ABOUT AJMCSR

The African Journal of Mathematics and Computer Science Research (ISSN 2006-9731) is published bi-monthly (one volume per year) by Academic Journals.

The African Journal of Mathematics and Computer Science Research (AJMCSR) (ISSN: 2006-9731) is an open access journal that publishes high-quality solicited and unsolicited articles, in all areas of the subject such as Mathematical model of ecological disturbances, properties of upper fuzzy order, Monte Carlo forecast of production using nonlinear econometric models, Mathematical model of homogeneous tumour growth, Asymptotic behavior of solutions of nonlinear delay differential equations with impulse etc. All articles published in AJMCSR are peer-reviewed.

Contact Us

Editorial Office: ajmcsr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/AJMCSR
Submit manuscript online http://ms.academicjournals.me/
Editors

Prof. Mohamed Ali Toumi
Département de MatheMatiques
Faculté des Sciences de Bizerte
7021, Zarzoua, Bizerte
Tunisia.

Associate Professor Kai-Long Hsiao,
Department of Digital Entertainment,
and Game Design,
Taiwan Shoufu University,
Taiwan,
R. O. C.

Dr. Marek Galewski
Faculty of Mathematics and Computer Science,
Lodz University
Poland.

Prof. Xianyi Li
College of Mathematics and Computational Science
Shenzhen University
Shenzhen City
Guangdong Province
P. R. China.
Editorial Board

Dr. Rauf, Kamilu
Department of mathematics,
University of Ilorin,
Ilorin, Nigeria.

Dr. Adewara, Adedayo Amos
Department of Statistics,
University of Ilorin.
Ilorin.
Kwara State.
Nigeria.

Dr. Johnson Oladele Fatokun,
Department of Mathematical Sciences
Nasarawa State University, Keffi.
P. M. B. 1022, Keffi. Nigeria.

Dr. János Toth
Department of Mathematical Analysis,
Budapest University of Technology and
Economics.

Professor Aparajita Ojha,
Computer Science and Engineering,
PDPM Indian Institute of Information
Technology,
Design and Manufacturing, IT Building,
JEC Campus, Ranjhi, Jabalpur 482 011 (India).

Dr. Elsayed Elrifai,
Mathematics Department,
Faculty of Science,
Mansoura University,
Mansoura, 35516, Egypt.

Prof. Reuben O. Ayeni,
Department of Mathematics,
Ladoke Akintola University,
Ogbomosho,
Nigeria.

Dr. B. O. Osu,
Department of Mathematics,
Abia State University,
P. M. B. 2000,
Uturu,
Nigeria.

Dr. Nwabueze Joy Chioma,
Abia State University,
Department of Statistics,
Uturu,
Abia State,
Nigeria.

Dr. Marchin Papzhytski,
Systems Research Institute,
Polish Academy of Science,
ul. Newelska 6 0-60-66-121-66,
03-815 Warszawa,
POLAND.

Amjad D. Al-Nasser,
Department of Statistics,
Faculty of Science, Yarmouk University,
21163 Irbid,
Jordan.

Prof. Mohammed A. Qazi,
Department of Mathematics,
Tuskegee University,
Tuskegee,
Alabama 36088,
USA.

Professor Gui Lu Long
Dept. of Physics,
Tsinghua University,
Beijing 100084,
P. R. China.

Prof. A. A. Mamun, Ph. D.
Ruhr-Universitaet Bochum,
Institut fuer Theoretische Physik IV,
Fakultaet fuer Phiyk und Astronomie,
Bochum-44780,
Germany.

Prof. A. A. Mamun, Ph. D.
Ruhr-Universitaet Bochum,
Institut fuer Theoretische Physik IV,
Fakultaet fuer Phiyk und Astronomie,
Bochum-44780,
Germany.
ARTICLES

Proof of Beal’s conjecture 109
Samuel Bonaya Buya

Comparison of open source data mining softwares on a data set 114
Abdullah BAYKAL and Cengiz COŞKUN
Full Length Research Paper

Proof of Beal’s conjecture

Samuel Bonaya Buya


Received 6 October 2018; Accepted 7 November, 2018

In this research, a proof of Beal’s conjecture is presented. A possible Pythagorean algebraic relationship between the terms of the conjecture problem will be proposed and used to arrive at the proof results. In the process of seeking the proof the solution of the congruent number problem through a family of cubic curves will be discussed.

