African Journal of Biochemistry Research
Volume 12 Number 1 January 2018
ISSN 1996-0778
ABOUT AJBR

African Journal of Biochemistry Research (AJBR) provides rapid publication (monthly) of articles in all areas of Biochemistry such as Nutritional biochemistry, Analytical biochemistry, Clinical Biochemistry, Human and Plant Genetics, Molecular and Cell Biology, Enzymology, Toxicology, Plant Biochemistry, Biochemistry Education etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles are peer-reviewed.

Contact Us

Editorial Office: ajbr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/AJBR
Submit manuscript online http://ms.academicjournals.me/
Editor

Prof. Johnson Lin
School of Biochemistry, Genetics, Microbiology and Plant Pathology
University of KwaZulu-Natal (Westville)
Private Bag X 54001, Durban
Republic of South Africa

Associate Editors

Gregory Lloyd Blatch
Dept Biochemistry Microbiology & Biotechnology
Rhodes University Grahamstown 6140
South Africa

Dr. Serap Yalin
Mersin University,
Faculty of Pharmacy,
Department of Biochemistry,
Yenisehir Kampusu,
Mezitli 33161
Mersin/Turkey

Dr. Om Prakash Gupta
Directorate of Wheat Research (ICAR)
Post Box-158, A grasa\nMarg, Karnal-132001, Haryana, India
Editorial Board

Dr. Desouky A.M. Abd-El-Haleem
Biological Sciences Department,
College of Arts and Sciences,
Qatar University, Doha, Qatar

Dr. S.K. Trigun
Biochemistry and Molecular Biology Section,
Banaras Hindu University
Varanasi-221005, India

Dr. Imed Gallouzi
McGill University,
Biochemistry Department,
3655 Promenade Sir William OslerMontreal, Quebec, H3G 1Y6, Canada

Dr. Ashraf A Khalil
Protein Technology Lab, Mubarak City for Science, New Borg Elarab, Alexandria, Egypt.

Dr. Stanley Mukanganyama
Department of Biochemistry,
University of Zimbabwe, Box MP 167, Mount Pleasant, Harare, Zimbabwe

Prof. Salah A. Sheweita
Taibah University, Faculty of Medicine, Department of Biochemistry, PO Box 30001, Madinah, Saudi Arabia

Dr Oluwafemi O Oguntibeju
Department of Clinical Biochemistry,
School of Medicine,
Spartan Health Sciences University,
P.O. Box 324, Vieux Fort, St Lucia, West Indies

Dr. Robert L. Brown
USDA ARS,
Southern Regional Research Center
1100 Robert E. Lee Blvd., New Orleans, LA 70124

Dr. Edward Eteshola
Biomedical Engineering Center
Davis Heart and Lung Research Institute
Ohio State University
473 W. 12th Avenue
Columbus, OH 43210

G. Suresh Kumar
Senior Scientist and Head
Biophysical Chemistry Laboratory
Indian Institute of Chemical Biology
Council of Scientific and Industrial Research
Jadavpur, Kolkata 700 032, India

Xu Lu
Department of Biochemistry and Molecular Biology
Colorado State University
Fort Collins, CO 80523-1870 USA

Mohammed A.A Sarhan
Dept. Biological Sciences
Faculty of Science
King Khalid University
Saudi Arabia

Mehrdad Behmanesh
Department Of Genetics
School Of Science
P.O.Box 114-175 Tehran Iran

Hans Verhagen
P.o Box 1 3720 Ba Bilthoven
The Netherlands

P.K. Sumodan
Post Graduate Department Of Zoology
Government College Madappally India

Baleseng Moseki
University Of Botswana
Botswana
Dr. V. Mahalakshmi
Panimalar Engineering College
7-A,CID Quarters, Mandaveli, Chennai-600028, Tamilnadu, India.

Dr. Ata Allah Taleizadeh
Iran University of Science and Technology
Faculty of Industrial Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran.

Dr. P.S. Vohra
Chandigarh Group of Colleges, Landran, Mohali, India
#3075, Sector 40 D Chandigarh, Pin code 160036

Dr. José M. Merigó
University of Barcelona
Department of Business Administration, Av. Diagonal 690, Spain.

Dr. Anton Sorin Gabriel
Carol I Boulevard, No. 11, 700506, Iasi, Alexandru Ioan Cuza University Iaşi, Romania.

Dr. Aura Emanuela Domil
31 Horia Creanga, zip code 300253, Timisoara, West University from Timisoara, Faculty of Economics and Business Administration, Romania.

Editorial Team
Dr. T.S. Devaraja
Department of Commerce, Post Graduate Centre, Hemagangotri Campus, University of Mysore India.

Dr. Nebojsa Pavlovic
High school "Djura Jaksic"
Trska bb, 34210 Raca, Serbia.

