ABOUT JTEHS

The Journal of Toxicology and Environmental Health Sciences (JTEHS) is published monthly (one volume per year) by Academic Journals.

The Journal of Toxicology and Environmental Health Sciences (JTEHS) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as toxic genomics, enzyme inhibition, drug overdose, Children’s Environmental Exposure Research Study etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JTEHS are peer-reviewed.

Contact Us

Editorial Office: jtehs@academicjournals.org

Help Desk: helpdesk@academicjournals.org

Website: http://www.academicjournals.org/journal/JTEHS

Submit manuscript online http://ms.academicjournals.me/.
Editors

Dr. Hazem Mohammed Ebraheem Shaheen
Department of Pharmacology, Faculty of Veterinary Medicine, Damanhur University, Behera – Dalangat – Elbostan, Egypt

Dr. Jianbo Xiao
College of Life & Environment Science, Shanghai Normal University 100 Guilin Rd, Shanghai 200234, PR China

Dr. Adriana Maria Negrina
Victor Babes University of Medicine and Pharmacy Biochemistry Department
2 Eftimie Murgu Square
RO - 300041, Timisoara
Romania

Dr. Rouabhi Rachid
Biology Department
University of Tebessa 12000. Algeria.

Prof. YongXun Pang
Endemic center, Harbin Medical University 157 BaoJian Road,
NanGang District, Harbin, P. R. China

Dr. M. Mahadeva Swamy
Mysore – 570 006, Karnataka, India

Dr. Shashank Shah
"40/29 Bhonde Colony, 14 Shwe Off Karve Road, Erandwane,
Pune, Maharashtra, India

Dr. Necati Celik
Karadeniz Technical University, Dept. of Phys. 61080
Trabzon,
Turkey

Prof. Yangfeng Wu
"Suite B1302, No 6, Zhichunlu Rd., Haidian District, Beijing, 100088, China

Dr. Ashim Kumar Biswas
Department of Livestock Products Technology, COVS,
Ludhiana- 141004 (Punjab)
India

Dr. Ilia Yarmoshenko
Institute of Industrial Ecology of Ural Branch of Russian Academy of Sciences
620219 S. Kovalevskoy Str., 20, Ekaterinburg, Russia

Dr. Şifa Türkoglu
Cumhuriyet University, Faculty of Art and Science, Department of Biology, Sivas, Turkey

Dr. Juan Antonio Riesco Miranda
Pneumology Department. San Pedro Alcantara Hospital Cáceres
Spain

Dr. Norazmir Md Nor
Department of Nutrition & Dietetics
Faculty of Health Sciences MARA University of Technology Puncak Alam Campus42300
Puncak Alam Selangor,
Malaysia

Dr. Helal Ragab Moussa
Bahnay, Al-bagour, Menoufia, Egypt

Prof. Dr. Mamdouh Moawad Ali
33 El-Tahrir Street, Dokki 12622, Cairo, Egypt

Reza Hosseinzadeh
Shahid Beheshty Ave., Urmia University, Jahad-E-Daneshgahi, P. O. Box No. 165, Urmia, Iran

Moustafa Hossein El-Naggar
Biological Sciences, Faculty of Science,
King Abdulaziz University,
Jeddah, KSA

Hasan TÜRKEZ
Division of Molecular Biology and Genetics, Faculty of Science,
Erzurum Technical University, Erzurum, Turkey
ARTICLE

Potential human risk of dissolved heavy metals in gold mine waters of Gauteng Province, South Africa
C. Kamunda, M. Mathuthu and M. Madhuku
Full Length Research Paper

Potential human risk of dissolved heavy metals in gold mine waters of Gauteng Province, South Africa

C. Kamunda1*, M. Mathuthu2 and M. Madhuku3

1Rusangu University, P.O. Box 660391, Monze, Zambia.
2Centre for Applied Radiation Science and Technology, North West University (Mafikeng Campus), P. Bag X2046, Mmabatho, 2735, South Africa.
3iThemba LABS (Gauteng), P. Bag X111, Wits, 2050, South Africa.