Key words: Proof of Beal’s conjecture, proof of ABC conjecture, algebraic proof of Fermat’s last theorem, the congruent number problem, rational points on the elliptic curve, Pythagorean triples

INTRODUCTION

Beal’s conjecture was formulated in 1993 by Andrew Beal, a banker and amateur mathematician while investigating generalizations of Fermat’s last theorem. The conjecture was formulated after some extensive computational experiments were conducted in August 1993. In some publications the conjecture has been occasionally referred to as the generalized Fermat’s last theorem (Mauldin, 1997), (Bennet et al, 2014) the Mauldin conjecture (puzzles, n.d.) and the Tijdeman-Zagier conjecture (puzzles, n.d.), (Waldschmidt, 2004), (Wikipedia, 2018).

The conjecture states that:

If $A^x + B^y = C^z$, where A, B, C are positive integers and x, y and z are all positive integers greater 2, then A, B and C have a common prime factor.

To prove the conjecture a Pythagorean algebraic relationship between the terms of the conjecture will be derived and used.

An algebraic relationship between the terms of Pythagorean triples

Consider some Pythagorean integer triples x, y and z related by the equation:

$$x^2 + y^2 = z^2$$

(1)

$$\frac{x^2}{a} - a$$

If $y = \frac{a}{2}$

(2)

And again $z = \frac{a}{2}$

(3)
Then by Equations 2 and 3
\[ z - y = a \]  
(4)
\[ z + y = \frac{x^2}{a} \]  
(5)

Multiplying Equations 5 and 4 together:
\[ x^2 = (z + y)(z - y) = z^2 - y^2 = (\frac{a}{2})^2 - (\frac{a}{2})^2 \rightarrow \]
\[ x^2 + (\frac{a}{2})^2 = (\frac{a}{2})^2 \]  
(6)

A relationship has been established between the terms of a Pythagorean triple. Some forms of the above Pythagorean relationships were first discussed in a paper entitled simple algebraic proofs of Fermat’s last theorem (Buya, 2017a).

Solution of the congruent number problem

The technique used in proving Beal conjecture can be used to solve problems in number theory, arithmetic of elliptic of elliptic curves etc. (Elkies, 2007). An important problem in number theory that can be solved is the congruent number problem (Buya, 2017a).

If the perpendicular height of a right angled triangle is \( x \) then by equation 7 its base is \( \frac{x^2 - a}{a} \). The area of a congruent triangle is given by:
\[ A = x(\frac{-a}{4}) = \frac{x^3 - a^2x}{4a} \]  
(1)

For the purpose of solution of the congruent number problem (a) is considered to be a rational number in this section.

Thus the family of curves of the cubic equation
\[ y = \frac{x^3 - a^2x}{4a} \]  
(2)
has an infinite number of points for solution of the congruent number problem. In the function 2 above the y coordinate represents the area of a congruent number with \( (x) \) and \( (a) \) as rational numbers.

Thus in the elliptic curve:
\[ y^2 = x^3 - n^2x \]  
(3),

where \( n \) is congruent number if \( n \) is of the form
\[ n = \frac{b^2 - a^2}{4a} \land a, b \in \mathbb{P} \land p, q \in N \land q \neq 0 \]

Consider the elliptic curve 3. Making the congruent number \( (n) \) the subject of the equation we obtain the following:
\[ n^2 = x^2 - \frac{y^2}{x} = (x + \frac{y}{\sqrt{x}})(x - \frac{y}{\sqrt{x}}) \]  
(4)

For \( n \) to be a congruent number take:
\[ x + \frac{y}{\sqrt{x}} = a^2 \]  
(5)
\[ x - \frac{y}{\sqrt{x}} = \frac{1}{4}(\frac{a - b^2}{2b})^2 \]  
(6)

