About AJB

The African Journal of Biotechnology (AJB) is a peer reviewed journal which commenced publication in 2002. AJB publishes articles from all areas of biotechnology including medical and pharmaceutical biotechnology, molecular diagnostics, applied biochemistry, industrial microbiology, molecular biology, bioinformatics, genomics and proteomics, transcriptomics and genome editing, food and agricultural technologies, and metabolic engineering. Manuscripts on economic and ethical issues relating to biotechnology research are also considered.

Indexing

CAB Abstracts, CABI’s Global Health Database, Chemical Abstracts (CAS Source Index) Dimensions Database, Google Scholar, Matrix of Information for The Analysis of Journals (MIAR), Microsoft Academic, Research Gate

Open Access Policy

Open Access is a publication model that enables the dissemination of research articles to the global community without restriction through the internet. All articles published under open access can be accessed by anyone with internet connection.

The African Journals of Biotechnology is an Open Access journal. Abstracts and full texts of all articles published in this journal are freely accessible to everyone immediately after publication without any form of restriction.

Article License

All articles published by African Journal of Biotechnology are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited. Citation should include the article DOI. The article license is displayed on the abstract page the following statement:

This article is published under the terms of the Creative Commons Attribution License 4.0. Please refer to https://creativecommons.org/licenses/by/4.0/legalcode for details about Creative Commons Attribution License 4.0
Article Copyright

When an article is published by in the African Journal of Biotechnology, the author(s) of the article retain the copyright of article. Author(s) may republish the article as part of a book or other materials. When reusing a published article, author(s) should;

- Cite the original source of the publication when reusing the article. i.e. cite that the article was originally published in the African Journal of Biotechnology. Include the article DOI
- Accept that the article remains published by the African Journal of Biotechnology (except in occasion of a retraction of the article)
- The article is licensed under the Creative Commons Attribution 4.0 International License.

A copyright statement is stated in the abstract page of each article. The following statement is an example of a copyright statement on an abstract page.

Copyright ©2016 Author(s) retains the copyright of this article.

Self-Archiving Policy

The African Journal of Biotechnology is a RoMEO green journal. This permits authors to archive any version of their article they find most suitable, including the published version on their institutional repository and any other suitable website.

Digital Archiving Policy

The African Journal of Biotechnology is committed to the long-term preservation of its content. All articles published by the journal are preserved by Portico. In addition, the journal encourages authors to archive the published version of their articles on their institutional repositories and as well as other appropriate websites.

https://www.portico.org/publishers/ajournals/

Metadata Harvesting

The African Journal of Biotechnology encourages metadata harvesting of all its content. The journal fully supports and implement the OAI version 2.0, which comes in a standard XML format. [See Harvesting Parameter](#)
Memberships and Standards

Open Access

Academic Journals strongly supports the Open Access initiative. Abstracts and full texts of all articles published by Academic Journals are freely accessible to everyone immediately after publication.

Creative Commons

All articles published by Academic Journals are licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.

Crossref

Crossref is an association of scholarly publishers that developed Digital Object Identification (DOI) system for the unique identification published materials. Academic Journals is a member of Crossref and uses the DOI system. All articles published by Academic Journals are issued DOI.

Similarity Check powered by iThenticate is an initiative started by CrossRef to help its members actively engage in efforts to prevent scholarly and professional plagiarism. Academic Journals is a member of Similarity Check.

CrossRef Cited-by Linking (formerly Forward Linking) is a service that allows you to discover how your publications are being cited and to incorporate that information into your online publication platform. Academic Journals is a member of CrossRef Cited-by.

IDPF

Academic Journals is a member of the International Digital Publishing Forum (IDPF). The IDPF is the global trade and standards organization dedicated to the development and promotion of electronic publishing and content consumption.
Contact

Editorial Office: ajb@academicjournals.org

Help Desk: helpdesk@academicjournals.org

Website: http://www.academicjournals.org/journal/AJB

Submit manuscript online http://ms.academicjournals.org

Academic Journals
73023 Victoria Island, Lagos, Nigeria
ICEA Building, 17th Floor,
Kenyatta Avenue, Nairobi, Kenya.
Editor-in-Chief

Prof. N. John Tonukari
Department of Biochemistry
Delta State University
Abraka,
Nigeria.

Ana I. L Ribeiro-Barros
Department of Natural Resources,
Environment and Territory
School of Agriculture
University of Lisbon
Portugal.

Estibaliz Sansinenea
Chemical Science Faculty
Universidad Autonoma De Puebla
Mexico.

