About AJPP

The African Journal of Pharmacy and Pharmacology (AJPP) provides African and International researchers a platform to highlight studies on drug delivery systems and composition, medication dispensation and management, natural and synthetic drug use and distribution. Other subjects covered include pharmacology, clinical pharmacy and medication counseling. The journal also emphasizes novel developments in drug design and its applications in allied fields.

Indexing

The African Journal of Pharmacy and Pharmacology is indexed in:
- African Index Medicus
- CAB Abstracts
- CABI’s Global Health Database
- Chemical Abstracts (CAS Source Index)
- China National Knowledge Infrastructure (CNKI)
- Dimensions Database
- Google Scholar
- Matrix of Information for The Analysis of Journals (MIAR)
- ResearchGate

Open Access Policy

Open Access is a publication model that enables the dissemination of research articles to the global community without restriction through the internet. All articles published under open access can be accessed by anyone with internet connection.

The African Journal of Pharmacy and Pharmacology is an Open Access journal. Abstracts and full texts of all articles published in this journal are freely accessible to everyone immediately after publication without any form of restriction.

Article License

All articles published by African Journal of Pharmacy and Pharmacology are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited. Citation should include the article DOI. The article license is displayed on the abstract page the following statement:

This article is published under the terms of the Creative Commons Attribution License 4.0 Please refer to https://creativecommons.org/licenses/by/4.0/legalcode for details about Creative Commons Attribution License 4.0
Article Copyright
When an article is published by in the African Journal of Pharmacy and Pharmacology, the author(s) of the article retain the copyright of article. Author(s) may republish the article as part of a book or other materials. When reusing a published article, author(s) should;

Cite the original source of the publication when reusing the article. i.e. cite that the article was originally published in the African Journal of Pharmacy and Pharmacology. Include the article DOI Accept that the article remains published by the African Journal of Pharmacy and Pharmacology (except in occasion of a retraction of the article)
The article is licensed under the Creative Commons Attribution 4.0 International License.

A copyright statement is stated in the abstract page of each article. The following statement is an example of a copyright statement on an abstract page.
Copyright ©2016 Author(s) retains the copyright of this article.

Self-Archiving Policy
The African Journal of Pharmacy and Pharmacology is a RoMEO green journal. This permits authors to archive any version of their article they find most suitable, including the published version on their institutional repository and any other suitable website.
Please see http://www.sherpa.ac.uk/romeo/search.php?id=213&flDnum=&mode=simple&la=en

Digital Archiving Policy
The African Journal of Pharmacy and Pharmacology is committed to the long-term preservation of its content. All articles published by the journal are preserved by Portico. In addition, the journal encourages authors to archive the published version of their articles on their institutional repositories and as well as other appropriate websites.
https://www.portico.org/publishers/ajournals/

Metadata Harvesting
The African Journal of Pharmacy and Pharmacology encourages metadata harvesting of all its content. The journal fully supports and implement the OAI version 2.0, which comes in a standard XML format. See Harvesting Parameter
Memberships and Standards

OPEN ACCESS

Academic Journals strongly supports the Open Access initiative. Abstracts and full texts of all articles published by Academic Journals are freely accessible to everyone immediately after publication.

Creative Commons

All articles published by Academic Journals are licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.

Crossref

Crossref is an association of scholarly publishers that developed Digital Object Identification (DOI) system for the unique identification published materials. Academic Journals is a member of Crossref and uses the DOI system. All articles published by Academic Journals are issued DOI.

Similarity Check powered by iThenticate is an initiative started by CrossRef to help its members actively engage in efforts to prevent scholarly and professional plagiarism. Academic Journals is a member of Similarity Check.

CrossRef Cited-by Linking (formerly Forward Linking) is a service that allows you to discover how your publications are being cited and to incorporate that information into your online publication platform. Academic Journals is a member of CrossRef Cited-by.

International Digital Publishing Forum (IDPF)

Academic Journals is a member of the International Digital Publishing Forum (IDPF). The IDPF is the global trade and standards organization dedicated to the development and
promotion of electronic publishing and content consumption.

COUNTER (Counting Online Usage of Networked Electronic Resources) is an international initiative serving librarians, publishers and intermediaries by setting standards that facilitate the recording and reporting of online usage statistics in a consistent, credible and compatible way. Academic Journals is a member of **COUNTER**

Portico is a digital preservation service provided by ITHAKA, a not-for-profit organization with a mission to help the academic community use digital technologies to preserve the scholarly record and to advance research and teaching in sustainable ways.

Academic Journals is committed to the long-term preservation of its content and uses **Portico**

Academic Journals provides an OAI-PMH (Open Archives Initiatives Protocol for Metadata Harvesting) interface for metadata harvesting.
Contact

Editorial Office: ajpp@academicjournals.org

Help Desk: helpdesk@academicjournals.org

Website: http://www.academicjournals.org/journal/AJPP

Submit manuscript online http://ms.academicjournals.org

Academic Journals
73023 Victoria Island, Lagos, Nigeria
ICEA Building, 17th Floor, Kenyatta Avenue, Nairobi, Kenya
Editors

Prof. Zhe-Sheng Chen
College of Pharmacy and Health Sciences
St. John's University
New York,
USA.

Prof. Mahmoud Mohamed El-Mas
Department Pharmacology and Toxicology
Faculty of Pharmacy
Alexandria University
Egypt

Prof. Mohammed Abdur Rashid
Department of Pharmaceutical Chemistry
Faculty of Pharmacy
University of Dhaka
Dhaka. BANGLADESH.

Dr. Fulya Ustun Alkan
Department of Pharmacology and Toxicology,
Faculty of Veterinary Medicine, Istanbul
University,
Turkey.