From Equations 5 and 6
\[ x = \frac{1}{2} \left( a^2 + \frac{1}{4} \left( \frac{a - b^2}{2b} \right)^2 \right) \]  
(7)
\[ y = \frac{1}{4} \left( a^2 - \frac{1}{4} \left( \frac{a - b^2}{2b} \right)^2 \right) \left( \frac{1}{2} \left( a^2 + \frac{1}{4} \left( \frac{a - b^2}{2b} \right)^2 \right) \right) \]  
(8)

For a rational number on the elliptic curve 3 select rational numbers \( a \) and \( b \) so that \( x \) is a square rational number. The family of cubic curves 2 can also be used to establish whether the elliptic curve 3 has or does not have a rational number.

Proof of Beal’s conjecture

**Relationship between the terms of Beal’s conjecture**

In a paper entitled simple algebraic proofs of Fermat’s last theorem (Buya, 2017a) the author of this paper showed that there exists an algebraic relationship between the terms of Fermat’s Diophantine equation. The algebraic equations in the paper can be used to prove Beal conjecture. There exists an algebraic relationship between the terms of Beal’s conjecture problem. The proposed proof does not require any Galois representation or use of elliptic curves.

Consider the equation given by:
$A^x + B^y = C^z \land x, y, z > 2$ \hspace{1cm} (1)

The terms of the Equation above are related in the following way:

\begin{align*}
A^x - a &= \left(\frac{a}{2}\right)^2 \left(1 - \frac{A^x}{a}\right)^2 \\
B^y &= \left(\frac{a}{2}\right)^2 \left(1 - \frac{A^x}{a}\right)^2 \\
A^x + a &= \left(\frac{a}{2}\right)^2 \left(1 + \frac{A^x}{a}\right)^2 \\
C^z &= \left(\frac{a}{2}\right)^2 \left(1 + \frac{A^x}{a}\right)^2 \\
\end{align*} \hspace{1cm} (2)

To prove the Beal’s conjecture, the cases

\[ a = \frac{A^x}{m^z} \land a, m \in \mathbb{N} \] \hspace{1cm} (4)

will be considered.

Substituting 4 into 2 and 3:

\begin{align*}
B &= m^{2y/z} \times \left(\frac{1 - A^x}{m^z}\right)^{2/y} \\
C &= m^{2z/x} \times \left(\frac{1 + A^x}{m^z}\right)^{2/z} \\
\end{align*} \hspace{1cm} (5)

From Equation 4:

\begin{align*}
A^x &= am^x \rightarrow \\
A &= a^{1/x} m \\
\end{align*} \hspace{1cm} (7)

Substituting 4, 5 and 6 into 1:

\[ am^x + \left(m^{2x} - am^x\right)^2 \div 4m^{2x} = \left(m^{2x} - am^x\right)^2 \div 4m^{2x} \] \hspace{1cm} (8)

For validity of Beal’s conjecture if:

\[ m^{2y/z} \times \left(\frac{1 + A^x}{m^z}\right)^{2/v} = u \] \hspace{1cm} (9)

Substituting equations 9 and 10 into 5 and 6:

\begin{align*}
B &= m^{2y/z} u \\
C &= m^{2z/x} v \\
\end{align*} \hspace{1cm} (11, 12)

The set of equations 7, 11 and 12 suggest that A, B and C at least share a common prime number validating Beal’s conjecture.

Example 1

In Equations 7, 11 and 12 if $m = 16$, $x = 3$ $y = 4$ $z = 3$ then:

\[ A^x = 16^3 a \]
\[ B^y = 16^7 u^4 \]
\[ C^z = 16^3 v^4 \]

\[ 16^3 a + 16^3 u^4 = 16^3 v^4 \rightarrow \]
\[ 16^3 (a + u^4) = 16^3 v^4 \]

If we take $v = 2$, $a = 8$ and $u^4 = 8$ we obtain the Equation:

\[ 32^3 + 32^3 = 16^4 \]

The common prime factor in this case is 2.