Bogdan Sevastre
Physiopathology Department
University of Agricultural Science and
Veterinary Medicine
Cluj Napoca Romania.

Parichat Phumkhachorn
Department of Biological Science
Ubon Ratchathani University
Thailand.

Mario A. Pagnotta
Department of Agricultural and Forestry sciences
Tuscia University
Italy.
Editorial Board Members

Dr. Gunjan Mukherjee
Agharkar Research Institute (ARI),
Autonomous Institute of the Department of Science and Technology (DST) Government of India
Pune, India.

Prof. T. K. Raja
Department of Biotechnology
PSG College of Technology (Autonomous)
Coimbatore India.

Prof. Dr. A.E. Aboulata
Plant Pathology Research Institute (ARC)
Giza, Egypt.

Dr. Desobgo Zangue
Steve Carly
Food Processing and Quality Control University Institute of Technology
(University of Ngaoundere) Cameroon.

Dr. S. K. Das
Department of Applied Chemistry and Biotechnology
University of Fukui
Japan.

Prof. Dr. A.E. Aboulata
Plant Pathology Research Institute (ARC)
Giza, Egypt.

Dr. Girish Kamble
Botany Department
SRRL Science College Morshi India.

Prof. A. I. Okoh
Applied and Environmental Microbiology Research Group (AEMREG)
Department of Biochemistry and Microbiology University of Fort Hare
Alice, South Africa.

Dr. Zhiguo Li
School of Chemical Engineering University of Birmingham
United Kingdom.

Dr. Ismail Turkoglu
Department of Biology Education
Education Faculty
Fırat University
Elazığ, Turkey.

Dr. Srecko Trifunovic
Department of Chemistry
Faculty of Science
University of Kragujevac
Serbia.

Dr. Huda El-Sheshtawy
Biotechnological Application lab., Process, Design and Development
Egyptian Petroleum Research Institute (EPRI)
Cairo, Egypt.

Dr. Sekhar Kambakam
Department of Agronomy
Iowa State Unversit USA.

Dr. Carmelo Peter
Bonsignore Department PAU – Laboratorio di Entomologia ed Ecologia Applicata Mediterranean University of Reggio Calabria
Italy.
Dr. Vincenzo Tufarelli
Department of Emergency and Organ Transplant (DETO)
Section of Veterinary Science and Animal Production
University of Bari “Aldo Moro”, Italy.

Dr. Tamer El-Sayed Ali
Oceanography Department
Faculty of Science
Alexandria University
Alexandria, Egypt.

Dr. Chong Wang
College of Animal Science
Zhejiang A&F University
China.

Dr. Christophe Brugidou
Research Institute for Development (IRD) Center, France.

Dr. Maria J. Poblaciones
Department of Agronomy and Forest Environment Engineering
Extremadura University, Spain.

Dr. Christophe Brugidou
Research Institute for Development (IRD) Center, France.

Dr. Anna Starzyńska-Janiszewska
Department of Food Biotechnology
Faculty of Food Technology
University of Agriculture in Krakow
Poland.

Dr. Amlan Patra
Department of Animal Nutrition
West Bengal University of Animal and Fishery Sciences
India.

Dr. Navneet Rai
Genome Center, University of California Davis, USA.

Dr. Preejith Vachali
School of Medicine
University of Utah
USA.
Comparison of four DNA extraction methods in Heliconia (Heliconia L.)
Olvera S., Cortés-Cruz M., Contreras-Toledo A., Ortiz S.,
Avendaño-Arrazate C., Olivera A., Canul J. and Grajales M.
Comparison of four DNA extraction methods in Heliconia (Heliconia L.)

Olvera S.1, Cortés-Cruz M.1*, Contreras-Toledo A.1, Ortíz S.2, Avendaño-Arrazate C.2, Olivera A.2, Canul J.3 and Grajales M.2

1Centro Nacional de Recursos Genéticos, Blvd. de la Biodiversidad 400, Tepatitlán, Jal. 47600, México.
2Campo Experimental Rosario Izapa, km 18 Carr. Tapachula-Cacahoatán, Tuxtla Chico, Chiapas 30870, México.
3Campo Experimental Zacatepec, km 0.5 Carr. Zacatepec-Galeana, Zacatepec, Morelos 62780, México.