Received 06 November, 2018; Accepted 30 November, 2018

This paper evaluates the potential health risks from dissolved heavy metals in water sources around a gold mining area in the Gauteng Province of South Africa. In this study, 29 samples of water were collected around a gold mining area and were analyzed for Arsenic (As), Lead (Pb), Mercury (Hg), Cadmium (Cd), Chromium (Cr), Copper (Cu), Zinc (Zn), Cobalt (Co) and Nickel (Ni) using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Measured concentrations of these heavy metals were then used to calculate the hazard quotient (HQ) and hazard index (HI) leading to the determination of carcinogenic and non-carcinogenic effects of these heavy metals. The average concentrations of the heavy metals decreased in the order of Ni>Cu> Zn>As> Cr>Co>Pb. In mg.L⁻¹ the average concentrations were as follows: Ni (0.39); Cu (0.38); Zn (0.33); As (0.19); Cr (0.14); Co (0.08); Pb (0.01). Hg and Cd were not detectable. For the non-carcinogenic risk assessment, calculated values of HQ showed an HI value of 3.38×10⁻¹, a value less than 1, which is potentially safe according to United States Environmental Protection Agency (USEPA) and South Africa guidelines. When the carcinogenic risk assessment was carried out, the results showed that the total cancer risk due to the heavy metals was 2.94×10⁻⁶ mainly due to dermal contact. The USEPA considers a cancer risk in the range of 1×10⁻⁶ to 1×10⁻⁴ acceptable for regulatory purposes. From the findings presented, it can be concluded that dissolved heavy metal levels in the mine waters were within permissible limits.

Key words: Health risk assessment, heavy metals, hazard index, target hazard quotient, average daily intake, cancer risk.

INTRODUCTION

Human beings have been exposed to heavy metals for an immeasurable amount of time. These heavy metals are found everywhere as a result of both natural and anthropogenic activities such as mining (Gupta and Ali, 2013). Most mining operations use these heavy metals as chemicals to extract valuable minerals. When the
precious mineral has been extracted, the crushed ore and heavy metals become waste that is piled as tailings into large slime dams. These tailings, if not properly managed may produce toxic waters that can potentially destroy aquatic life and poison drinking water supplies for human consumption (MINEO Consortium, 2000). During mining operations, acid drainage may also be produced. This acid drainage produces sulphuric acid which dissolves heavy metals. Once these heavy metals have been dissolved, they can easily be transported from one place to another.

Although all living organisms require varying amounts of heavy metals, they become toxic at higher concentrations (Lane and Morel, 2009). There are also other heavy metals that have no useful role in the human physiology and most other living organisms. Examples of such elements are As, Pb and Hg. They may be toxic even at trace levels of exposure. Arsenic, lead and mercury are the first, second and third hazardous metals, respectively, on the priority list of heavy metal pollutants as designated by the United States Agency for Toxic Substances and Disease Registry (ATSDR, 2007). When heavy metals are ingested, they get absorbed and distributed in tissues and organs. Although excretion occurs through kidneys and the digestive tract, they persist in some storage areas, such as the liver and bones for years or decades causing serious health consequences (Basheer, 2018).

For more than a century now, gold mining has been carried out in South Africa particularly in the Wonderfonteinspruit Catchment Area (WCA) of the Gauteng Province (Winde et al., 2004). The WCA is the world’s largest gold and uranium mining basin that has taken place from more than 120 mines. The basin covers an area of 1600 km², and has led to a legacy of some 400 km² of mine tailings and 6 billion tonnes of pyrite tailings containing low-grade uranium (Liefferink, 2009). These mine tailings, usually 1 to 2 km in diameter, are littered everywhere, posing an environmental threat to local communities. In this study, a potential risk of heavy metals in water to the population around the gold mining area has been carried out, which is first of its kind. In carrying out this study, the researcher measured the concentration levels of heavy metals in mine water from the study area, and also estimated the health risks associated with these concentrations. Nine heavy metals, namely, As, Pb, Hg, Cd, Cr, Co, Ni, Cu and Zn were included in the measurement.