Dr. Colin J. Butler
University of Greenwich
Business School, University of Greenwich, Greenwich, SE10 9LS, London, UK.

Prof. Dev Tewari
School of Economics and Finance
Westville Campus University of Kwa-Zulu Natal (UKZN) Durban, 4001 South Africa.

Dr. Paloma Bernal Turnes
Universidad Rey Juan Carlos
Dpto. Economía de la Empresa
Pº de los Artilleros s/n Edif. Departamental, Desp. 2101 28032 Madrid, España

Prof. Mornay Roberts
Department of Marketing Management, C-Ring 607, Kingsway campus, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa.

Dr. Jurandir Peinado
Universidade Positivo
Rua Silveira Peixoto, 306 Zip 80240-120 Curitiba – PR – Brazil

Prof. Fabrizio Rossi
University of Cassino and Southern Lazio (Italy)
Via G. Di Biasio 43, Cassino (Italy)

Dr. Mehdi Toloo
Technical University of Ostrava, Ostrava, Czech Republic

Dr. Surendar Singh
Department of Management Studies, Invertis University, Invertis village, Bareilly-Lucknow Highway, N.H.-24, Bareilly (U.P.) 243 123 India.

Dr. Guowei Hua
NO. 3 Shangyuancun, Haidian District,

Bhaskar C. Behera
Agharkar Research Institute
Plant Science Division India
India

Luiz Claudio Miletti
Universidade Do Estado De Santa Catarina
Brasil

Oladipo Gabriel Sunday
University Of Port Harcourt
Port Harcourt-Nigeria
Nigeria

Basiouny Ahmed El-Gamal
Biochemistry Department
Faculty Of Science
Alexandria University
Egypt

AminigoEbiokpo Rebecca
University Of Port Harcourt
Portharcourt-Nigeria
Nigeria

JiaZeng
Department Of Bioengineering
Central South University
Changsha Hunan 410083 P.R.China
China

Adenike Kuku
ObafemiAwolowo University
Department Of Biochemistry
Nigeria

Elsayed Hafez
Genetic Engineering and Biotechnology Research Institute
Egypt

Gabriella Castoria
Via L. De Crecchio 7 -80138 Naples
Department Of General Pathology
Italy

SalwaSeddik Abdel-Latif
21 Elbatal Ahmed Abdel Aziz
Elmohandesien Giza
Egypt

Erasto Vitus Mbugi
Muhimbili University
Biochemistry Department
School Of Medicine
India

Mohamed Rholm
Université Paris 7 - Denis-Diderot
France

Hooi Ling Foo
Universiti Putra Malaysia
Malaysia

JayanthRao
Biochemistry And Nutrition
Cftri Mysore
India

Maznah Ismail
Universiti Putra
Malaysia

Svetlana Lutsenko
Oregon Health & Science University
USA

Gabriel Ugwem
Rivers State University Of Science And Technology
P.M.B. 5080 Port Harcourt
Nigeria

HariChhatpar
Dept. Of Microbiology & Biotechnology Centre
Faculty Of Science
M.S.University Of Baroda
Vadodara 390 002
Baroda India

MahiuddinAlamgir
The University Of New South Wales
Sydney Nsw-2052
Australia

Sheeja Samuel Edwin
B.R Nahata College of Pharmacy & Research Centre
India

William Cho
Room 1305 13/F Block R Department of Clinical Oncology
Queen Elizabeth Hospital
30 Gascoigne Road Kowloon
Hong Kong
Dr. Suraini Abd-Aziz
Universiti Putra Malaysia
Malaysia

Dr. Mustafa Numan Bucak
Lalahan Livestock Central Research Institute Lalahan
Ankara Turkey

Alparslan Kadir Devrim
Department Of Biochemistry
Faculty of Veterinary Medicine
Kafkas University
36040 Kars
Turkey

Vasudev R. Thakkar
Sardar Patel University
Brd School of Biosciences
Sardar Patel University
Nagar

Prof. Emmanuel Anosike
Department Of Biochemistry
University Of Port Harcourt
Nigeria

Dr. Usama Beshay
New Bourg El-Arab City, Research Area Alexandria
21934
Egypt

Dr. Ramar Perumal Samy
Department of Anatomy
Yong Loo Lin School of Medicine
National University of Singapore
Singapore

Dr. Shin-ichi ONO
Laboratory of Clinical Pharmacy
College of Pharmacy, Nihon University
Japan

Prof. Lawal Bilbis
Biochemistry Department
Usmanu Danfodiyo University Sokoto
Nigeria

Dr. Adriana G. Chicco
Department of Biochemistry
University of Litoral, Santa Fe
Argentina

Prof. Zia-Ur Rahman
Department Of Physiology and Pharmacology
University Of Agriculture
Faisalabad
Pakistan