Molecular analysis in plants requires the use of high quality DNA. Currently, there are a myriad of DNA extraction protocols, which still seems that their applicability across different species is not straightforward. The aim of the present study was to evaluate four different cetyl trimethylammonium bromide (CTAB)-based DNA extraction protocols for Heliconia species from lyophilized fully mature leaves. A split-plot design with two levels (six different species and four DNA extraction methods) was used, where treatments were distributed in a randomized block design with four replications. The response variables were total yield (µg) and purity (A260/A280 nm), and were determined by UV-spectrophotometry and agarose gel electrophoresis, respectively. Additionally, EcoRI enzyme restriction digestion and amplification of the Hc_D6 locus marker were used to evaluate the functionality of the extracted DNA. Analysis of variance (ANOVA) results indicated that the extraction methods had a significant effect on the DNA yield (F = 8.51, df = 3, P<0.0001) and purity (F = 10.43, df = 3, P<0.0001). The best methods to obtain DNA from Heliconia spp. were those described by Michiels et al. (2003) and Sagahi-Maroo et al. (1984) with modifications.

Key words: DNA extraction, Heliconia, tropical plants, cetyl trimethylammonium bromide (CTAB), polyvinylpyrrolidone (PVP).

INTRODUCTION

Current protocols in molecular biology require the use of high quality DNA. For some plant species, this rather common process can turn into a burdensome task, due to the presence of secondary metabolites. These compounds may undergo rapid oxidation, binding tightly to the DNA and subsequently, co-precipitate with the DNA preventing its use in downstream applications (Porebski et al., 1997; Sheperd et al., 2002; Shabnam and Saeed, 2016; Swati et al., 2016). Tropical plants for example, often have high levels of polysaccharides, polyphenols, proteins, lipids, among others, which make the isolation and purification of DNA difficult (Barra et al., 2012; Cavallari et al., 2014; Huang et al., 2014). In addition, the presence of these compounds in the isolated DNA inhibits the activity of various enzymes used in molecular biology experiments, such as DNA
ligases, polymerases and endonucleases, affecting their efficiency, and in many cases rendering negative results (Friar, 2005; Cavallari et al., 2014; Swati et al., 2016).

The research team of this study worked on the population genetics of the native heliconia species from the southern part of Mexico (Avendaño-Arrazate, 2017). Heliconias are tropical plants that have been cultivated as ornamentals outside their natural distribution areas, increasing their importance as cut flowers. The genus Heliconia L. displays a great array of diversity of species, varieties, hybrids and cultivars, often leading to taxonomic inaccuracies among scientists and commercial growers (Marouelli et al., 2010). The majority of the studies have focused mostly on taxonomy (Iles et al., 2017), regeneration and in vitro propagation and very few on morphological (Arrazate-Avendaño et al., 2017) and molecular characterization (Marouelli et al., 2010; Isaza et al., 2012). Therefore, more molecular studies are needed to clarify these discrepancies and the isolation of high quality DNA is one of the central steps to achieve it.

Although there are few reports about extracting DNA from these species, in some cases it requires the use of robotics (Côrtes et al., 2009), additional purification steps after the DNA extraction, using commercial kits (Meléndez-Ackerman et al., 2005) or the use of phenol-chloroform cleaning steps (Kumar et al., 1998; Sheela et al., 2006). Therefore, the objective of this study was to compare four commonly used cetyl trimethylammonium bromide (CTAB) DNA extraction methods with modifications: Haque et al. (2008) Method 1; Saghai-Marooof et al. (1998) Method 2; Doyle and Doyle (1990) Method 3 and Michiels et al. (2005) Method 4. The starting material was mature leaves and the effectiveness of the methods was tested based on yield, purity, integrity and functionality, in order to determine the most suitable method for isolating high yield of quality DNA from Heliconia spp.

MATERIALS AND METHODS

Plant

Fully developed leaves were collected from the “Rosario Izapa Experimental Field Station” (Chiapas, Mexico). Four different heliconia species were used: Heliconia stricta Hubert, Heliconia wagneriana Peterson, Heliconia bourgaeana and Heliconia collinsiana Griggs. Additionally, leaf samples from Canna indica L. species belonging to the Zingiberales order, were also included as control. After harvest, leaf tissue was kept at -80°C for at least 48 h prior to lyophilization. Freeze-dried tissue was ground into fine powder using the TissueLyser II (Qiagen, Hilden, Germany).