Dr. Amel Hashim
Department of Biochemistry and Molecular Biology
Faculty of Pharmacy
Helwan University Egypt.

Dr. Kavitha Balaji
Investigational Cancer Therapeutics,
Anderson Cancer Center
USA.

Dr. Huma Ikram
Department of Biochemistry,
Neurochemistry and Biochemical Neuroparmacology Research Unit,
University of Karachi
Karachi, Pakistan

Dr. Prakash Srinivasan Timiri Shanmugam
Department of Biochemistry and Molecular Biology
Louisiana State University Health Sciences Center
New Orleans, USA.

Dr. Yao Dai
Division of Cardiology
Department of Internal Medicine
School of Internal Medicine,
University of Arkansas for Medical Sciences
USA.

Dr. Hazem Shaheen
Department of Pharmacology
Faculty of Veterinary Medicine
Damanhour University
Egypt.
Editors

Dr. Doaa Ibrahim
Clinical Pharmacy and Pharmacy Practice,
University of Science and Technology
Yemen-Sana’a.

Editorial Board Members

Abiy Habtewold Eyakem
School of Pharmacy, Union University
(Jackson, Tennessee, USA) and School of
Medicine, Addis Ababa University (Addis Ababa,
Ethiopia)

Dr. Ravi Shankar Shukla
Preformulation and Exploratory Research R&D
Amneal Pharmaceuticals
USA.

Prof. Kittisak Sawanyawisuth
Department of Medicine
Faculty of Medicine
Khon Kaen University
Khon Kaen
Thailand.

Dr. Ying-Yong Zhao
Department of Traditional Chinese Medicine
The College of Life Sciences
Northwest University
Xi’an
China.

Dr. Subhalakshmi Ghosh
Department of Pharmaceutical Technology
Jadavpur University
Kolkata
India.

Dr. Maria Ondina Paganelli
Department of Pharmaceutical Sciences,
Faculty of Pharmaceutical Sciences of
Ribeirão Preto University of São Paulo
(USP),
Brazil.

Dr. Riyanto Teguh Widodo,
Pharmaceutical Sciences, Pharmacy,
Institution University of Malaya,
Malaysia
Table of Content

Flavonoids in neuropathic pain management: A new player on an old target
Shehla Akbar
100

Effects of anti-hyperglicemic of yacon leaf (*Smallanthus sonchifolius*) ethanolic extracts using zebrafish as a model
Zuhelmi Aziz, Nanda Tamara, Rahmi Three Wahyuni, Inawati and Dan Syamsudin Abdillah
113
Review

Flavonoids in neuropathic pain management: A new player on an old target

Shehla Akbar

Department of Pharmacy, Sarhad Institute of Science and Information Technology, Peshawar, Pakistan.

Received 29 April, 2019; Accepted 21 May, 2019

Neuropathic pain is the consequence of abnormal processing in the peripheral or central nervous system (CNS) elicited by neuronal injury. Due to its heterogeneous nature and important unwanted adverse effects of the commonly prescribed psychoactive drugs like benzodiazepines (BDZ), the treatment of neuropathic pain has remained a challenge for the scientific community. Flavonoids initially isolated from plants and used as tranquilizers in Folkloric medicine, have been reported to possess selective affinity for BDZ binding site. These positive ionotropic modulators of γ-amino butyric acid-A (GABA_A) receptors enhance the chloride ion flux and provide a strong inhibitory effect. Therefore, for the treatment of central nervous system-related disorders such as neuropathic pain, these selective GABA_A receptor modulators stand amongst the strongest candidates. This review provides an update on research development that has confirmed the activity of different flavonoids on GABA_A receptors.

Key words: Neuropathic pain, flavonoid, γ-amino butyric acid-A (GABA_A) receptors, animal models neuropathy.

INTRODUCTION

Formerly, neuropathic pain was defined by International Association for the Study of Pain (IASP) as "pain initiated or caused by a primary lesion or dysfunction of the nervous system"; but recently it has been revised as "pain arising as a direct consequence of a lesion or disease affecting the somatosensory system" by the IASP neuropathic pain special interest group (NeuPSIG) (Treede et al., 2008). So, this pain has been primarily attributed to be a corollary of a disease upsetting the ‘somatosensory system’ rather than the ‘nervous system’ in the revised definition, thus, further clarifying its origin. Under normal conditions, the somatosensory system is involved in the diffusion of noxious information to the central nervous system. Hence lesion of the somatosensory system can not only stop the innervations of nerve cells but can also result in pain with or without sensory hypersensitivity episode in the painful area (Jensen, 2006).

A lesion in the somatosensory system can manifest as positive sensory symptoms or negative sensory symptoms. The negative sensory symptoms arise due to fractional or entire loss of input to the nervous system; whereas, the positive sensory symptoms arise due to regeneration and disinhibition of the nerve cells, as a result of reduced sensory input. The positive symptoms can be either spontaneous or stimulus-evoked.

E-mail: naina.akbar@yahoo.com.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
Paraesthesias (tingling or ant crawling sensations over the skin), spontaneous ongoing or shooting pain (stimulus independent) and electric shock-like sensations are included in spontaneous positive symptoms; whereas, hyperalgesia and allodynic (further classified according to the static and dynamic nature of the stimulus) pain are stimulus-evoked positive symptoms of neuropathy (Rasmussen et al., 2004). Negative symptoms of neuropathic pain includes hypoesthesia (reduced sensations to non-painful/innocuous stimuli), pallyhyposthesia (reduced sensations to vibration), hypoalgesia (abridged impression to noxious stimuli) and thermohypoesthesia (abridged impression to cold/warm stimuli) (Jensen, 2001). However, these therapies result in a 30–50% reduction in pain and are often restricted due to significant side effects, with sedation being the most dominant.