Dr. Oluwole Ariyo
Allen University
USA

Prof. Francisco Torrens
Institut Universitari de Ciència Molecular
Universitat de València
Spain

Prof. Belkhodja Moulay
University of Senia Oran
Algeria

Dr. Hossam M Ashour
Department of Microbiology and Immunology
Faculty of Pharmacy, Cairo University
Egypt

Dr. Fidelis Ocloo
Biotechnology and Nuclear Agriculture Research Institute/GAEC
Ghana

Ass. Prof. Alfonso Baldi
Dept. Biochemistry, Sect. Pathology
Second University of Naples, Italy

Dr. Anandh Babu Pon Velayutham
Department of Human Nutrition
Foods and Exercise 253 Wallace Hall Virginia Tech
Blacksburg VA 24061
USA

Dr. Tapan K. Chaudhuri
Department of Biochemical Engineering and Biotechnology
Indian Institute of Technology Delhi, HauzKhas
New Delhi-110016, India.

Dr. Rong Zhang
Shenyang Pharmaceutical University
China
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ass. Prof. Tzong-Jih Cheng</td>
<td>Department of Bio-Industrial Mechatronics</td>
</tr>
<tr>
<td></td>
<td>National Taiwan University</td>
</tr>
<tr>
<td></td>
<td>Taiwan</td>
</tr>
<tr>
<td>Dr. Zuyong Xia</td>
<td>Department of Radiology,</td>
</tr>
<tr>
<td></td>
<td>1201 Welch Rd, Room P089, Stanford, CA 94301 USA</td>
</tr>
<tr>
<td>Dr. Pratap Kumar Das</td>
<td>Indian Institute of Chemical Biology</td>
</tr>
<tr>
<td></td>
<td>India</td>
</tr>
<tr>
<td>Dr. Vasudeo Pandharinath Zambare</td>
<td>Advanced Enzyme Technologies Ltd</td>
</tr>
<tr>
<td></td>
<td>India</td>
</tr>
<tr>
<td>Dr. A M Mujumdar</td>
<td>Agharkar Research Institute</td>
</tr>
<tr>
<td></td>
<td>India</td>
</tr>
<tr>
<td>Prof. Christine Clayton</td>
<td>ZMBH</td>
</tr>
<tr>
<td></td>
<td>ImNeuenheimer Feld 282</td>
</tr>
<tr>
<td></td>
<td>69120 Heidelberg, Germany</td>
</tr>
<tr>
<td>Prof. Rekik Boul baba</td>
<td>ESA Mateur</td>
</tr>
<tr>
<td></td>
<td>Département des sciences et techniques de productions animales</td>
</tr>
<tr>
<td></td>
<td>Tanzania</td>
</tr>
<tr>
<td>Dr. Farhad Mirzaei</td>
<td>National Dairy Research Institute, NDRI</td>
</tr>
<tr>
<td></td>
<td>Karnal</td>
</tr>
<tr>
<td></td>
<td>India</td>
</tr>
<tr>
<td>Dr. ROUABHI Rachid</td>
<td>Biology Department,</td>
</tr>
<tr>
<td></td>
<td>Tebessa University</td>
</tr>
<tr>
<td></td>
<td>Algeria</td>
</tr>
<tr>
<td>Prof. Vaclav Vetvicka</td>
<td>University of Louisville</td>
</tr>
<tr>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Ramesh Putheti, Ph.D</td>
<td>Research scientist</td>
</tr>
<tr>
<td></td>
<td>Actavis Pharmaceuticals</td>
</tr>
<tr>
<td></td>
<td>10065 red run blvd, owings mills Blvd, Maryland, USA.21030</td>
</tr>
<tr>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Prof. Dr. Mustafa NAZIROGLU</td>
<td>Head of Department of Biophysics</td>
</tr>
<tr>
<td></td>
<td>Medical (TIP) Faculty, SuleymanDemirel University</td>
</tr>
<tr>
<td></td>
<td>Cunur, TR-32260 Isparta</td>
</tr>
<tr>
<td></td>
<td>TURKEY</td>
</tr>
<tr>
<td>Dr. José Luis Arias Mediano</td>
<td>GrupoInvestigaciónFarmaciaPráctica (CTS-205)</td>
</tr>
<tr>
<td></td>
<td>Dept. Farmacia y TecnologiaFarmacéutica</td>
</tr>
<tr>
<td></td>
<td>Facultad de Farmacia</td>
</tr>
<tr>
<td></td>
<td>Campus Universitario de Cartuja, s/n Universidad de Granada</td>
</tr>
<tr>
<td></td>
<td>18071 Granada.</td>
</tr>
<tr>
<td>Ahmed Malki, PhD</td>
<td>Lecturer of Biochemistry and Molecular Biology</td>
</tr>
<tr>
<td></td>
<td>Biochemistry Department</td>
</tr>
<tr>
<td></td>
<td>Faculty Of Science</td>
</tr>
<tr>
<td></td>
<td>Alexandria University</td>
</tr>
<tr>
<td></td>
<td>Alexandria, Egypt</td>
</tr>
<tr>
<td>Dr. Alireza Seidavi (PhD)</td>
<td>Assistant Professor of Animal and Poultry Nutrition,</td>
</tr>
<tr>
<td></td>
<td>Department of Animal Science</td>
</tr>
<tr>
<td></td>
<td>College of Agriculture</td>
</tr>
<tr>
<td></td>
<td>Islamic Azad University, Rasht Branch,</td>
</tr>
<tr>
<td></td>
<td>Rasht, Iran</td>
</tr>
<tr>
<td>Amani S. Awaad</td>
<td>Professor of pharmacognosy, Chemistry Department</td>
</tr>
<tr>
<td></td>
<td>Faculty of Sciences, King Saud University</td>
</tr>
<tr>
<td></td>
<td>Riyadh. KSA. P.O. Box 22452, Riyadh 11495.</td>
</tr>
<tr>
<td></td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>Dr. Abdel-TawabMossa</td>
<td>Environmental Toxicology Research Unit (ETRU),</td>
</tr>
<tr>
<td></td>
<td>Pesticide Chemistry Department</td>
</tr>
<tr>
<td></td>
<td>National Research Centre,</td>
</tr>
<tr>
<td></td>
<td>Dokki,</td>
</tr>
<tr>
<td></td>
<td>Egypt</td>
</tr>
</tbody>
</table>
Dr. Amal A. Mohamed
Plant Biochemistry Department,
Agriculture Division - National Research Center,
31-El-Tahrir St.,
Dokki,
Cairo – Egypt