Example 2

In Equations 7, 11 and 12 if $m = 3$, $x = 6$ $y = 3$ and $z = 2$ then:

\[ A^x = 3^6 a \]
\[ B^y = 3^6 u^3 \]
\[ C^z = 3^6 v^2 \]

\[ 3^6 (a + u^3) = 3^6 v^2 \]

If we take $v = 1$, $a = 1$ and $u^3 = 2$ we end up getting the identity:

\[ 3^6 + 18^3 = 3^8 \]

The common prime factor in this example is 3. Thus the above derived relationships show that whenever the powers of A, B and C are greater than 2 then the Beal’s
conjecture identity will always have a common prime factor shared by A, B and C. Thus, Beal’s conjecture is proved.

To completely validate the conjecture other cases will be brought into consideration. The case \( x = y = z = 2 \) will be considered. This is to say we will consider the Pythagorean Diophantine equation. In such a case, the algebraic relationships between A, B and C is given by:

\[
B = \frac{a^2 - a}{2} = \frac{a^2}{a} \left( \frac{1}{2} - \frac{a^2}{A^2} \right); \quad \wedge a > A \land a = A \land r \in N
\] (13)

Equation 13 can be further simplified.

\[
B = \frac{a^2 - a}{2} = A \left( \frac{1}{2} - \frac{1}{r^2} \right) = \frac{A}{2r} (r^2 - 2)
\] (14)

\[
C = \frac{a^2 + a}{2} = \frac{a^2}{A^2} \left( \frac{1}{2} + \frac{1}{r^2} \right) = \frac{A}{2r} (r^2 + 2)
\] (15)

Substituting 14 and 15 into 1:

\[
A^2 - a = \frac{A^2}{a} \left( \frac{1}{2} - \frac{1}{r^2} \right)^2
\] (16)

\[
A^2 + A^2 (\frac{1}{2} - \frac{1}{r^2})^2 = \frac{A^2}{a^2} (\frac{1}{2} + \frac{1}{r^2})^2
\]

Consider the algebraic fraction \( \frac{r^2 - 2}{2r} \) of equation 14. If it has a form:

\[
\frac{r^2 - 2}{2r} = \frac{\alpha}{A}; \quad \alpha \in N
\] (17)

Then on substituting equation 17 into 14:

\[
B = \alpha
\]

The number \( \alpha \) may or may not be co-primed with A.

Consider the algebraic fraction \( \frac{r^2 + 2}{2r} \) of equation 15. If it has a form:

\[
\frac{r^2 + 2}{2r} = \frac{\phi}{A}; \quad \phi \in N
\] (18)

Then on substituting 18 into 15:

\[
C = \phi
\]

The number \( \phi \) may or may not be co-primed with A. The Beal’s conjecture is therefore not applicable to Pythagorean Diophantine equations.

The case \( x = 3, y = z = 2 \) will be considered.

Consider the general Diophantine equation:

\[
A^3 + B^2 = C^2
\] (19)

The relationship between the terms of the above Equation will be considered.

\[
B = \frac{a^2 - a}{2} = \frac{A^2}{a} \left( \frac{1}{2} - \frac{a^2}{A^2} \right)
\] (20)

\[
C = \frac{a^2 + a}{2} = \frac{A^2}{a} \left( \frac{1}{2} + \frac{a^2}{A^2} \right) = B
\] (21)

If in Equations 21 and 22:

\[
\frac{1}{2} - \frac{a^2}{A^{3/2}} = \frac{\beta a}{A^{3/2}}
\] (22)

\[
\frac{1}{2} + \frac{a^2}{A^{3/2}} = \frac{\chi a}{A^{3/2}} \land \beta, \chi \in N
\] (23)

Then by the Equations 23 and 24:

\[
B = \beta \land C = \chi
\]

The number \( B = \beta \) may or may not be co-primed with A. The number \( C = \chi \) may or may not be co-primed with A. Thus Beal’s conjecture does not apply to the cases \( (x, y, z) = (3, 2, 2) \) and \( (x, y, z) = (2, 3, 2) \).