PATHOPHYSIOLOGICAL MECHANISMS OF NEUROPATHIC PAIN

Experimental work in rodents has provided a broadened picture of the pathophysiological mechanisms that generate neuropathic pain. It involves both peripheral and central mechanisms. The peripheral sensitization is carried out via unmyelinated C- and thinly myelinated Aδ-primary afferent neurons that normally elicit the pain sensation by responding to noxious stimuli. However, the peripheral nerve lesions sensitize these neurons advancing into spontaneous activity. Moreover, these lesions cause dramatic changes on the cellular and molecular levels triggering the nerve cells (Figure 1) (Baron, 2006).

An increased mRNA expression for voltage gated sodium channels in the primary afferent neurons is considered to be responsible for an ectopic spontaneous activity after a nerve injury. This phenomenon may result in the clustering of these channels that lowers the action potential threshold leading to hypersensitivity. Hence, sodium channel blockers like lidocaine produce pain relief in neuropathic pain via this mechanism (Lai et al., 2003).

Up regulation of a variety of receptor proteins also result from peripheral nerve injury. They are present at the membrane of the primary afferents and are only slightly uttered in physiological circumstances. Vaniloid receptors (TRPV 1) being one of them are involved in the sensing of noxious heat greater than 43°C (Patapoutian et al., 2003), whereas, TRPM8 receptors have been identified as cold and menthol-sensitive raised by temperature in the range of 8-28°C. TRPM8 receptor is revealed in small diameter DRG (dorsal root ganglia) neurons (McKemy et al., 2002). A nerve injury may result in either up regulation or gating of this channel leading to peripheral sensitization of C-nociceptors that causes cold hyperalgesia (Wasner et al., 2004).

Acid-sensing ion channels (ASICs) are believed to be participating in static mechanical hyperalgesia (Price et al., 2001). On the other hand, α1- and α2- adrenoceptors located on the cutaneous afferent fibers also play a pronounced function in the hypersensitivity from nerve injury (Baron et al., 1999). Adrenergic sensitivity has been widely expressed in post herpetic neuralgias, complex regional pain syndromes II (CRPS II) and post-traumatic neuralgias; whereas, in polyneuropathies no sensitivity in the primary afferent neurons has been reported (Uphoff and Binder, 2006). Thus, temperature-induced and sympathetically-induced pain could be treated by blocking their respective receptors on nociceptive neurons.

An ectopic activity is also induced by inflammation in both wounded and adjoining normal primary afferent nociceptors triggered by a nerve lesion that release proinflammatory cytokines, especially TNF-α (Sommer, 2003). Deep proximal and paroxysmal pain are pronounced features in the patients diagnosed with peripheral neuropathies e.g., HIV neuropathy. Nerve biopsy specimens of such patient have shown an increased concentration of COX-2 and proinflammatory cytokines (Table 1) (Lindenlaub and Sommer, 2003).

CNS constitutes specific anatomical links with the spinal cord, brain stem, thalamus and the cortex. These connections link sensations generated in the high threshold primary afferents with the cortical regions of the central nervous system, that further process it into ultimate painful sensations (Woolf, 2011). The ongoing hyperactivity generated by injured nerves serves as a trigger for central sensitization and simulates activity-dependent synaptic flexibility occurring within the cortex. Diverse synaptic modulators, changes in ion channel kinetics, excitatory amino acid, increased bulk of ionotropic receptors and pre- and post-synaptic activation of kinases are involved in central sensitization.

Most of the patients presenting with peripheral and all with central neuropathy show predominant synaptic facilitation contributing to allostynia and hypersensitivity (Campbell and Meyer, 2006). Peripheral nerve injury causes "pre-synaptic changes" including modifications in the synthesis of neurotransmitters, neuromodulators and in the density of calcium channels (Hendrich et al., 2008). On the contrary, increased receptor density as a result of enhanced synthesis of ion channels and scaffold proteins and phosphorylation of N-methyl-D-aspartate (NMDA) subunits occur because of "post-synaptic changes" (Cheng et al., 2008). These changes also contribute to an abnormal expression of Nav 1.3 (Hains et al., 2004) and the mitogen-activated protein kinase system (MAPK) (Ji
ROLE OF GABA IN NEUROPATHIC PAIN

In the brain, γ-amino butyric acid (GABA) tends to be the most abundant inhibitory neurotransmitter regulating different physiological characters like sleep, anxiety, memory formation, reward, etc (Zeilhofer et al., 2009) and also control the action of excitatory neurons in the CNS, facilitating a uniform flow of information and therefore, maintaining the homeostasis of neural circuits. Melzack and Wall (1967) previously reported the role of inhibitory neurons in the spinal dorsal horn involved in controlling pain transmission from the periphery to higher levels of the brain (Melzack and Wall, 1967). Later on, GABA was confirmed to be one of the foremost inhibitory

and Woolf, 2001). The role of pathologically sensitized C-fibers which sensitizes neuropeptide substance P and spinal dorsal horn via glutamate release cannot be overlooked. The released glutamate shows an excitatory effect by acting upon post-synaptic NMDA leading to central sensitization (Ultenius et al., 2006). An appreciably abundant evidence reveal the involvement of loss of tonic GABA-conciliated inhibition and increased excitatory neurotransmitters resulted in an initiation of central sensitization, ending in peripheral hypersensitivity, that is, allodynia and hyperalgesia (Knabl, Witschi et al., 2008). Once this sensitivity is developed, the usually innocuous tactile stimuli could activate Aδ and Aβ low threshold mechanoceptors (Tal and Bennett, 1994).
neurotransmitters in the spinal dorsal horn (Yaksh, 1989).