Dr. Anabella Gaspar
Department of Biochemistry,
University of Pretoria,
South Africa

Dr. Anna Janecka
Department of Biomolecular Chemistry,
Medical University of Lodz,
Mazowiecka 6/8,
92-215 Lodz,
Poland

Dr. Caser Abdel
Horticulture Department,
Dohuk University,
Iraq

Dr. David Sheehan
Dept Biochemistry,
University College Cork,
Ireland

Dr. Dayananda Chandrappa
Center for Bioenergy,
Department of Life and Physical Sciences,
Cooperative Research,
Lincoln University,
Jefferson City,
USA

Dr. Elsayed Abdelaal
Special Graduate Faculty,
University of Guelph,
Ontario,
Canada

Dr. Etienne Marbaix
CELL Unit,
de Duve Institute,
UCL-75.41, 75 avenue Hippocrate,
B-1200 Bruxelles,
Belgium

Dr. Gary L. Firestone
Department of Molecular and Cell Biology,
University of California,
Berkeley,
CA, 94720,
USA

Dr. Henryk Zielinski
Institute of Animal Reproduction and Food Research,
Polish Academy of Sciences,
Poland

Dr. Irshad A. Nawchoo
Department of Botany,
University of Kashmir,
India

Dr. Luchai Butkhup
Department of Biotechnology,
Faculty of Technology,
Maharasakham University,
Maharasakham 44000,
Thailand

Dr. Luminita Vladescu
Department of Analytical Chemistry,
Faculty of Chemistry,
University of Bucharest,
Romania

Dr. Mira Debnath
School of Biochemical Engineering,
Institute of Technology - Banaras Hindu University,
Varanasi,
India

Dr. Nilesh S. Panchal
Department of Biosciences,
Saurashtra University,
Rajkot-360005,
Gujarat.
India

Dr. Rayappa A. Balikai
University of Agricultural Sciences,
Dharwad,
Karnataka- 580 005,
India
Dr. Saad Tayyab
Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

Dr. Shijun Fu
Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China

Dr. Shiming Zhang
Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA

Dr. Thomas Efferth
Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Heidelberg, 55128 Mainz, Germany
Preventive action of zinc against heavy metals toxicity in honeybee
Cevat Nisbet, Ahmet Güler, Neslihan Ormancı and Sena Cenesiz
Preventive action of zinc against heavy metals toxicity in honeybee

Cevat Nisbet¹*, Ahmet Güler ², Neslihan Ormancı³ and Sena Cenesiz¹

¹Department of Biochemistry, Faculty of Veterinary Medicine, Ondokuz Mayıs University, 55139 Kurupelit, Samsun, Turkey.
²Department of Animal Science, Faculty of Agriculture, Ondokuz Mayıs University, 55139 Atakum, Samsun, Turkey.
³Enstitu veterinary sciences, Samsun, Turkey.