MATERIALS AND METHODS

The study area

The study area is situated near the West Wits line (Far West Rand) in the Gauteng province of South Africa, close to the town of Carletonville and is approximately 70 kilometers southwest of Johannesburg. It lies between 26°18’S - 26°26’S latitude and 27°23’E - 27°31’E longitude. Gold exploration in the area dates back to 1898 and mining started from 1945 to date. Geologically, the area in question, approximately 86 km², lies in the lower central part of the Wonderfonteinspruit Catchment Area (WCA). The topography of the area is relatively flat and the vegetation is largely grassland. Livestock farming is also widespread in the surrounding area. The climate is temperate, with temperatures averaging 24°C in summer and 13°C in winter, occasionally dipping below the freezing point. Annual rainfall is about 750 mm (Tyson and Wilcocks 1971). The study area has a worker population of around 14,000 (SGL 2012). There are also some informal settlements residing close to the mine tailings.

Sampling and sample preparation

From the study area, samples of water were collected from different locations using random sampling. All the collected water samples were properly marked and identified by their sampling locations using Global Positioning System (GPS) for later referencing. The sampling procedure was carried out according to methodologies recommended by APHA (1985). Twenty nine (29) water samples, of roughly 100 ml each, were collected in polyethylene bottles using a muslin cloth as a strainer, from each selected location in the gold mining area. All the bottles had to be washed with dilute acid (0.1 M HCl) before use to avoid contamination. The collected samples were then transported to the laboratory and placed in a cold room in readiness for elemental analysis using ICP MS technique (IAEA, 1989).

Microwave digestion

Before ICP-MS was done, all samples were first digested in a Multiwave 3000 microwave system. Digestion is done in order to extract the heavy metals from water samples. 5 ml of each water sample was mixed with 5 ml of nitric acid and 1 ml of hydrochloric acid in a rotor vessel with 1 ml of hydrogen peroxide. The mixture was then digested at a temperature of 120°C for about 45 min. After this, the digested samples were allowed to cool and transferred into 100 ml volumetric flasks with 2% nitric acid. Distilled water was then used to top up to the 100 ml volume (Mathushu et al., 2016). The digested samples were then allowed to sediment overnight, which was thereafter filtered with No. 40 Whatman filter paper in readiness for ICP-MS.

ICP-MS measurement

The water samples were analyzed for heavy metals using ICP-MS, model PerkinElmer (NexION 300Q) (PerkinElmer 2004-2011). ICP-MS is a powerful tool for analysing heavy metals in environmental samples. The ICP-MS system can quantitatively measure various elements and produce a value of the total concentration of a specific element of interest (Bazilio and Weinrich, 2012). In ICP-MS, the sample components are decomposed into their atomic constituents followed by their ionization in an argon plasma at a temperature of about 6000 to 8000 K (PerkinElmer, 2004-2011). The positively charged ions are extracted from the plasma into a high vacuum of the mass spectrometer where they are separated by mass filters before finally being measured by an ion detector. The instrument runs each sample twice and for about 60 s for each
complete run (USEPA, 2007).

The TotalQuant method was used together with a standard solution in order to improve the analytical accuracy of the results and to be able to detect contamination and drift. The standard used is Perkin Elmer Pure Plus NexION Dual Detector Calibration Solution. TotalQuant calibration was achieved using 200 μg/L of Al, Ba, Ce, Co, Cu, In, Li, Mg, Mn, Ni, Pb, Tb, U and Zn. For quality control, replicate samples were run together with the standard and blank solutions. The calibration process updates internal response data that correlates measured ion intensities to the concentrations of the elements in the solution. The target heavy metals were As, Pb, Hg, Cd, Cr, Co, Ni, Cu and Zn.

Human health risk assessment

Human health risk assessment is the process of estimating the nature and probability of adverse health effects in humans who may be exposed to environmental contaminants (NRC, 1999). It is also a process used to estimate health effects that might result from exposure to carcinogenic and non-carcinogenic contaminants (USEPA, 2001). This provides information to decision-makers about the possible consequences of actions, source treatment, disposal and remediation options, as well as clean-up standards of contaminated sites. The risk assessment process is made up of four basic steps: hazard identification, exposure assessment, toxicity (dose-response) assessment, and risk characterization (USEPA, 2001). Risk is defined as the probability of suffering harm while hazard is the source of risk (USEPA, 2001). Contaminants such as heavy metals do not cause a risk unless exposure has occurred.