After release from the pre-synaptic neurons, GABA act postsynaptically upon 3 major classes of receptors namely; GABA$_A$ and GABA$_C$ receptors that are ligand-gated ion channels and GABA$_D$ that are G protein-coupled channels (Gavande et al., 2011). Chemically ionotropic GABA$_A$ receptors are formed of transmembrane protein complexes and comprise 5 heteropentameric subunits. In the human brain, $\alpha_2\delta$ subunit is considered to be the most dominant one (Wafford, 2005). Upon activation by GABA, the membrane permeability to chloride and carbonate ions increases causing a net inward flow of anions and a consequent hyperpolarization. This hyperpolarizing postsynaptic response is termed as inhibitory post-synaptic potential (Semyanov et al., 2003).

Physiologically, GABA-releasing interneurons, imposes a strong inhibitory control over the dorsal horn neurons. The loss of these neurons could further increase the central sensitization, e.g. as reported in partial peripheral nerve injury models, in which the injury resulted in the reduced spinal GABA release along with decreased GABA-synthesizing enzyme glutamic acid decarboxylase in rodents (Moore et al., 2002), advancing into spontaneous pain and hyperexcitability manifested as allodynia and hyperalgesia.

In diseased states, an increased excitation occurs that is attributed to either a massive loss of GABAergic interneurons or deterioration of interneurons as consequence of depletion of their sensory excitatory inputs or receptors. This imbalance could culminate into many neurological and psychiatric disorders including epilepsy, schizophrenia, neuropathic pain, Alzheimer’s (AD) and Parkinson’s disease (PD) (Tyson and Anderson, 2014).

Hence, the collaborative function of excitatory and inhibitory neurons plays a vital role in controlling various brain activities.

As discussed earlier, central and peripheral sensitization due to nerve injury could result in complex neuropathic pain. Besides other mechanisms, the loss of GABAergic interneurons is now considered to be one of the major contributor to such persistent pain states (Bráz et al., 2012). Recent evidence suggest that the deletion of particular GABA subunits or pharmacological blockade of GABAergic neurotransmission in the spinal cord resulted in hyperalgesia and allodynia (Gwak et al., 2006; Jergova et al., 2012). Similarly, electrophysiological studies have revealed that GABA$_A$ receptor inhibition could induce an embellished behavioral reaction to an

<table>
<thead>
<tr>
<th>Class</th>
<th>Drugs</th>
<th>Mechanism of action</th>
<th>Side effects</th>
<th>Other benefits</th>
<th>Precautions</th>
<th>Doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricyclic antidepressants</td>
<td>Nortriptyline</td>
<td>Norepinephrine and serotonin reuptake inhibition, anticholinergic and sodium channels blockade.</td>
<td>Sedation, anticholinergic effects.</td>
<td>Abolish depression and sleep disturanc.</td>
<td>Glaucoma, cardiac disease, seizure disorders.</td>
<td>25 mg at bedtime/ 150 mg daily.</td>
</tr>
<tr>
<td>Calcium channel $\alpha_2\delta$ ligands</td>
<td>Gabapentin</td>
<td>Decrease release of glutamate, NE, etc. via $\alpha_2\delta$ delta subunit voltage gated calcium channel.</td>
<td>Sedation, peripheral edema, dizziness.</td>
<td>Same</td>
<td>Hepatic dysfunction, alcohol abuse, tramadol.</td>
<td>Gabapentin: 100-300 mg once or t.i.d/ 1200 mg t.i.d. Pregabalin: 50 mg t.i.d or 75 mg t.i.d.</td>
</tr>
<tr>
<td></td>
<td>Pregabalin</td>
<td>Norepinephrine and serotonin reuptake inhibition.</td>
<td>Same</td>
<td>Improve depression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSNRIs</td>
<td>Duloxetine</td>
<td>Norepinephrine and serotonin reuptake inhibition.</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Venlafexine</td>
<td>Norepinephrine and serotonin reuptake inhibition.</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topical lidocaine</td>
<td>5% lidocaine patch</td>
<td>Sodium channel blockade.</td>
<td>Erythema, rash.</td>
<td></td>
<td></td>
<td>1 to 3 patches per day.</td>
</tr>
<tr>
<td>Opioid agonists</td>
<td>Methadone</td>
<td>μ-receptor agonists</td>
<td>Nausea vomiting, dizziness, constipation</td>
<td>Rapid onset of analgesia</td>
<td>Substance abuse, driving impairment, suicide risk.</td>
<td>Morphine: 10-15 mg every 4 h.</td>
</tr>
<tr>
<td></td>
<td>Morphine</td>
<td>μ-receptor agonists</td>
<td>Same</td>
<td>Same</td>
<td>Same, serotonin syndrome if used in combination with TCA.</td>
<td>50 mg once daily or t.i.d/ 400 mg daily as long-acting drug.</td>
</tr>
<tr>
<td></td>
<td>Oxycodone</td>
<td>Norepinephrine and serotonin reuptake inhibition.</td>
<td>Same</td>
<td>Same</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tramadol</td>
<td>μ-receptor agonist, Norepinephrine and serotonin reuptake inhibition.</td>
<td>Same</td>
<td>Same</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Currently available treatment options for neuropathic pain with mechanism, side effects, other benefits, precautions and doses.
innocuous mechanical stimulus (Hwang and Yaksh, 1997), consistent with the reported high levels of GABAergic receptors in the dorsal horn (Persohn et al., 1991). Moreover, the impaired GABAergic system in the animals presenting with chronic neuropathic pain propose the practical link between such pain and spinal inhibitory neurotransmission (Figure 2) (Zeilhofer, 2008). Therefore, restoration of spinal inhibitory neurotransmission can be a valuable pharmacological advancement in the treatment of neuropathic pain.