Received 28 November, 2016; Accepted 24 April, 2017

A detrimental consequence of industrial growth has been the steady increase in heavy metal pollution which has major, negative impacts on living organisms. Heavy metals still pose a significant health threat, despite the implementation of many strategies to reduce pollution. The aim of this study was to investigate the possible effects of zinc on the accumulation of some heavy metals in honeybees. Groups totalling 15 hives of Apis mellifera were included in this study. Group A was fed sugar syrup, Group B was fed sugar syrup with Cu, Cd and Pb, and Group C was fed sugar syrup with Cu, Cd, Pb and Zn. Food stocks, number of mature worker bees, environment and colony management were standardised across the 15 hives. The data demonstrated that the co-administration of zinc to honeybees, exposed to heavy metals reduced Cu and Cd concentration in tissue samples, but had no effect on Pb concentration. Furthermore, Zn dietary supplementation was effective in reducing both the suppression of dopamine production and the negative effects of heavy metals on dopamine. The results of our study suggest that zinc supplementation in the diet of A. mellifera has a beneficial effect by reducing the cellular accumulation of some heavy metals.

Key word: Environment, honeybee, heavy metal, toxicity, zinc.

INTRODUCTION

Chronic, low-level exposure to toxic metals is increasing worldwide (Klassen et al., 2009). The sources of heavy metal pollution are anthropogenic emissions and natural sources like volcanic eruptions and erosion. Even at very low concentrations, these metals have toxic effects on living things (Hasiang and Diaz, 2011; Xu et al., 2009). These metals are absorbed from the environment along with food, during breathing or from dermal exposure. Following absorption, they bind to carrier proteins in the tissues and are transported through the cell membrane by non-specific and chemo-osmotic uptake systems or specific active transport mechanisms, and the toxic effects are seen as they accumulate in cells (Cicik et al., 2003; Hasiang and Diaz, 2011).
These toxic metals can compete with the target ions in an active transport mechanisms designed to allow the uptake of essential metals (Zn and Fe). Specifically, Cd interferes with the uptake of Zn and Ca, and Ni interferes with Fe uptake. The heavy metals cause toxic effects through interaction with physiologic ions. Lead has a higher electronegativity and ionic gradient than other metals, and causes toxic effects by substituting for polyvalent cations, such as Ca and Zn, which are involved in the fundamental molecular processes of living organisms (Godwin, 2001). Living organisms have developed mechanisms to inhibit uptake or accelerate elimination of such metals to prevent intracellular toxicity. This system maintains homeostasis for trace elements and allows for facilitates detoxification of toxic material (Choudhury and Srivastava, 2001; Onosaka et al., 2002). It has also been reported that some metals may alter the cellular distribution and proportions of other metals, by altering absorption and metabolism (Zatta et al., 2003). Bees are highly sensitive to pollution (Harano et al., 2005) but little is known about the potentional effects of metal pollutants (Gauthier et al., 2016).

Recent studies have reported an increased levels of heavy metal pollutants in honey bee hives and their products (Hladun et al., 2016; Gauthier et al., 2016; Polykretis et al., 2016). Recent, findings showed that some ingested metals alter the pathways of the honey bee that are involved in anti-oxidative responses, there by depressing the immune system and causing high bee mortality rate (Gauthier et al., 2016; Polykretis et al., 2016; Hladun et al., 2016). In addition, metal pollutants have harmful effects on honey bee behavior, development and survival (Hladun et al., 2013). To determine whether the harmful metabolic effects of heavy metals on honey bees could be reduced, the aims of this study were to investigate the effect of Zn on the metabolization of heavy metals and to examine the effect of Zn in combination with other heavy metals, on the concentration of the neurotransmitters, serotonin and dopamine.

MATERIALS AND METHODS

In this study, three study groups were formed with five bee colonies each, with a total of 15 colonies used. Firstly, the queen bees were changed. After the queen bee’s acceptance, the queen and worker bees were shaken off the empty hive medium.

After the shaking procedure, only the basic comb was given and no drug application was performed against pathogens and parasites. Thus, equivalence was established between colonies regarding food stocks, number of mature worker bees, nesting environment and beehive material.

Study groups

The three study groups (A, B and C) were subjected to the following treatments:

1. Group A comprised of the control group (5 colonies). Normal management was applied and only sucrose syrup at a ratio of 1:1.5 (water: sugar) was provided during the study period.
2. Group B comprised the heavy metal administration group. To each of the five colonies, 4 ppm Cu, 3 ppm Cd and 3 ppm Pb were added to 1:1.5 (water: sugar) mixture provided.
3. Group C comprised the heavy metal + Zn application group. To each of the 5 colonies, 4 ppm Cu, 3 ppm Cd, 3 ppm Pb, and 4 ppm Zn, were added to 1:1.5 (water: sugar) mixture provided. One and a half litres of the sugar syrup was provided at 3 day intervals to each colony, repeated 12 times.