Experimental design

A split-plot design with two levels (six different species and four DNA extraction methods) was used to determine the best extraction method for heliconias. The big plots were the DNA extraction methods, and the different species were the split-plots. Treatments were distributed in a randomized block design with four replications. Three samples per species in each method were extracted (12 samples of the same species per replicate). In total, 240 DNA extractions were carried out. The response variables were total yield (µg) and purity (A260/A280 nm). All DNA extractions were carried out following the same procedure to control the variation inherent to the different steps of each method. Statistical analyses were performed using SAS PROC GLM to test the effect of the extraction method on DNA yield and purity. Means were compared using the Tukey test with a significance level of 0.05 (SAS, 2011).

DNA extraction

All DNA extractions were carried out with 50 µg of lyophilized tissue in a 2.0 ml tube. Extraction buffer (1 ml) was added to each tube followed by incubation at 65°C for 45 min with constant mixing (Table 1). Tubes were allowed to cool at room temperature (RT) for about 5 min and to each tube, 700 µl of chloroform:isoamyl alcohol (24:1) were added. The tubes were inverted gently for 10 min to form an emulsion and were centrifuged at 10,000 × g for 10 min at RT. The upper phase was decanted into a new tube and the washing step was repeated. After the second centrifugation, about 600 µl were transferred to a new 2.0 ml tube containing 5 µl of RNaseA (10 mg/mL) and incubated at 37°C for 30 min. DNA was precipitated with 600 µl of cold isopropanol, mixing gently by inversion several times until DNA was visible.

The tubes were centrifuged at 10,000 × g for 10 min at RT and the supernatant was carefully poured off. The DNA pellets were washed twice with ethanol at 70 and 95%, for 5 min and were spun again as before. The DNA pellets were allowed to dry at RT and were resuspended in 300 µl of TE buffer (10 mM Tris-HCl pH 8.0; 1 mM EDTA pH 8.0) overnight.

Measurement of DNA quantity, purity and integrity

DNA concentration was measured using the NanoDrop 2000 UV-Vis Spectrophotometer (Thermo Scientific, Wilmington, DE, USA). The A260/A280 nm absorbance ratio was used to assess the purity of the nucleic acid samples (Held, 2001). Integrity of the extracted DNA was evaluated by electrophoresis of 100 ng/well for each sample on 1% agarose gel. Migration distance was compared to that of 100 ng of uncut lambda DNA (NEB, Ipswich, MA, USA).

Table 1. Reagents used in the extraction buffer for each method.

<table>
<thead>
<tr>
<th>Method</th>
<th>Tris-HCl (mM)</th>
<th>NaCl (mM)</th>
<th>EDTA (mM)</th>
<th>CTAB (%)</th>
<th>BME (mM)</th>
<th>PVP (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>700</td>
<td>50</td>
<td>3.5</td>
<td>420</td>
<td>3</td>
<td>Haque et al. (2008)</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>700</td>
<td>50</td>
<td>1.0</td>
<td>140</td>
<td>1</td>
<td>Saghai-Marooof et al. (1984)</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>700</td>
<td>50</td>
<td>2.0</td>
<td>280</td>
<td>-</td>
<td>Doyle and Doyle (1990)</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>700</td>
<td>50</td>
<td>2.0</td>
<td>280</td>
<td>2</td>
<td>Michiels et al. (2003)</td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSION

DNA yield

Yield of the extracted DNA by the four different methods is shown in Table 2. The extraction methods had a significant effect on the DNA yield (F = 8.51, df = 3, P<0.0001). In general, the extraction methods that contain polyvinylpyrrolidone (PVP, MW 40,000, Sigma-Aldrich, St. Louis, MO, USA), had significantly higher DNA yields. Methods 4 and 2 (Michiels et al., 2003; Saghai-Maroof et al., 1984) were statistically superior for extracting DNA in the evaluated species. Each of these methods yielded on average 60.35±18.42 and 57.70±13.96 µg, compared to Method 3, with 45.84±14.04 µg, which had the lowest yield (Figure 1). Methods 2 and 4 included PVP in their extraction buffer while Method 3 did not. PVP has been reported to form insoluble complexes with lactones and phenolic compounds (Kim et al., 1997; Barra et al., 2012), which could explain the higher concentrations of DNA obtained by these methods.