GABA_A receptor agonists related antinociceptive effect has been attributed to the stimulation or blockade of other neurotransmitters as well (McCarson and Enna, 2014). Furthermore, the role of central GABA in opioid-mediated antinociception is well documented (Ossipov et al., 2010). Thus, GABA receptor agonists may play a vital role in treating acute and chronic pain (McCarson and Enna, 2014).

In this regard, GABA_A receptor agonists muscimol and isoguvacine are reported to reverse nerve injury-induced tactile allodynia (Hwang and Yaksh, 1997). These receptors are closely linked to the large diameter

Figure 2. Diagram representing animal models of neuropathic pain. SNT: spinal nerve transaction; PSNL: partial sciatic nerve ligation; CCI: chronic constriction injury; SNL: spinal nerve ligation and PDN: peripheral diabetic neuropathy.
Table 2. Classification of flavonoids.

<table>
<thead>
<tr>
<th>Class of flavonoids</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flavanol</td>
<td>Kaempferol, Quercetin, Myricetin</td>
</tr>
<tr>
<td>Flavanone</td>
<td>Hesperetin, Naringenin</td>
</tr>
<tr>
<td>Flavone</td>
<td>Luteolin, Apigenin</td>
</tr>
<tr>
<td>Flavans</td>
<td>Catechin, Epicatechin</td>
</tr>
<tr>
<td>Isoflavone</td>
<td>Genistein, Daidzein</td>
</tr>
<tr>
<td>Anthocyanidin</td>
<td>Cyanidin, Delphinidin</td>
</tr>
<tr>
<td>Aurones</td>
<td>Leptosidin, Auresidin</td>
</tr>
<tr>
<td>Neoflavonoid</td>
<td>Coutaregenin, Dalbergin</td>
</tr>
<tr>
<td>Flavonoid glycosides</td>
<td>Astragalin, Apigenin</td>
</tr>
<tr>
<td>Flavonolignan</td>
<td>Silibinin</td>
</tr>
</tbody>
</table>

Adopted from Peterson and Dwyer (1998).

Afferents involved in innocuous sensation (Price et al., 1984; Sivilotti and Woolf, 1994; Reeve et al., 1998; Ataka et al., 2000; Riley et al., 2001; Turner, 2003). Great body of evidence suggests that a decreased spinal GABA plays a vital role in inducing and maintaining neuropathic pain. Behavioral and pharmacological studies have shown that a continuous or single intrathecal dose of GABA to the spinal cord or the implantation of GABA releasing cells decrease the signs of neuropathic pain (Eaton et al., 1998, 1999; Stubley et al., 2001; Malan et al., 2002). Moreover, blocking the spinal GABA_A receptors results in aggravating peripheral nerve injury associated hyperalgesia (Yamamoto and Yaksh, 1993).

On the contrary, benzodiazepines, and positive allosteric modulators at GABA_A receptors are widely used drugs not only in anxiety, convulsions and sleep disorders but also as analgesic if administered intrathecally (Tucker et al., 2004). Despite its analgesic potential, its use in pain relief is restricted due to the myriad effects like sedation. Hence, there is an increased need of research in the field of GABAergic modulators that could play a pronounced role in the attenuation of neuropathic pain.

FLAVONOIDS

Flavonoids are widely distributed in vegetables, grains, fruits, barks, roots, flowers, stems, tea, etc. Chemically, they are polyphenolic compounds comprising of a diphenyl propane skeleton (C-6-C-3-C-6), with two aromatic rings and an oxygen-containing heterocyclic benzopyran ring, labeled as fused aromatic ring A, the benzopyran ring adjacent to A is ring C and a phenyl ring B (Middleton, 1998).

Long before the isolation of flavonoids, the natural products bearing them were known for their healthful effects. The decreased mortality rate associated with the use of red wine (constitute flavonoids) was observed in Mediterranean populations that produced an inclination in the flavonoid research, that was further confirmed by epidemiological studies, portraying the cardio protective role of dietary flavonoids in coronary heart disease (Formica and Regelson, 1995; Groot and Rauen, 1998).

Similarly, a new substance isolated from oranges in 1930, was thought to be a vitamin and was called vitamin P, which was later on confirmed to be a flavonoid, that is, rutin which led to an increase in the isolation and study of the mechanisms of various individual flavonoids. A long history of plant species exists that constitute flavonoids and exhibit CNS effects and were used as folk medicines in Europe. Feverfew (Tanacetum parthenium L. Asteraceae) was used as prophylactic agent in migraine and Chamomile flowers (Matricaria recutica L. Asteraceae) as a tranquilizer for centuries, with both found to be containing apigenin as an active constituent via bioassay-guided fractionation studies (Jäger et al., 2009). Furthermore, Linden flowers (Tilia sp. Tiliaceae) were known for their sedative effects and Heather (Calluna vulgaris [L] Hull Ericaceae) as nerve calming remedy, with both shown to have quercetin and kaempferol flavonoids as active components (Aguirre-Hernández et al., 2010).

Flavonoids can be categorized into ten groups (Table 2) (Peterson and Dwyer, 1998). Flavone, isoflavone and flavanol contains a double bond in the ring C, making the fused A-C ring system planar, whereas, the other classes lack this double bond and instead have C₂ and C₃ chiral centers that are located at each end of the plane ring A (Figure 3) (Jager and Saaby, 2011). Besides the isolation of natural flavonoids, various semi-synthetic and synthetic derivatives have been synthesized and screened for their therapeutic potential (Cushnie and Lamb, 2005).