Feeding was performed for 40 days. The starting doses of the metals were determined from a pilot study as published in reports (Zhelyazkova et al., 2001; Roman, 2010). The compounds used to expose the bees to heavy metals were cadmium chloride (CdCl₂), copper sulphate (CuSO₄), lead chloride (Pb(II)Cl₂) and zinc acetate (C₆H₅O₂Zn) from Sigma-Aldrich Ltd.

Laboratory analysis

After the administration of the treatments, 100 bees were randomly collected from each colony. That meant that from each group 100 bees x 5 hives = 500 individuals were collected. The collected bees were euthanased in a laboratory by freezing at about -20°C, and then dried at 45°C for 24 h.

One hundred bee bodies (body without head) from each group were ground and thoroughly homogenised. A portion of about 1g was taken from each sample and the Pb, Cd, Cu, and Zn concentrations in both the bee bodies and honey samples (honey and beeswax) were determined with an atomic absorption spectrophotometer (Shimadzu, AA 6701F) (Medici et al., 2005). The brains were removed from the frozen bees’ heads under and dopamine levels (Harano et al., 2005).

Statistical analysis

Samples were analysed with the one-way multivariate general linear model (completely randomised) analysis of variance (package program SPSS 2004). Tukey’s multiple comparison tests were employed for the comparison of means at P < 0.05.

RESULTS

Cu, Zn, Pb and Cd concentrations in bee tissue samples

The Cu concentration in group A, B and C, respectively was 0.57±0.04, 0.62±0.13 and 0.47±0.07 ppm. Analysis of tissue samples from worker bees revealed that Zn significantly reduced the increase in Cu concentration (P<0.05).

The Cd concentration in group B was 1.83±0.33 ppm and in group C it was 1.12±0.08 ppm. There was a statistically significant difference (P<0.05) between Cd concentrations in the groups of bees exposed to Cd, with or without Zn. The mean Pb level of those administered heavy metals (group B) was 0.87±0.25 ppm, whereas in the group receiving the heavy metal–Zn combination (group C), this value was 1.27±0.29 ppm. However, there was no significant difference between these groups (P>0.05) (Table 1).
Table 1. Means and standard errors (\(\bar{X} \pm S_{\bar{X}} \)) of Cu, Zn, Cd and Pb in bee tissue samples (ppm).

<table>
<thead>
<tr>
<th>Bee tissue</th>
<th>Cu (ppm)</th>
<th>Zn (ppm)</th>
<th>Pb (ppm)</th>
<th>Cd (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>0.57±0.04(^{a})</td>
<td>3.01±0.41(^{a})</td>
<td>0.10±0.02(^{a})</td>
<td>0.01±0.007(^{a})</td>
</tr>
<tr>
<td>Group B</td>
<td>0.62±0.13(^{b})</td>
<td>1.71±0.67(^{b})</td>
<td>0.87±0.25(^{b})</td>
<td>1.83±0.33(^{b})</td>
</tr>
<tr>
<td>Group C</td>
<td>0.47±0.07(^{c})</td>
<td>1.79±0.20(^{b})</td>
<td>1.27±0.29(^{b})</td>
<td>1.12±0.08(^{c})</td>
</tr>
</tbody>
</table>

Different letters in the same column indicate a significant difference between means (P<0.05).

Table 2. Means and standard errors for Cu, Zn, Pb and Cd levels in honey samples (mean± SE) (ppm).

<table>
<thead>
<tr>
<th>Honey comb</th>
<th>Cu (ppm)</th>
<th>Zn (ppm)</th>
<th>Pb (ppm)</th>
<th>Cd (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>0.26±0.08(^{a})</td>
<td>1.22±0.62(^{a})</td>
<td>0.68±0.09(^{a})</td>
<td>0.98±0.12(^{a})</td>
</tr>
<tr>
<td>Group B</td>
<td>0.40±0.09(^{b})</td>
<td>0.78±0.19(^{a})</td>
<td>3.46±0.73(^{b})</td>
<td>2.214±0.26(^{b})</td>
</tr>
<tr>
<td>Group C</td>
<td>0.19±0.03(^{a,b})</td>
<td>4.37±1.00(^{b})</td>
<td>3.56±0.85(^{b})</td>
<td>2.336±0.33(^{b})</td>
</tr>
</tbody>
</table>

Different letters in the same column indicate a significant difference between means (P<0.05).

Table 3. Mean values for biogenic amine values (Pg/brain).

<table>
<thead>
<tr>
<th>Brain tissue</th>
<th>Serotonin (Pg/brain)</th>
<th>Dopamine (Pg/brain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>5.28±0.53(^{a})</td>
<td>23.8±3.81(^{a})</td>
</tr>
<tr>
<td>Group B</td>
<td>4.77±0.92(^{a})</td>
<td>9.0±3.2(^{b})</td>
</tr>
<tr>
<td>Group C</td>
<td>6.77±0.50(^{a})</td>
<td>31.2±11(^{a})</td>
</tr>
</tbody>
</table>

Different letters in the same column indicate a significant difference between means (P<0.05).