The case \( (x, y, z) = (2, 2, 3) \) will be considered. In this case the relationship between A, B and C is given by the set of equations below:

\[
B = \frac{A^3 - a}{2} = \frac{A^2}{2a} \left( 1 - \frac{a^2}{A^2} \right)
\] (24)

\[
C = \frac{A^3 + a}{2} = \frac{A^2}{2a} \left( 1 + \frac{a^2}{A^2} \right)
\] (25)
If in Equations 24 and 25:

\[
1 - \frac{a^2}{A^2} = \frac{2ae}{A} \quad \quad (26)
\]

\[\varepsilon \in N \]

\[
(1 + \frac{a^2}{A^2})^{\frac{3}{2}} = \frac{(2a)^{\frac{3}{2}} \varphi}{A^{\frac{3}{2}}} \quad \quad (27)
\]

\[\varphi \in N \]

Then:

\[B = \varepsilon \land C = \varphi\]

In the case above C may or may not be co-primed to A. The Beal’s conjecture does not apply to the general case \((x, y, z) = (2, 2, 3)\).

From the above analysis we note that in cases where \(x, y\) and \(z\) are greater than two, \(A, B\) and \(C\) share a common prime number. Thus Beal’s conjecture is thus verified.

**Conclusion**

There exists an algebraic relationship connecting the terms of Beal’s conjecture problem. The algebraic relationship as stipulated in equations 7, 11 and 12 of section 4 shows that the terms \(A, B\) and \(C\) share a common prime factor for all \(x, y\) and \(z\) as positive integers greater than 2. Thus Beal’s conjecture is proved.

**CONFLICT OF INTERESTS**

The author has not declared any conflict of interests.
Full Length Research Paper

Comparison of open source data mining softwares on a data set

Abdullah BAYKAL1* and Cengiz COŞKUN2

1Department of Mathematics, Faculty of Science, Dicle University, Diyarbakır, Turkey.
2Department of Economics Faculty of Economics and Administrative Sciences, Dicle University, Diyarbakır, Turkey.

Received 22 September, 2016; Accepted 1 November, 2018

Data mining is the process of extracting informative and useful rules or relations, that can be used to make predictions about the values of new instances, from existing data. A wide range of commercial and open source software programs are used for data mining. In this study, a comparison of several classification algorithms included in some open source softwares such as WEKA, Tanagra and Scikit-learn using SEER (Survillance Epidemiology and End Results) data set which consists of 60948 instances is performed.

Key words: Data mining, classification analysis, open source data mining tools.

INTRODUCTION

A wide range of algorithms can be used to extract information from data for data mining purposes. This information then can be used to make future predictions about new instances. Application areas of data mining continually grows with the development of technology and needs. One of the application areas of data mining is health systems among very many others. There are various data sets related to health systems (Banu Rahaman et al., 2010). Despite the availability of abundant data in health systems, usually data is not sufficiently clean or information on these data is mostly insufficient.

There are many different algorithms used for data mining. Because of its application on a wide range of different areas, studies in data mining technology are going on continously, new methods are being developed and enhancements to the existing ones are taking place continously. Also, the progresses on different disciplines such as Mathematics, Statistics, Informatics and Computer Science help improve the methods used in data mining. Thus, data mining, having a very vast application area and having relations to other disciplines, is open to new developments and attracts interest not just by academic world but also by the business world.

Process known as Knowledge Discovery from Databases (KDD), has become a popular analysis method among the health researchers in order to discover and define the patterns and relations between vast amount of variables and paves the way to predict any future value for the output variable.

*Corresponding author. E-mail: baykal.abdullah@gmail.com.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
In this study, a comparison of several classification algorithms in data mining on health data has been conducted. Evaluation of the experiment results was realised by the accuracy and error rate occurred with the constructed model. This study provides an insight in determining the best classification method according to the accuracy and the error of the realised experiments.

There are many free and commercial data mining tools available. In data mining applications, generally these tools are used. In this study, classification algorithms provided by open source tools WEKA, Tanagra, and Scikit-learn were compared.