In plants, flavonoids not only provide UV-protection but also aid in the pollination by masking the flowers with attractive colors and patterns. Until now, more than 6000 varieties of flavonoids have been isolated. A variety of interest gasping pharmacological actions for these naturally occurring flavonoid compounds as well as synthetic derivatives have been found (Vidyalakshmi et al., 2010), including both peripheral and central nervous system effects (Figure 4) (Hall et al., 2005). These compounds attribute to a vast range of biological effects, like anticancer (Liu et al., 2010), anti-inflammatory (Wang et al., 2010), antioxidant (Heim et al., 2002), anxiolytic (Ognibene et al., 2008), cardio protective (Yu et al., 2005), antifungal (Ammar et al., 2013), antiviral (Orhan et al., 2010), antimicrobial (Cushnie and Lamb, 2005), neuroprotective (Cho et al., 2013) and antinociceptive activities (Wang et al., 2014).

FLAVONOIDS AS GABA_A RECEPTOR MODULATORS

Flavonoids have been extensively focused for their...
peripheral events; however, more recently their selective affinity for GABA_A receptors has been reported in studies using rat and bovine brain membrane binding assays (Hong and Hopfinger, 2003). In conjunction with binding studies, many behavioral studies have also been carried out, which indicate the anxiolytic effects of flavonoids in rodent anxiety models lacking many of the surplus side effects of BDZs (benzodiazepines) (Griebel et al., 1999). Interestingly, the positive, negative and neutralizing allosteric modulatory actions of flavonoids over a wide range of ionotropic GABA receptors has been focused and strongly supported via a large bulk of evidence.

The isolation of isoflavones from bovine urine that displaced 3[H]-diazepam binding in rat brain laid the foundation of the interaction of flavonoids with BDZ receptors (Luk et al., 1983). In 1990s, flavonoids were defined as a new family of BDZ receptor ligands (Medina et al., 1997; Marder and Paladini, 2002). Classically, they were considered to be acting upon BDZ receptors and a number of synthetic flavonoids having a significant affinity for BDZ binding site were developed accordingly (Yao et al., 2007); until they were reported to be insensitive to
flumazenil that is BDZ receptor antagonist, thus highlighting a unique site of action for this class (Hanrahan et al., 2011).

The substitution at 6- or 3’-positions of flavones with an electronegative functional group enhanced the affinity towards the BDZ receptors (Paladini et al., 1999). Furthermore, the impact of ligand binding on the GABA binding was used to determine the GABA ratios. These ratios showed that flavones exhibited significant biological activities at BDZ receptors (Hanrahan et al., 2011). 6-Bromoflavone, 6-bromo-3’-nitroflavone and 6-chloro-3’-nitroflavone with a GABA ratio of 1.6-2.0, 1.38 and 2.0 were reported as full agonist (Marder et al., 1996), partial agonist (Wolfman et al., 1998) and an antagonist (Viola et al., 2000) at these receptors.

Positive ionotropic modulators of GABA_Δ receptors enhance the chloride ion flux and provide a strong inhibitory effect. Therefore, for the management of CNS – allied diseases, including panic disorders, generalized anxiety, seizure disorders, muscle spasm, neuropathic pain and sleep disturbances; these modulators stand amongst the strongest candidates (Rudolph and Möhler, 2006). Moreover, with the discovery of the fact that flavonoids may act upon novel binding sites other than the classical benzodiazepine binding site, opportunities to search for new therapeutic agents with less adverse effects has been provided (Rudolph and Möhler, 2006). In this regard, 6-Methoxyflavone has been reported to act as positive allosteric modulator at α1β2γ2L and α2β2γ2L subunits of GABA_Δ receptors (Hall et al., 2014).

The substitution at 6-position on flavones is related to its effects on the recombinant GABA_Δ receptors. 6-Hydroxyflavone depicted a significant effect at flumazenil-sensitive BDZ site (Ren et al., 2010). Moreover, 6-methoxyflavanone and 6-methoxyflavone have been recently reported to exhibit significant anti-allodynic
Effects in streptozotocin- and cisplatin-induced neuropathic pain models (Akbar et al., 2016; Shahid et al., 2017). These protective effects against neuropathic pain were attributed to the positive allosteric modulatory effects of these molecules on opioid and GABA_A receptors respectively (Akbar et al., 2016).

Moreover, myrcitin and baicalin produced significant anti allodynic effects in sciatic nerve ligation models (Meotti et al., 2006; Cherng et al., 2014). Rutin and quercetin has been reported to inhibit oxaiplatin-induced chronic painful peripheral neuropathy (Azevedo et al., 2013). Naringin is also reported as exhibiting anti allodynic potential in the streptozotocin-induced painful diabetic neuropathy (Kandhare et al., 2012).

OTHER NEUROPATHIC PAIN MODULATING MECHANISMS OF FLAVONOIDS

Besides its action on the GABA_A receptors, flavonoids also exert antioxidant and anti-inflammatory effects. Almost all metabolic diseases are the consequence of oxidative stress. In addition to exogenous damage, the normal oxygen metabolism within the cells and tissues produce free radicals and reactive oxygen species that consistently endanger them. Flavonoids are very well known for their antioxidant potential and are proven to exert positive effects in diseases like atherosclerosis, diabetes, Alzheimer's disease, cancer, etc (De Groot, 1994; Pal and Verma, 2013).

Although the underlying set of events behind the damage caused by the free radicals to the cellular functions is not fully understood, the contribution of lipid per oxidation leading to cellular membrane destruction and activation of inflammatory mediators by the free radicals culminating in ultimate tissue damage, can provide a lot of help in conceiving a pharmacological target. Nature has provided an inborn mechanism against these ROS, comprising of enzymes like superoxidase, glutathione peroxidase and catalase as well as non-enzymatic elements e.g. ascorbic acid, α-tocopherol, etc (Halliwell, 1995). However, these endogenous scavenging compounds are prone to depletion due to an increased oxidative stress caused by many diseased states including conditions that culminate in neuropathic pain e.g. diabetes mellitus (Schreiber et al., 2015).