DNA purity and integrity

The purity of the DNA obtained was evaluated as a function of the OD_{A260/A280} ratio (Held, 2001). The mean OD_{A260/A280} ratios for the four methods evaluated in this research ranged from 2.05 to 2.13 (Table 2). The statistical analysis indicates that the extraction methods had a significant effect on the DNA purity (F = 10.43, df = 3, P<0.0001), where Methods 2 and 4 had the narrowest range for the OD_{A260/A280} ratio (Figure 1). Method 3 had the highest OD_{A260/A280} ratio values (2.76, outlier value in Figure 1); however, all these values came from the C. indica samples (which had a similar trend regardless of the method). In general, Methods 1, 2 and 4 had OD_{A260/A280} ratio values within the commonly accepted range (1.8 to 2.0). These values can be explained by the removal of polysaccharides and proteins, usually

Table 2. DNA yield (µg) and OD_{A260/A280} ratio for DNA extractions from 50 mg of lyophilized leaf tissue from H. stricata, H. wagneriana, H. bourgaeana, H. collinsiana, and C. indica by four extraction methods.

<table>
<thead>
<tr>
<th>Species</th>
<th>Method 1</th>
<th>Method 2</th>
<th>Method 3</th>
<th>Method 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yield</td>
<td>OD</td>
<td>Yield</td>
<td>OD</td>
</tr>
<tr>
<td>H. stricata</td>
<td>39.83±0.90</td>
<td>2.04±0.06</td>
<td>39.15±0.45</td>
<td>1.98±0.02</td>
</tr>
<tr>
<td>H. wagneriana</td>
<td>53.40±11.85</td>
<td>2.20±0.08</td>
<td>54.00±12.71</td>
<td>2.15±0.05</td>
</tr>
<tr>
<td>H. bourgaeana</td>
<td>63.00±08.23</td>
<td>1.97±0.00</td>
<td>71.63±12.94</td>
<td>1.91±0.05</td>
</tr>
<tr>
<td>H. collinsiana</td>
<td>36.00±04.22</td>
<td>2.10±0.12</td>
<td>61.28±07.37</td>
<td>2.04±0.13</td>
</tr>
<tr>
<td>C. indica</td>
<td>49.50±01.41</td>
<td>2.35±0.04</td>
<td>62.48±06.96</td>
<td>2.22±0.02</td>
</tr>
<tr>
<td>Mean</td>
<td>48.35±11.75</td>
<td>2.13±0.15</td>
<td>57.71±13.96</td>
<td>2.06±0.13</td>
</tr>
</tbody>
</table>

Restriction endonuclease digestion

To assess the functionality of the extracted DNA for downstream applications, 50 ng of DNA were digested with 15 units of EcoRI (NEB, Ipswich, MA, USA) in a 20 µl reaction for 5 h at 37°C. Digested DNA was assessed by visual inspection on a UV transluminator (Kodak Gel Logic 112, Woodbridge, CT, USA) after 1% agarose gel electrophoresis and GelRed™ staining (Biotium, Hayward, CA, USA).

PCR amplification

DNA amplification reactions of the H. caribaea specific microsatellite marker (Hc_D6) were performed only for Heliconia spp. samples (C. indica was excluded since this marker is specific for Heliconia) in a 10 µl reaction (Gowda et al., 2012). The PCR cocktail consisted of 10 ng of DNA, 4 µl of 2X RedTaq® Ready Mix™ (SIGMA, St. Louis, MO, USA), 0.5 µM of each primer (For 5′ACT GCA CAT ATC ATC CTG3′ and Rev 5′GTG GGT CAG TCA ATT ACT GTG3′) and sterilized water. The expected size of the Hc_D6 product was 222 to 258 bp. Amplifications were carried out on a PrimeCycler (Techne Inc., Burlington, NJ, USA). The amplification was carried out with an initial denaturation step of 94°C for 5 min, followed by 30 cycles of 30 s at 94°C, 30 s at 58°C, 30 s at 72°C and a final extension step of 6min at 72°C. PCR amplification products were visualized as described previously.
bound to the DNA. With the addition of NaCl in the extraction buffer, the solubility of these compounds is increased and the use of the chloroform: isoamyl alcohol wash steps reduces their co-precipitation with the DNA. Figure 1. Box plot diagram of the variable yield (upper figure) and DNA quality (lower figure) obtained for each extraction method. Different capital letters indicate significant differences (P<0.001) among the evaluated methods according to the Tukey’s test.
Figure 2. Gel electrophoresis of the total DNA isolated from *H. stricta* (1), *H. wagneriana* (2), *H. bourgaena* (3), *H. collinsiana* (4) and *C. indica* (6) by the different evaluated methods: Method 1 (Haque et al., 2018); Method 2 (Saghai-Maroof et al., 1984); Method 3 (Doyle and Doyle, 1990); Method 4 (Michiels et al., 2003). M = 100 ng of λ DNA uncut (48 and 502 bp). All DNA samples were adjusted to 100 ng of DNA.

