cultivated with arrowroots than in uncultivated maturation ponds. There was also higher percent removal of Mn and Fe by arrowroots in the final biologically treated effluent compared to raw sewage. This could be because of the low concentration in the final effluent after passing through the maturation ponds.

Figure 1 shows a significant difference in the removal of metal ions from waste water using unplanted maturation ponds with that cultivated with arrowroots. Further reduction of the metal ions in the final effluent after passing through natural unplanted ponds by arrowroots was also noted in the Figure 1, showing that arrowroots can either be planted in the raw sewage or...
Table 1. Removal efficiency of metal ions by life arrowroots from waste water.

<table>
<thead>
<tr>
<th>Ion</th>
<th>Before introduction of arrowroots (levels in mg/l), treatment using biological method</th>
<th>After introduction of the arrowroots in raw sewage in the influent A1 to produce effluent B2 whose concentration levels were measured in mg/l</th>
<th>After introduction of arrowroots in biologically treated sewage of effluent B1 to produce effluent B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metal ion concentration levels in influent (A1)</td>
<td>Metal ion concentration levels in effluent (B2)</td>
<td>Metal ion concentration levels in effluent (B3)</td>
</tr>
<tr>
<td></td>
<td>Metal ion concentration levels in effluent (B1)</td>
<td>% Pollutant removal rates using biological method without arrowroots (WA)</td>
<td>% Pollutant removal rates when arrowroots were planted in the influent A1(AARS)</td>
</tr>
<tr>
<td></td>
<td>% Pollutant removal rates when arrowroots were planted in the influent A1(AARS)</td>
<td>% Pollutant removal rates when arrowroots were planted in the biologically treated effluent B1 (ACIBTS)</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>2.372</td>
<td>1.464</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>0.235</td>
<td>0.036</td>
</tr>
<tr>
<td>Mn</td>
<td>2.483</td>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>0.042</td>
<td>0.035</td>
</tr>
<tr>
<td>Zn</td>
<td>0.233</td>
<td>0.211</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.108</td>
<td>0.109</td>
</tr>
<tr>
<td>Cu</td>
<td>0.054</td>
<td>0.049</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.027</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Table 2. Values of RTEI of the metal ions using life arrowroots.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>C%</th>
<th>T%</th>
<th>RTEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>38</td>
<td>68</td>
<td>0.28</td>
</tr>
<tr>
<td>Mn</td>
<td>48</td>
<td>98</td>
<td>0.34</td>
</tr>
<tr>
<td>Zn</td>
<td>9</td>
<td>54</td>
<td>0.71</td>
</tr>
<tr>
<td>Cu</td>
<td>9</td>
<td>50</td>
<td>0.65</td>
</tr>
</tbody>
</table>

final effluent passed through the planted arrowroots in order to reduce the level of metal ions to recommended levels before being released to rivers or streams.

In order to test the significance of the contribution of using life arrowroots in removal of metal ions from municipal waste water, values obtained in Table 1 were subjected to relative treatment efficiency index (RTEI). Values obtained were recorded in Table 2.

In Table 2, C% represented percent removal for the wastewater without arrowroots and represented the control, while T% represented pollutant removal in the treated wastewater with arrowroots. The RTEI in Table 2 was calculated using equation, RTEI= \(\frac{T-C}{T+C} \) (Marchand et al., 2010).

From the results in Table 2, the index which represented the net metal removal due to interaction of benefits and disadvantages of the treatment using arrowroots were high for Zn\(^{2+}\) and Cu\(^{2+}\) ions but slightly low for Fe\(^{2+}\) and Mn\(^{2+}\). All the values of RTEI were positive hence the positive benefit of arrowroots. RTEI were high for Zn and Cu hence indicated strong benefits for metal removal while RTEI values for Mn and Fe were less and hence indicating less effect on the treatment of the wastewater cultivated with arrowroots. This difference could have been again due to the difference in levels of the ions in raw sewage where high RTEI was high for Zn and Cu probably due to their low concentration levels.

This could possibly suggest that life arrowroots can be of more significant use if used to further treat recycled treated sewage by passing it through arrowroot wetlands and also as a tertiary wastewater treatment alternative. This could also imply that arrowroots can effectively be used to remove metal ions from dilute solutions containing relatively low levels of dissolved metals, thus supporting similar arguments that were made by Abdel and Elchaghaby (2007) and also Brisson and Chazarenc (2009).

Results in Figure 2 showed high percent removal of the four metal ions, when the arrowroots were cultivated in waste water. Low percent removal of the metal ion pollutant in wastewater without arrowroots was also observed. This showed that most metal ions were removed by the arrowroots. From the null hypothesis results; t(3) = 2.110, p < 0.002, the null hypothesis was rejected implying that arrowroots can significantly adsorb heavy metals from dilute solutions such as the river
Figure 1. Percent removal of metal ions in raw sewage without arrowroots (WA) and when cultivated with arrowroots in raw sewage (AARS) and in arrowroots cultivated in biologically treated sewage (ACIBTS).

Figure 2. Percent removal efficiency with and without arrowroots and their RTEI values.

Conclusion

Life arrowroots effectively removed Zn, Cu, Fe and Mn from both raw untreated municipal wastewater and from already naturally treated wastewater effluents from maturation ponds. The following percent removal rates were established. From raw untreated wastewater, the percent removal efficiency using arrowroots was: Fe (68%), Mn (98%), Zn (54%) and Cu (50%). These percentages were found to be higher compared to the percent removal efficiency for unplanted maturation ponds when left for 7 days where the same metal ions were removed by natural process. For unplanted ponds, the percent removal efficiency was; Fe (38%), Mn (48 %), Zn (9%) and Cu (9%). Arrowroots also effectively lowered the levels of the metal ions from the already treated wastewater and model solutions of wastewater containing higher concentrations of metal ions.
waste water effluents from maturation ponds to minimal levels recommended for final discharge into surface waters such as rivers and streams by the following percent removal rates; Fe (97%), Mn (97%), Zn (48%) and Cu (49%). A paired t-test that was conducted to test the null hypothesis concerning the significance of life in removing metal ions from wastewater showed that the alpha level was below 0.05 at 5% confidence level (p < 0.002) and hence rejecting the null hypothesis at 5% significant level and concluded that arrowroots can significantly be used to remove metal ions from municipal waste waters.

RECOMMENDATIONS

Some treatment plants such as Eldoret Water and Sanitation Company (Eldowas) that have large parcel of land should consider using arrowroots in tertiary ponds of wastewater in addition to natural unplanted biological ponds. Further research should be carried out to study the adsorption efficiency of other pollutants using arrowroots.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Related Journals:

- Journal of Environmental Chemistry and Ecotoxicology
- Journal of Geology and Mining Research
- Journal of Internet and Information Systems
- Journal of Oceanography and Marine Science
- Journal of Petroleum Technology and Alternative Fuels
- Journal of Agricultural Biotechnology and Sustainable Development
- International Journal of Physical Sciences
- Scientific Research and Essays

www.academicjournals.org