Epicatechin and rutin are shown to have the ability to be oxidized themselves by the free radicals giving rise to a stable and less reactive species (Hanasaki et al., 1994). Similarly, quercetin inhibits the nitric oxide (NO) induced cell injury. Nitric oxide combines with the free radicals and produces an extremely harmful peroxynitrite that straightly oxidize LDL leading to a permanent destruction of the cell membrane. Hence, quercetin scavenge the free radicals, restraining them from reacting with NO (Shutenko et al., 1999), while silibin react directly with NO (Dehmlow et al., 1996).

Physiologically, the metabolism of xanthine to uric acid is carried out via xanthine dehydrogenase; however, in case of ischemic-reperfusion this enzyme changes into xanthine oxidase that acts as precursor of free radicals. Quercetin, luteolin and silibin flavonoids are known to act as antioxidant via inhibiting xanthine oxidase (Chang et al., 1992; Shoskes, 1998).

Similarly, reperfusion also results in the mobilization of leucocytes causing the consequent release of inflammatory mediators and cytotoxic oxidants provoking the complement system. A number of flavonoids are reported in the leucocytes immobilization ultimately causing a reduction in the serum complement system and inflammation (Friesenecker and Tsai, 1995; Ferrándiz et al., 1996). A pronounced body of evidence report the involvement of same pathophysiological mechanisms behind both inflammation and neuropathic pain of peripheral origin. Both types of pathologies manifest as alldynia and hyperalgesia (Clatworthy et al., 1995; DeLeo and Yezierski, 2001; Jin et al., 2003).

Infiltration of inflammatory cells and their secretory products like arachidonic acid and cytokines (released for nerve regeneration) as a result of peripheral nerve injury is responsible for the generation and maintenance of the ongoing pain (Tracey and Walker, 1995; Cui et al., 2000; Ma and Eisenach, 2003). Cytokines like tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1) and interleukin-6 (IL-6) when injected into the rat paw resulted in the induction of mechanical and thermal hyperalgesia (Cunha et al., 1992; Ferreira et al., 1993). The blockage of TNF-α in the rodent models of painful neuropathy has resulted in the attenuation of hyperalgesia (Somm er et al., 1998). Cytokines once released induce their own production and consequently activate COX-2 dependent prostanoid releases. The role of PGs in inducing inflammation accompanying enhanced sensitivity to pain is well documented. Intrathecal administration of PGs including PGE_2 and PGF_2α induced allodynia in conscious mice (Minami et al., 1992, 1994), whereas intrathecal injection of PGD_2 and PGE_2 resulted in the induction of hyperalgesia (Uda et al., 1990). Moreover, synthesis of PG and nitric oxide (NO) via COX-2 and inducible nitric oxide synthase (iNOS) is enhanced in the microglia as a result of peripheral nerve injury leading to hyper sensitization (Hanisch, 2002). Flavonoids exhibit an *in vivo* and *in vitro* anti-inflammatory activity. The *in vivo* anti-inflammatory is attributed to the inhibition of eicosanoid generating enzymes including COX, LOX and phospholipase A_2 (Kim et al., 2004).

Flavonoids are known to act upon different enzyme systems, e.g. causes the inhibition of arachidonic acid and blocking the inflammatory response as arachidonic acid tends to start it. By this, antithrombotic and anti-inflammatory features are incorporated into the group (Ferrandiz and Alcaraz, 1991). They also cause decrease
in the release of peroxidase and inhibition of ROS production by neutrophils. This inhibition is carried out via interference with α1-antitrypsin activation (Middelton and Kandawaswami, 1992). Certain flavonoids are involved in iron chelation that causes lipid peroxidation, thereby abolishing an erratic factor for the free radicals development (Nelson et al., 1992; Ferrali et al., 1997).

CONCLUSION

Allosteric modulators at GABA$_A$ receptors modify either the efficacy or affinity of agonists like GABA, consequently regulating their activity. Over the last decade, these modulators have been focused extensively due to the advances in the understanding of the functions of GABA$_A$ receptor subtypes. Flavonoids being potent allosteric modulators may prove to be useful tools in the amelioration of such distressing painful conditions like neuropahtic pain. However more studies are required to further elucidate the site of action of these bioactive molecules over the GABAA receptors.

CONFLICT OF INTERESTS

The author has not declared any conflict of interests.

ABBREVIATIONS

AD, Alzheimer’s disease; ASCIs, acid-sensing ions channel; BDZs, Benzodiazepines; CNS, central nervous system; COX-2, Cyclooxygenase-2; CRPS II, Complex Regional Pain Syndrome II; DRG, dorsal root ganglion; GABA, γ-amino butyric acid; IASPs, International Association for the Study of Pain; ISSVD, International Society for the Study of Vaginal Disease; MAPK, mitogen-activated protein kinase; NeuPSIG, Neuropathic Pain Special Interest Group; NMDA, N-methyl-D-aspartate; PD, Parkinson’s disease; TNF-α, tumor necrosis factor-α; TRPV, transient receptor potential.

REFERENCES

Hall BJ, Chebib M, Hanrahann JR, Johnston GA (2005). 6-Methylflavanone, a more efficacious positive allosteric modulator of y-aminobutyric acid (GABA) action at human recombinant a2b2y2 than at a1b2y2 and a1b2 GABA receprors expressed in Xenopus oocytes. European journal of Pharmacology 512(2-3):97-104.

Malan TP, Mata HP, Porreca F (2002). Spinal GABA (A) and GABA (B) receptor pharmacology in a rat model of neuropathic pain. Anesthesiology 96(5):1161-1167.