**LITERATURE SURVEY**

“Knowledge Discovery from Databases” (KDD) and “Data Mining” terms are frequently used interchangeably. Hand et al. (2001) define data mining as “the process of discovering interesting knowledge from large databases”. Witten and Frank (2000) define it as “the extraction of implicit, previously unknown, and potentially useful information from data”.

Previous studies on the comparison of data mining tools, examine a subset of the available tools mostly limited to a small number of available softwares either free or commercial. In these studies, mostly the user friendliness, interface design, algorithms provided, and platform compliances are considered. An example that can be given is Elder et al. (1998) who present a comparison of several free and commercial data mining softwares.

In 1994, a team of twelve researchers, six of which affiliated to academics and the other six being industrial researchers have conducted a research on classification algorithms under European Stat Logs Project. The results of this study was published with the name “Machine Learning, Neural and Statistical Classification” (Michie and Spiegelhalter, 1994).

Abdullah et al. (2011) designed a template for characterization based on several dynamic sample databases of tools and other supporting attributes like services provided by system, business goals, and other features of processing data and user interface. Around 40 data mining tools were evaluated and a general schema was proposed for tool selection to achieve business goals.

Lin et al. (2004) used various discriminant techniques, including Fischer’s discriminant analysis and kernel-based discriminant analysis in order to place students into three categories according to their level properly. They concluded that kernel-based approach with bandwidth selected by cross validation performs reasonably well for categorizing the students according to their level.

It can be seen from the previous studies that the success of the algorithm used substantially depends on the data set used. Thus, most of the similar studies conclude to achieve contradicting results.

**Use of classification algorithms on health data**

Data mining is being used in medical area in order to improve decision making. One of the most challenging difficulties in medical systems is extracting comprehensible information from diagnosis data. Here, classification methods used for data mining in health related diagnosis data is reviewed.

Gandhi et al. (2010) proposed constructing classification rules using the Particle Swarm Optimization Algorithm for breast cancer data set. The model generated with the constructed rules was reported to achieve accuracy rate defining the underlying attributes effectively.

Manaswini and Ranjit (2011) used an artificial neural network based classification method to classify the diabetes patients. They used Pima Indians Diabetes Database for their study. They adopted 10-fold cross validation on both training and test data.

Kahramanli and Allahverdi (2009) used an adaptive activation function in training the artificial neural network and then used artificial immune algorithm to extract rules for liver disorder data set. Their proposal takes all the input attributes into consideration, and extracts rules from the trained neural network efficiently.

**DATA SET USED**

This study was conducted using Surveillance Epidemiology and End Results (SEER). SEER, being a unique, well documented, reliable data source containing patient data on several kinds of cancer, has an important place in scientific researches. It provides important statistical information containing the instances from several states of USA, affiliated to 26% of the population, is provided by National Cancer Institute (NCI). SEER, annually being upgraded, has been a fruitful source for thousands of scientific researches.

Data set, since 1973, the time it started, contains different types of cancers in text format. It is a big source consisting of 118 attributes. Since the start of the data collection, attribute set have changed in time. Some attributes related to some cancer types are not applicable to some other cancer types. Some attributes found to have lost its meaning or importance by time. These kinds of attributes had been removed from the data set definition on later versions of the set. On the other hand, new attributes had been introduced in newer versions of the set as new parameters arouse because of the development of technology and medical science.

In this study, despite the data being well formed and well documented, it was a necessity to do some preprocessing before the application of data mining algorithms. The set used in this study, contains 118 attributes.

**Preprocessing of data**

Attributes in the set have been analyzed thoroughly and some of the attributes though to have an ignorable effect on the output classes were elected as part of the attribute selection process.
Also, some non-informative or meaningless attribute values that may cause problems in the analysis of the data have been replaced with proper values as the following.

**Age at diagnosis**

This attribute indicates the age of the patient at diagnosis and is 3 characters long with values ranging from 000 to 130. A value of "999" indicates that the age of the patient is unknown. This value "999", has been replaced with a "?" character to reflect the meaning that it is missing value.