Hazard identification basically aims to investigate what contaminants are present at a site, their concentrations, and their spatial distribution (Kamunda et al., 2016). In the study area heavy metals such as As, Pb, Hg, Cd, Cr, Co, Ni, Cu and Zn were identified as possible hazards for the community.

The purpose of exposure assessment is to measure or estimate the intensity, frequency, and duration of human exposures to an environmental contaminant. In this study, exposure assessment was carried out by measuring the concentrations and the Average Daily Intake (ADI) of heavy metals through ingestion, and dermal contact by individuals from the study area.

Dose-response assessment estimates the toxicity, considering adverse effects and exposure levels of carcinogenic and non-carcinogenic contaminants. The carcinogenic slope factor (CSF) and the reference dose (RfD), are two principal toxicity indices used. RfD values are derived from animal studies using the “No observable effect level” principle. For humans, RfD values are multiplied 10-fold to account for uncertainties (Kamunda et al., 2016).

Risk characterization predicts the potential cancerous and non-cancerous health risk of the population by integrating all the information gathered from hazard identification, exposure assessment, and toxicity assessment to arrive at quantitative estimates of cancer risk and hazard indices (Liang et al., 2011).

Risk assessment of heavy metals in water samples

The potential risk from heavy metals in contaminated water is calculated based on recommendations by several USEPA publications (USEPA 1989). The Average Daily Intake (ADI) (mg/kg-day) ingestion and dermal contact were calculated using the following exposure equations 1 to 3 as prescribed by USEPA (1989):

Ingestion of heavy metals through water samples

\[
AD_{\text{ing}} = \frac{C \times IR_{\text{ing}} \times EF \times ED}{BW \times AT \times 10^6}
\]

where \(AD_{\text{ing}}\) (mg/kg-day), is the average daily intake of heavy metals ingested from water, \(C\) = concentration of heavy metals in mg/L, \(IR_{\text{ing}}\) (mg/day) is the ingestion rate, \(EF\) (days/year) is the exposure frequency, \(ED\) (years) is the exposure duration, \(BW\) (kg) is the body weight of the exposed individual, and \(AT\) (days) is the time period over which the dose is averaged and \(10^6\) is the conversion factor in kg/mg.

Dermal contact with water

\[
AD_{\text{dem}} = \frac{C \times SA \times PC \times ET \times EF \times ED \times CF}{BW \times AT}
\]

where \(AD_{\text{dem}}\) (mg/kg-day) is average daily intake of heavy metals via dermal contact from water. \(C\) (mg/L) is the concentration of heavy metal in water, \(SA\) (cm²) is the exposed skin area, \(PC\) (cm/h) is the dermal permeability coefficient, \(ET\) (h/day) is the exposure time during bathing and shower, and \(CF\) (L/cm²), the unit conversion factor. \(EF, ED, BW\) and \(AT\) are as defined earlier in Equation 1 (Table 1).

Non-carcinogenic risk assessment of heavy metals

Non-carcinogenic hazards are characterized by the hazard quotient (HQ). HQ is a unitless number that is expressed as the probability of an individual suffering an adverse effect. The hazard quotient is defined as the quotient of the average daily intake or dose divided by the toxicity threshold value, which is referred to as the reference dose (RfD) of a specific chemical (USEPA, 1989):

\[
HQ = \frac{ADI}{RfD}
\]

where RfD is the chronic reference dose for the heavy metal (mg/kg-day). For \(n\) number of heavy metals, the non-carcinogenic effect to the population is a result of the summation of all the HQs due to individual heavy metals. This is considered to be another term called the Hazard Index (HI) as described by USEPA (1989). Equation 4 shows the mathematical representation of this parameter:

\[
HI = \sum_{k=1}^{n} HQ_k = \sum_{k=1}^{n} \frac{ADI_k}{RfD_k}
\]