Cu, Zn, Pb, and Cd concentrations in honey samples from honeycomb

In honey samples the data obtained as the result of metal–Zn interaction significant differences were seen between the control group and other groups (P<0.05), whereas there was no statistically significant difference between groups B and C for all three metals (P>0.05). (Table 2).

Serotonin and dopamine concentrations in bee brain tissue

The serotonin levels in groups A, B and C, respectively was 5.28±0.53, 4.77±0.92 and 6.77±0.50 (Pg/brain). There were no significant differences in serotonin levels between the groups (P>0.05). On the other hand, there were significant differences in dopamine concentration between groups A and B (23.82±3.81 and 9.05±3.2), also between groups B and C (9.05±3.2 and 31.2±11) (P<0.05) (Table 3).

DISCUSSION

The data obtained in this study demonstrated that Zn supplementation in honeybees exposed to heavy metals reduced Cu and Cd accumulation in tissue samples. Analysis of tissue samples from worker bees revealed that Zn significantly reduced the increase in Cu concentration (P<0.05). This finding concurs with the results of previous studies (Onosaka et al., 2002; Cicik et al., 2003) that suggest that, routes of absorption and entry into the circulatory system are similar for Cu and Zn.

Zn finger transcription play an important role in the regulation of transcription of metallothionein (MT), which plays a major role in Cu detoxification (Kimura, 2010). Both zinc and copper induce MT synthesis but the effect of Zn was reported to be greater than that of Cu (Liu et al., 1991; Park et al., 2001). Other researchers have suggested that Cu and Zn homeostasis is maintained by the control of Zn–Cu metabolism via binding with metal-binding proteins and peptides in orgazima (Cicik et al., 2003).
Park et al. (2001) injected rats with small doses of Zn and Cu, and reported that, the same dosage of Zn and Cu increased synthesis of MT by 2.4 fold and 1.4 fold, respectively. This suggests that MT has a higher affinity for Zn than for Cu. Generally, MT is saturated with Zn (Kimura, 2010). Iarto and Albergoni (2005) reported that the administration of Zn after dietary Cu administration are more than doubled intestinal MT concentration, which reduced the Cu concentration to the level of the control values. Medici et al. (2005) reported that Zn-induced MT production plays a role in cellular protection against damage caused by excessive Cu accumulation in bee tissues.

The results of the present study suggest that Zn administration augments MT synthesis in honeybees. MT binds to Cu, reducing the intracellular concentration and protecting the cell against its toxic effects. The data from our study suggest that Zn also inhibits the absorption and metabolism of Cd. There was a statistically significant difference (P<0.05) between Cd concentrations in the groups of bees exposed to Cd, with or without Zn; in group B, the Cd concentration was 1.83±0.33 ppm and in group C it was 1.12±0.08 ppm. These results from the present study with honeybees approximate those from other studies that used a variety of animals (Onosaka et al., 2002; Seebaugh and Wallace 2004).

Zinc has been reported to have a substantial ability to reduce the toxicity of orally ingested Cd (Barata et al., 2002). Due to their chemical similarity, Zn and Cd ions compete for binding proteins. Zn pretreatment increased the endogenous concentration of MT in the intestine 25-fold. Following intraluminal administration, 93% of Cd in the intestinal cytosol of Zn-treated rats was bound to MT, whereas only 40% of the cytosolic Cd was bound to MT in saline-treated (control) rats (Goon and Klaassen, 1998). In another case, Zn–MT synthesis increased after the administration of Zn (Hao et al., 2012). Binding Cd into an MT–Cd complex prevents cell toxicity in the tissues (Seebaugh and Wallace 2004).

Intracellular MT also plays an important role in ameliorating Cd toxicity following prolonged exposure, particularly chronic Cd-induced nephrotoxicity, osteotoxicity, and toxicity in the lungs, liver and immune system (Klaassen et al., 2009). Individuals with a low MT level are at high risk from Cd toxicity (Nordberg, 2004). Another study showed that increased Zn absorption reduces the renal toxicity of Cd (Mudgal et al., 2010). In the light of these data, it is suggested that Zn induces MT synthesis, thus increasing the binding of MT to Cd in the tissues and contributing to the formation of non-toxic MT–Cd complexes, thereby preventing toxicity resulting from the accumulation of Cd (Hua et al., 2011).

Zn concentration was increased by MT induction and MT-bound Zn significantly reduced the toxicity of the metals Cd and Cu (Kheradmand et al., 2013). MTs are chelators of harmful metals, like Cu and Cd. Under normal physiological conditions, when the organism is not contaminated with Cu and Cd, MT is bound to Zn. Zinc allows MTs to obtain their correct orientation inside the cytoplasm. When bees are exposed to heavy metals, they start overexpressing MTs as a defence in which Zn is needed for the correct fold of such proteins; thus an addition of Zn to their diet can benefit that process (Hua et al., 2011; Mudgal et al., 2010).