DNA molecule. Furthermore, the inclusion of the RNaseA step in all methods, helps to decrease the absorbance of these compounds during the spectrophotometric readings (Tamari et al., 2013; Abdel-Latif and Osman, 2017).

Since the OD$_{A260/A280}$ ratio is only an indication of DNA purity rather than a precise answer, the integrity (taken as DNA of high molecular weight) of the extracted DNA samples was determined by electrophoresis on a 1% agarose gel. Figure 2 shows that all protocols were equally efficient for obtaining high DNA quality and integrity in *Heliconia* spp. (from the qualitative point of view). However, the analysis of variance showed that for *C. indica*, Method 3 was not as efficient as the others. In fact, the DNA yield for this method was the lowest as compared to the other methods (Table 2) and had the highest mean OD$_{A260/A280}$ ratio (2.60±0.11). One possible explanation for this result might be the presence of high levels of phenolic compounds in *C. indica* (Vankar and Srivasta, 2008), and the use of the extraction buffer of Method 3. This buffer did not include PVP and was not as effective as the other buffers for the removal of phenolic compounds. The presence of these compounds in the DNA samples can interfere with the quantification by UV absorption, causing problems during the estimation of the concentrations of the DNA samples and shifting the OD$_{A260/A280}$ ratio (Mannin, 1991).

DNA functionality

One of the most important features of any DNA extraction protocol is whether the extracted DNA will work in downstream applications. Conventionally, this feature is evaluated digesting the extracted DNA (Barra et al., 2012; Huang et al., 2013; Cavallari et al., 2014). Figure 3 shows the electrophoresis pattern of the DNA samples fully digested with EcoRI restriction enzyme. There is an absence of high molecular weight bands, and the continuous characteristic smearing of the different fragment sizes is present. It indicated that the DNA obtained by all the evaluated methods is of high purity and quality. Amplification of the *Hc_D6* locus marker from the total DNA extracted by each method produced a clear and clean target product of 222 to 258 bp in length (Figure 4). This further confirmed the quality of the DNA, free of any inhibitory compounds and suitable for any downstream application (sequencing reactions were also performed successfully, data not shown). At first glance, the DNA extraction protocols described here seem equally efficient in extracting high yield and quality of
genomic DNA from the five analyzed species. Yet, once statistical tools were applied into the analysis of results, significant differences were found for both variables. Methods 4 (Michiels et al., 2003) and Method 2 (Saghai-Marooof et al., 1984) with the modifications assayed in this study, were significantly different for extracting higher DNA yields and better DNA quality. Unlike other protocols, all the steps described here can be carried
Restriction endonuclease digestion pattern of genomic DNA isolated from *H. stricta* (1), *H. wagneriana* (2), *H. bourgaena* (3), *H. collinsiana* (4) and *C. indica* (6) by the different methods evaluated: Method 1 (Haque et al., 2018), Method 2 (Saghai-Maroof et al., 1984), Method 3 (Doyle and Doyle, 1990) and Method 4 (Michiels et al., 2003). M = 50 ng of undigested genomic DNA.

out at RT, eliminating the need for refrigerated centrifugation or DNA precipitation. Additionally, all the DNA samples were found to be stable when stored at -20°C for more than two years and could be amplified by PCR.

Although all evaluated protocols were efficient for DNA extraction from mature leaves of *Heliconia* spp., Methods 4 (Michiels et al., 2003) and 2 (Saghai-Maroof et al.,...
1984) were statistically superior for obtaining high yield and quality DNA. These methods yielded reproducible amplification of SSR products, demonstrating its compatibility for molecular analysis. These protocols are routinely used in our laboratory to isolate DNA from a wide variety of plant species including Amaranthus hypochondriacus L., Amaranthus cruentus L., Agave species, Theobroma cacao L., Stevia rebaudiana Bert, Pinus species, Pseudotsuga menziesii (Mirb) Franco, and Annona muricata L., all having high levels of secondary metabolites.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENT

This research was supported by the National Forestry, Crops and Livestock Research Institute of Mexico, through the project “Rescue and Conservation of Heliconias from Southern Mexico”.

REFERENCES

Barra M, Salzar E, Beltrán M Sagredo B (2012). Simple and robust extraction method for the large-scale analysis of genotypes containing high polyphenolic content, such as landraces of Solanum tuberosum and Zea mays. Ciencia e investigación agraria 39:593-601.