where \(HQ_k, ADI_k, RfD_k\) are values of heavy metal k. If the HI value is less than one, the exposed population is unlikely to experience adverse health problems. If the HI value exceeds one, then there may be concern for potential non-carcinogenic effects (USEPA, 1989).
Table 1. Exposure parameters used for risk assessment through ingestion and dermal pathways in water samples (Kamunda et al. 2016).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Individual</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (BW)</td>
<td>kg</td>
<td>70</td>
<td>DEA (2010)</td>
</tr>
<tr>
<td>Exposure frequency (EF)</td>
<td>days/year</td>
<td>350</td>
<td>DEA (2010)</td>
</tr>
<tr>
<td>Exposure duration (ED)</td>
<td>years</td>
<td>30</td>
<td>DEA (2010)</td>
</tr>
<tr>
<td>Ingestion rate (IR<sub>ing</sub>)</td>
<td>L/day</td>
<td>2</td>
<td>DEA (2010)</td>
</tr>
<tr>
<td>Skin surface area (SA)</td>
<td>cm<sup>2</sup></td>
<td>5800</td>
<td>DEA (2010)</td>
</tr>
<tr>
<td>Average time (AT)</td>
<td>days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For carcinogens</td>
<td></td>
<td>365 × 70</td>
<td>DEA (2010)</td>
</tr>
<tr>
<td>For non-carcinogens</td>
<td></td>
<td>365 × ED</td>
<td>DEA (2010)</td>
</tr>
<tr>
<td>Exposure time during bathing and shower (ET)</td>
<td>h/day</td>
<td>0.3</td>
<td>Liang et al. (2011)</td>
</tr>
<tr>
<td>Dermal permeability coefficient (PC)</td>
<td>cm/h</td>
<td>1.0 × 10<sup>-3</sup></td>
<td>Liang et al. (2011)</td>
</tr>
<tr>
<td>Unit conversion factor (CF)</td>
<td>L/cm<sup>3</sup></td>
<td>1.0 × 10<sup>-3</sup></td>
<td>Liang et al. (2011)</td>
</tr>
</tbody>
</table>

Table 2. Reference doses (RfD) in (mg/kg-day) and Cancer slope factors (CSF) for the different heavy metals (Kamunda et al., 2016).

<table>
<thead>
<tr>
<th>Heavy metal</th>
<th>Ingestion RfD</th>
<th>Dermal RfD</th>
<th>Ingestion CSF</th>
<th>Dermal CSF</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>3.00E-04</td>
<td>3.00E-04</td>
<td>1.50E+00</td>
<td>1.50E+00</td>
<td>USEPA (2011a)</td>
</tr>
<tr>
<td>Pb</td>
<td>3.60E-03</td>
<td>-</td>
<td>8.50E-03</td>
<td>-</td>
<td>Luo et al. (2012)</td>
</tr>
<tr>
<td>Hg</td>
<td>3.00E-04</td>
<td>3.00E-04</td>
<td>-</td>
<td>-</td>
<td>DEA (2010)</td>
</tr>
<tr>
<td>Cd</td>
<td>5.00E-04</td>
<td>5.00E-04</td>
<td>-</td>
<td>-</td>
<td>DEA (2010)</td>
</tr>
<tr>
<td>Cr (VI)</td>
<td>3.00E-03</td>
<td>-</td>
<td>5.00E-01</td>
<td>-</td>
<td>USEPA (2011a)</td>
</tr>
<tr>
<td>Co</td>
<td>2.00E-02</td>
<td>5.70E-06</td>
<td>-</td>
<td>-</td>
<td>USEPA (2011a)</td>
</tr>
<tr>
<td>Ni</td>
<td>2.00E-02</td>
<td>5.60E-3</td>
<td>-</td>
<td>-</td>
<td>IRIS (2007)</td>
</tr>
<tr>
<td>Cu</td>
<td>3.7.00E-02</td>
<td>2.40E-2</td>
<td>-</td>
<td>-</td>
<td>USEPA (2011a)</td>
</tr>
<tr>
<td>Zn</td>
<td>3.00E-01</td>
<td>7.50E-02</td>
<td>-</td>
<td>-</td>
<td>USEPA (2011a)</td>
</tr>
</tbody>
</table>