**Regional nodes positive**

Being a numeric attribute, the maximum value for this attribute is 90. The values above 90 have the meanings, that can be put in the same category, such as "Positive aspiration or core biopsy of lymph node(s)", "Positive nodes-Number unspecified", "No nodes examined", "Unknown-Not applicable, not documented in patient record". Thus, such values above 90 is replaced by "?" character to represent the attribute as missing value.

**CS tumor size**

This attribute had been included in the set after 2004, so is absent for the data gathered before 2004. But yet, data set gathered before 2004 has an attribute named "EOD-Tumor size". Thus, EOD-Tumor size values for pre-2004 data were taken as the values for CS Tumor Size. Values "989" and "999" meaning “no information” were replaced by “?” character. Values 991, 992, ..., 997 meaning “maximum 10 mm”, “maximum 20 mm”, ..., “maximum 70 mm” were replaced by “010”, “020”, ..., “070”, respectively.

**Tumor marker**

This attribute has no value after 2004. Such values have been replaced by “9” meaning “Not known, or not entered”.

**RX Summ-Surgery of primary site**

Empty values for this attribute were replaced with “99” meaning “Unknown if primary surgery performed”. Codes having values in the range of 10 to 19 with similar meanings were replaced with “10” and codes in the range of 20 to 80 were replaced with value “20”.

**RX Summ-Scope of regional lymph node surgery**

Empty values for this attribute were replaced with “9” meaning “Unknown/Not applicable”.

**RX Summ-Surgical procedure of other site**

Empty values for this attribute were replaced with “9” meaning “Unknown”.

**Assigning the classes**

Despite there is no indicator of the survival of the patient in the data set, there are fields "Survival Time Recode, STR", “Casue of Death to Seer Site Recode, COD”, and “Vital Status Recode, VSR” that we can deduce the survival status of the patient from, and then assign a class value for each instance. Delen et al. (2004) used STR field for this purpose. In addition to the STR field, Bellaachia et al. (2006) also uses VSR and COD attributes to assign the class value. In this study, we employed the following algorithm to deduce the class, that is, the survival status of the patients due to cancer.

\[
\begin{align*}
  &\text{if (VSR ~= '1')} \quad /* \text{patient alive? */} \\
  &\quad \text{if (STR > 60)} \quad \text{Class= '1'; /* survived cancer */} \\
  &\quad \text{else} \quad /* \text{not alive */} \\
  &\quad \quad \text{if (COD=cancer)} \quad /* \text{cause cancer? */} \\
  &\quad \quad \quad \text{Class= '2'; /* not survived cancer */} 
\end{align*}
\]

The instances not classified as neither “1” or “2” according to the algorithm were ignored. The experiments were performed with 60948 instances remaining after the preprocessing step.

**Data mining tools**

The data mining tools that were compared in this study are shown subsequently.

**Weka**

Weka is an open source data mining tool developed at Waikato University. It is implemented in Java and is a collection of machine learning algorithms for data mining tasks. Weka contains tools for data preprocessing, classification, regression, clustering, association rules, and visualization. It also enables to develop and add new machine learning schemes. Weka is an abbreviation for “Waikato environment for knowledge analysis”. It has a modular design and provides functions to preprocess the data, visualisation of data, and a large scale of algorithms for data mining and is well suited for business intelligence. Weka has its own ASCII text file format definition named “Attribute-Relation File Format”, ARFF. It provides tool to convert any csv file to arff format. Weka can process files of type arff, csv, and C4.5. Also it lets to connect to a database with Jdbc connection and work on data in the database.

**Tanagra**

Tanagra is a free version of data mining software that was developed by Ricco Rakotomola at Lumière University Lyon for research and academic purposes. It provides facilities for visualization, statistical value calculations, sample selection, attribute selection, attribute creation, and tools for regression, clustering, factor analysis, classification and association rules. User can design a data mining process visually by the help of diagrams. Every node in the diagram is either a statistical or machine learning algorithm and the connection between two nodes represents data flow. Tanagra lets the use of files with extensions txt, xls, arff and dat. Results can be viewed in html format, therefore it is easy to represent the results on any web explorer.