In the present study, in bee tissue samples the mean Pb level of those administered heavy metals (group B) was 0.87±0.25 ppm, whereas in the group receiving the heavy metal–Zn combination (group C), this value was 1.27±0.29 ppm. However, there was no significant difference between these groups (P>0.05). This suggests that Zn had no effect on Pb absorption and metabolism. This supports the finding of other researchers (Hanas, 1999; Castro et al., 2011), which showed a positive correlation between Pb and Ca concentrations, but found no correlation between Zn and Pb levels in dairy cows.

However, Verster (2011) reported that both Ca and Zn reduced Pb absorption in cows. In another study, Azooz et al. (2011) reported that a high dose combination of Zn and Pb produced a synergistic effect on the inhibition of plant growth parameters. Hanas et al. (1999) also reported that Pb inhibited the binding of Zn to proteins. Protein binding was reported to be higher for Pb than for Ca and Zn (Hasiang and Diaz, 2011; Godwin, 2001). Park et al. (2001) reported that MT did not provide protection against Pb and Fe. The differences in results between the studies may be the result of the different doses used and variations between animal species utilised, which covered a wide scale, including rats and cows (Hanas et al., 1999; Verster 2011).

In the present study of heavy metal-Zn interaction in bee tissues, significant differences were seen between the control group and the other groups (P<0.05), whereas there was no significant difference between groups B and C for all three metals (P>0.05). Table 1 shows that the concentration of Zn in the bees of the control group (Group A) which were not administered, three heavy metals was much higher than in Group C because excessive heavy metal concentration can affect zinc metabolism (Ghayour-Mobarhan et al., 2009). That may explain why in our study, excessive heavy metal administration decreased Zn absorption in group C while in the control group, Zn was absorbed through the intestine without interference.

In this study, the effect of the heavy metal–Zn combination on the concentrations of a number of neurotransmitters in honeybees was also investigated. There was no significant difference between the study groups in mean serotonin levels in brain tissue (P>0.05). This may be attributed to the low sensitivity of serotonin
to orally administered metals (Bhalla et al., 2007; Carlson et al., 2008). Carlson et al. (2008) reported that, the oral administration of Zn and Cu reduced the secretion of serotonin (5-HT) from intestinal epithelial cells. Cu was found to be more potent than Zn in this respect. Bhalla et al. (2007) reported that orally administered Zn did not cause a significant alteration in serotonin concentration. Lafuente et al. (2005) reported that rats exposed to Cd had no change in 5-HT concentration in the median eminence, although it increased in both the anterior and posterior pituitary.

The failure to demonstrate a significant difference in serotonin concentration between the groups in our study may be because, oral administration of metals has less effect on serotonin concentration. Dopamine is particularly sensitive to heavy metal toxicity and in this study, dopamine concentration was significantly different between the groups (P<0.05). These results support the theory that Zn supplementation can reduce the suppressive effect exerted by heavy metals on dopamine synthesis. Cd and Pb can cross the blood–brain barrier and reduce the concentrations of this amine (Lafuente et al., 2005; Romero et al., 2011).

In rats exposed to Cd, dopamine levels increased in the posterior pituitary but decreased in the median eminence (Lafuente et al., 2003). The effects of Pb and Cd on monoamine concentration varies with animal species and stage of development between different areas of the brain (Lafuente et al., 2003; Verstraeten et al., 2008). Bhalla et al. (2007) stated that when Zn was administered orally, dopamine concentration increased, with resultant positive effects on memory and cognitive behavior in rats. These results suggest that Zn supplementation may reduce the negative effects of Cd, Cu and Pb on dopamine levels.

Conclusions

Our results demonstrated that, the co-administration of zinc to honeybees exposed to heavy metals reduces Cu and Cd accumulation in tissue samples. These results support the theory that, Zn supplementation reduces the suppression of dopamine by Cu, Cd and Pb. This study complied with ethical standards.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENT

The authors thank Gregory T. Sullivan of the School of Geography, Planning and Environmental Management (GPEM) at the University of Queensland in Brisbane, Australia for proofreading the English in an earlier version of this manuscript.

REFERENCES

Gauthier M, Aras P, Jumagie C, Polly M (2016). Low dietary levels of Al, Pb and Cd may affect the non-enzymatic antioxidant capacity in caged honeybees (Apis mellifera), Chemosphere 144:848-854.
African Journal of Biochemistry Research

Related Journals Published by Academic Journals

- International Journal of Plant Physiology and Biochemistry
- African Journal of Biotechnology
- Journal of Developmental Biology and Tissue Engineering