Carcinogenic risk assessment of heavy metals

For carcinogens, the risks are estimated as the incremental probability of an individual developing cancer over a lifetime as a result of exposure to the potential carcinogen. The basic equation for calculating the lifetime cancer risk is:

\[
\text{Risk} = \text{ADI} \times \text{CSF}
\]

where "Risk" is a unitless probability of an individual developing cancer over a lifetime; ADI is the average daily intake or dose as highlighted earlier. CSF is the cancer slope factor, expressed in (mg/kg/day)⁻¹. It converts the estimated daily intake of the heavy metal averaged over a lifetime of exposure directly to incremental risk of an individual developing cancer (USEPA, 1989).

The total lifetime cancer risks for an individual is calculated from the average contribution of the individual heavy metals in the different media for all the pathways using the following equations:

\[
\text{Risk}_{\text{total}} = \text{Risk}_{\text{ing}} + \text{Risk}_{\text{dermal}}
\]

where Risk_{ing}, Risk_{inh}, and Risk_{dermal} are risks contributions through different media, that is, soil, water and plants. For n number of heavy metals, the risk for the given pathway is given by Equation 7 as follows:

\[
\text{Risk}_{\text{pathway}} = \sum_{k=1}^{n} \text{ADI}_k \times \text{CSF}_k
\]

where ADI_k and CSF_k are the ADI and CSF, for the kth heavy metal. Both non-carcinogenic and carcinogenic risk assessment of heavy metals are estimated from RfD and CSF values largely derived from DEA (2010) and USEPA guidelines as shown in Table 2.

RESULTS AND DISCUSSION

Concentrations of heavy metals in water samples

The average concentrations of heavy metals in water samples (mg.L⁻¹) from the different locations of the gold mining area are presented in Table 3. These average concentrations were then used to calculate the average
daily intakes for residents leading to non-carcinogenic and carcinogenic risk assessment for individual members of the public. The results presented show that the average concentration of heavy metals in water from the gold mining area decreased in the order of Ni>Cu>Zn>As>Cr>Co>Pb. The ranges in mg L\(^{-1}\) were as follows: Ni (0.08 to 2.68 with an average of 0.39); Cu (0.02 to 3.72 with an average of 0.38); Zn (0.00 to 2.12 with an average 0.33); As (0.00 to 0.99 with an average 0.19); Cr (0.00 to 0.40 with an average 0.14); Co (0.00 to 0.66 with an average 0.08); Pb (0.00 to 0.04 with an average 0.01). Although Hg and Cd were measured, their concentrations were not detectable.

The results of the measurements were also compared with national and international guidelines for permissible limits of heavy metals in drinking water presented in Table 4. The results revealed that the average concentrations of As, Ni, Cr, and Zn in drinking water were higher than permissible limits whilst those of the remaining heavy metals were within permissible limits. The high concentrations of these metal elements could be attributed to high levels of acid mine drainage as
Table 4. Permissible limits of heavy metals in drinking water.

<table>
<thead>
<tr>
<th>Country</th>
<th>Heavy metals concentration limit (mg.L⁻¹)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>USEPA</td>
<td>As 0.01 Pb 0.015 Hg 0.002 Cd 0.005 Cr 0.1 Cu 1.3 Zn 0.5 Co 0.1 Ni n.a</td>
<td>USEPA (2011b)</td>
</tr>
<tr>
<td>WHO</td>
<td>As 0.01 Pb 0.01 Hg 0.006 Cd 0.003 Cr 0.05 Cu 2.0 Zn n.a Co n.a Ni 0.07</td>
<td>WHO (2008)</td>
</tr>
<tr>
<td>South Africa</td>
<td>As 0.01 Pb 0.01 Hg 0.001 Cd 0.003 Cr n.a Cu 1.0 Zn n.a Co n.a Ni</td>
<td>DOH (2004)</td>
</tr>
</tbody>
</table>

n.a: Not available.