**Scikit-learn**

Scikit-learn is one of the most used python library on machine learning. It comes with Anaconda and WinPython and includes many methods such as linear regression, logistic regression,
Table 1. Data set definition.

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Number of Instances</th>
<th>Number of Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>60948</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2. Results from Weka.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Accuracy rate</th>
<th>Error rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Bayes</td>
<td>81.70</td>
<td>18.30</td>
</tr>
<tr>
<td>J48</td>
<td>84.23</td>
<td>15.77</td>
</tr>
<tr>
<td>Random Tree</td>
<td>81.64</td>
<td>18.36</td>
</tr>
<tr>
<td>KStar</td>
<td>85.44</td>
<td>14.56</td>
</tr>
<tr>
<td>Logistic</td>
<td>81.57</td>
<td>18.43</td>
</tr>
<tr>
<td>SMO</td>
<td>81.02</td>
<td>18.98</td>
</tr>
<tr>
<td>IBk</td>
<td>71.64</td>
<td>28.36</td>
</tr>
</tbody>
</table>

Figure 1. Result screen of Weka.

Experimental analysis

In order to achieve the goals of this study, data mining tools including Weka, Tanagra and Scikit-learn were used. Accuracy and error rate of the test results were used to interpret the results. A high value for accuracy and a low value for error rate in a test of a classification of a data set indicates the success of the model.

RESULTS OF EXPERIMENTS

For the experiments, the data was split into two parts for training and testing. Training set was used to construct the classification model. Training set was selected to include 66% of the instances and the rest of the instances, that is the 34% constitute the test data. A description of data set used in this study is given in Table 1.
achieved with Weka is obtained with KStar with an accuracy of 85.44%, followed by J48 algorithm with an accuracy of 84.23%. These results were then followed by 1Bk algorithm with an accuracy of 71.64%.

To construct the models with Scikit-learn, a python program was implemented (Figure 2), and the models were created by using this program.

As can be seen in Table 3, the best result achieved with Scikit-learn was obtained with Decision Tree algorithm with an accuracy of 91.84% and the worst result was with the Nearest Centroid algorithm with an accuracy of 68.15%. It was also observed that the accuracy with KNeighbors classification algorithm decreases with the increasing values of k.

As can be seen in Table 4, the best result with Tanagra was achieved with the Rnd algorithm with an accuracy of
Table 5. Best results obtained from the experiments.

<table>
<thead>
<tr>
<th>Program</th>
<th>Algorithm</th>
<th>Accuracy rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scikit-learn</td>
<td>Decision Tree</td>
<td>91.84</td>
</tr>
<tr>
<td>Tanagra</td>
<td>Rnd Tree</td>
<td>87.75</td>
</tr>
<tr>
<td>Weka</td>
<td>KStar</td>
<td>85.44</td>
</tr>
</tbody>
</table>

87.75 and the worst result was with the Naive Bayes Algorithm with an accuracy of 80.51%. The result screen of Tanagra is given in Figure 3.

Conclusion

The experiments in this study were performed on 60948 instances taken from the SEER data set. Seven classification algorithms were run on Weka, Tanagra and Scikit-learn on the same computer.

As can be seen from Table 5 the best results obtained were the result of the experiment with the Scikit-learn tool with the Decision Tree Algorithm. This was followed by Tanagra and then by Weka.

Of the three tools compared in this study, Scikit-learn gives the best results. However, since it requires Python programming skills to construct models, usage of this tool is a bit more bothersome compared to the other two that provides visual interfaces.

It can be said, as a result of this study, that Scikit-learn software is a good alternative among the three tools compared.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests

REFERENCES

Michie D, Spiegelhalter DJ (1994). Machine Learning, Neural and Statistical Classification; Taylor CC; Prentice Hall.
Related Journals:

- Journal of Environmental Chemistry and Ecotoxicology
- Journal of Geology and Mining Research
- Journal of Internet and Information Systems
- Journal of Oceanography and Marine Science
- Journal of Petroleum Technology and Alternative Fuels
- Journal of Agricultural Biotechnology and Sustainable Development
- International Journal of Physical Sciences
- Scientific Research and Essays

www.academicjournals.org