Table 5. Average Daily Intake (ADI) and their corresponding Hazard Quotient (HQ) values due to ingestion and dermal contact with water for heavy metals from mining area.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ADI and HQ Values</th>
<th>Total (HI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As 5.25E-09 Pb 2.08E-10 Cr 3.80E-09 Cu 1.04E-08 Cd 9.01E-09 Zn 2.10E-09 Co 1.08E-08 Ni 4.15E-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As 4.57E-06 Pb 1.81E-07 Cr 3.30E-06 Cu 9.01E-06 Cd 7.84E-06 Zn 1.82E-06 Co 9.37E-06 Ni 3.61E-05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As 4.58E-06 Pb 1.81E-07 Cr 3.31E-06 Cu 9.02E-06 Cd 7.85E-06 Zn 1.83E-06 Co 9.38E-06 Ni 3.61E-05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As 3.00E-04 Pb 3.60E-03 Cr 3.00E-03 Cu 3.70E-02 Cd 3.00E-01 Zn 2.00E-02 Co 2.00E-02 Ni</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As 1.75E-05 Pb 5.77E-08 Cr 1.27E-06 Cu 2.80E-07 Cd 3.00E-08 Zn 1.05E-07 Co 5.38E-07 Ni 1.98E-05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As 3.00E-04 Pb n.a Cr n.a Cu 2.40E-02 Cd 7.50E-02 Zn 5.70E-06 Co 5.60E-03 Ni</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As 1.52E-02 Pb n.a Cr n.a Cu 3.75E-04 Cd 1.05E-04 Zn 3.20E-01 Co 1.67E-03 Ni 3.38E-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As 1.53E-02 Pb 5.77E-08 Cr 1.27E-06 Cu 3.76E-04 Cd 1.05E-04 Zn 3.20E-01 Co 1.67E-03 Ni</td>
<td></td>
</tr>
</tbody>
</table>

n.a: Indicates that reference doses were not available for calculation.

reported by Winde et al. (2004) in the area, which is catalytic to the solubility and leaching of these heavy metals.

Non-carcinogenic risk assessment of heavy metals through water samples

Non-carcinogenic risk of heavy metals for individual members of the public were calculated based on reference doses (RfD) presented in Table 2 and on the results of Average Daily Intake (ADI) values calculated for the water samples. The results were then presented in terms of the Hazard Quotient (HQ) and Hazard Index (HI) for ingestion and dermal pathways. Ingestion and dermal pathways were considered in the non-carcinogenic risk assessment. Table 5 tabulates results of ADI values used together with their corresponding HQ values. In this situation, Equations 1 and 2 described earlier were used to calculate ADI values for water samples. Calculated values of HQ showed an HI value of 3.38×10⁻¹. This is less than 1 and potentially safe according to USEPA (1989) and South Africa guidelines (DEA, 2010). In this scenario, the dermal pathway contributed more than the ingestion pathway.

An evaluation to determine the pathway that contributed the most to non-carcinogenic risk was done. Results showed that the dermal pathway contributed more to non-carcinogenic risk with an HQ value of 3.38×10⁻¹ with the ingestion pathway contributing a negligible amount of only 1.98×10⁻⁵. Results also showed that Co contributed the most to the non-cancer risk, followed by As and then Ni. This was primarily because As is a non-essential element in plants and animals. Although Co plays a vital role in nitrogen fixing and Cr in the metabolism of fats and cholesterol, their ADI values for soil were closer to the toxicity threshold doses for the dermal pathway and ingestion pathway, thereby becoming more hazardous than the other heavy metals.

Carcinogenic risk assessment of heavy metals through water samples

As, Pb, and Cr were considered as metals that have the potential to cause carcinogenic risk. The cancer risks for individual members of the public were calculated from the average contribution of the individual heavy metals in water samples. In order to calculate the ADI values, Equations 1 and 2 described earlier were used. On the other hand, Equations 5, 6 and 7, also earlier mentioned were used to determine the cancer risk. The ingestion...
The results for individual cancer risk are presented in Table 6. The same table also presents ADI values used in the calculation of the cancer risk. For those metals without known cancer slope factors, the risk was not calculated. The results shown indicate that the total cancer risk was 2.94×10⁻⁶ mainly due to dermal contact.

Table 6. ADI values and the cancer risk values through ingestion and dermal contact of heavy metals for individual members of the public for water from mining area.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ADI and cancer risk values</th>
<th>Total risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADIing</td>
<td>As 2.25E-09, Pb 8.91E-11, Cr 1.63E-09</td>
<td>1.78E-08</td>
</tr>
<tr>
<td>ADlder</td>
<td>As 1.96E-06, Pb 7.75E-08, Cr 1.42E-06</td>
<td>1.55E-05</td>
</tr>
<tr>
<td>Total ADI</td>
<td>As 1.96E-06, Pb 7.76E-08, Cr 1.42E-06</td>
<td>1.55E-05</td>
</tr>
<tr>
<td>CSFing</td>
<td>As 1.50E+00, Pb 8.50E-03, Cr 5.00E-01</td>
<td>n.a</td>
</tr>
<tr>
<td>Risking</td>
<td>As 3.38E-09, Pb 7.57E-13, Cr 8.14E-10</td>
<td>4.19E-09</td>
</tr>
<tr>
<td>CSFder</td>
<td>As 1.50E+00, Pb n.a, Cr n.a</td>
<td>n.a</td>
</tr>
<tr>
<td>Riskder</td>
<td>As 2.94E-06, Pb n.a, Cr n.a</td>
<td>2.94E-06</td>
</tr>
<tr>
<td>Total Risk</td>
<td>As 2.94E-06, Pb 7.57E-13, Cr 8.14E-10</td>
<td>2.94E-06</td>
</tr>
</tbody>
</table>

n.a: Indicates that cancer slope factors were not available for risk calculation.

and dermal pathways were considered for estimating the cancer risk of heavy metals for water. The results for individual cancer risk are presented in Table 6. The same table also presents ADI values used in the calculation of the cancer risk. For those metals without known cancer slope factors, the risk was not calculated. The results shown indicate that the total cancer risk was 2.94×10⁻⁶ mainly due to dermal contact.

Conclusion

The main objective of this study was to evaluate potential health risks as a result of heavy metals in water samples collected from different locations around the gold mining area in the Gauteng Province of South Africa. The average concentrations of heavy metals in water samples from the different locations decreased in the order of Ni>Cu>Zn>As>Cr>Co>Pb. The ranges in mg.L⁻¹ were as follows: Ni (0.08 to 2.68 with an average of 0.39); Cu (0.02 to 3.72 with an average of 0.38); Zn (0.00 to 2.12 with an average 0.33); As (0.00 to 0.99 with an average 0.19); Cr (0.00 to 0.40 with an average 0.14); Co (0.00 to 0.66 with an average 0.08); Pb (0.00 to 0.04 with an average 0.01). Compared with national and international guidelines for permissible limits, the average concentrations of As, Ni, Cr, and Zn in drinking water were higher than permissible limits.

When non-carcinogenic risk assessment was carried out, calculated values of HQ showed an HI value of 3.38×10⁻¹, a value less than 1, which is potentially safe according to USEPA and South Africa guidelines. On the other hand, carcinogenic risk assessment carried out showed that the total cancer risk due to the heavy metals of 2.94×10⁻⁶, is mainly due to dermal contact. The US Environmental Protection Agency considers a cancer risk in the range of 1×10⁻⁶ to 1×10⁻⁴ acceptable for regulatory purposes. From the findings presented, it was concluded that dissolved heavy metal levels in mine water were within permissible limits in the mining area.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Related Journals:

Clinical Reviews and Opinions

Journal of Medicinal Plant Research

African Journal of Pharmacy and Pharmacology

Journal of Dentistry and Oral Hygiene

Journal of Parasitology and Vector Biology

Journal of Pharmacognosy and Phytotherapy

Journal of Medical Laboratory and Diagnosis

Journal of Diabetes and Endocrinology

Medical Practice and Reviews

www.academicjournals.org