Full Length Research Paper

Effects of anti-hyperglycemic of yacon leaf (Smallanthus sonchifolius) ethanolic extracts using zebrafish as a model

Zuhelmi Aziz, Nanda Tamara, Rahmi Three Wahyuni, Inawati and Dan Syamsudin Abdillah*

Department of Pharmacology, Faculty of Pharmacy, Pancasila University, South Jakarta 12640, Indonesia.

Received 21 February, 2019; Accepted 16 May, 2019

This study aims to investigate the anti-hyperglycemic effects of yacon leaf (Smallanthus sonchifolius) using zebrafish. In this study, zebrafish is used as a model, with alloxan compounds to induce hyperglycemic. The induction stage consists of 3 phases: in the first the zebra was induced at 0.3% for 30 min, in the second stage, it was transferred to a 3% D-glucose solution for 30 min, and in the last, immersion was carried out in a solution containing yacon leaf extract with doses of 20, 30 and 40 mg/ml for 3 h in 3 consecutive days. The results showed that yacon leaf extract in doses of 20, 30 and 40 mg were able to reduce blood glucose levels in zebrafish induced by alloxan. The results indicated that 95% ethanolic extract has an antidiabetic effect.

Key words: Yacon leaf (Smallanthus sonchifolius), zebrafish, alloxan.

INTRODUCTION

Diabetes mellitus affects a large percentage of the world’s population, significantly altering their quality of life (Lawrence et al., 2008). The definition of diabetes mellitus is a metabolic disease caused by a lack of insulin production or inability of the body to respond to insulin (Stumwoll et al., 2005).

The World Health Organization (WHO) predicts an increase in the number of populations living with diabetes mellitus, considering it a global health threat (WHO, 2016). In Indonesia, it is estimated to rise from 8.4 million in 2000 to 21.3 million by 2030, with a staggering increase of 2-3 times that by 2035 (Wild et al., 2004). Meanwhile, the International Diabetes Federation (IDF, 2015) predicts an increase of 9.1 million in 2014 with an expected 14.1 million by 2035 (IDF, 2015). A natural ingredient found in Indonesia and capable of reducing blood glucose levels is the yacon (Smallanthus sonchifolius) plant. In a study conducted by Genta et al. (2010), it was found that a decrease in blood glucose levels from the extract was caused by caffeonlyquinic, caffeic and chlorogenic compounds. In addition, enhydrin and sesquiterpenic lactone in the leaves are effective for reducing post-prandial glucose and is useful in the treatment of animal diabetes (minimum dose: 0.8 mg / kg body weight). According to research conducted by Dou et al. regarding chemical compounds from Smallanthus sonchifolius, a structure of new compounds were identified that are as efficacious as diabetes agents.

*Corresponding author. E-mail: syamsudin.abdillah@gmail.com.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
namely ent-Kaurane-3β,16β, 17,19-tertol, ent-Kaurane-16β, 17,18,19-tertol, ent Kaurane-3β, 16β, 17-triol, ent Kaurane-16β, 17-diol-19-oic acid, ent-Kauran-6β, 17,18-triol and 1-Pentacosanol (Dou et al., 2010).

The yacon leaves contain fructooligosaccharide, carbohydrates, and flavonoids which can reduce glucose levels in blood and effectively transport components of phenol and caffeoquinic which inhibit glucosidase (Djamil et al., 2014). Baroni et al. (2008) found that the crude extract of yacon leaves significantly reduced blood glucose levels of diabetic rats in the experimental model induced by STZ. Most of the available models are rodent-based, which have drawbacks in that they are labour intensive and because of ethical issues, only small groups of animals can be used. To overcome these limitations, the zebrafish (Danio rerio) has been increasingly used to study diabetes and its related diseases, chosen because of the high similarities in organ physiology and metabolism between zebrafish and mammals (Zhang et al., 2017).

Zebrafish is an excellent model when compared to rodents in understanding the conditions and pathology of vertebrates (Zhang et al., 2018). Used in previous studies and induced by alloxan monohydrate at a dose of 300 mg and glucose 1%, considerable damage to the pancreatic Langerhans cells, causing diabetes was observed (Shin, 2012). This study aims to determine the effect of 95% ethanolic extracts of yacon leaves (Smallanthus sonchifolius) on the production of insulin using the zebrafish model. The development of zebrafish-based antidiabetes compound screening is founded on the discovery of marked similarities, which justify the use of the fish to screen antidiabetic compounds.

MATERIALS AND METHODS

Animal experiments

The experimental animals used in this study were black striped zebrafish weighing 180-220 mg, obtained from Bogor Agricultural University, Bogor, West Java and were used after ethical approval. 100 zebrafish were divided into 10 tails per aquarium used during acclimatization and were fed at 4% per tail daily (Kinkel and Prince, 2009). Fish were fed twice daily, at 10 am with gelatin containing shrimp as described below and at 4 pm with Zeigler Adult Diet (Aquatic Habitats). Aerators were installed, to provide oxygen, and to prevent stress and death. Specific conditions were necessary, including approximately 10 h of darkness for rest periods, made by covering a tank with a trash bag. However, zebrafish activities required approximately 14 h of bright lighting, with an optimum temperature of 28.5 (Zhang et al., 2017). After acclimatization, they were chosen on the basis of activity levels and weighed (220-260 mg). The zebrafish were divided into 6 groups, with each consisting of 10 randomly picked tails, and given treatment for 3 days. Group 1 is a normal control, without any treatment, Group 2 a negative control with 3% alloxan monohydrate, hyperglycemic, D-glucose, and treated water induced. Group 3 is a positive control and was given liquid containing metformin. Positive control was comparison; Group 4 with the administration of 20 mg dosage of yacon leaves ethanolic extracts; Group 5, with the administration of 30 mg dosage of ethanolic extracts; Group 6, with the administration of 40 mg dosage of ethanolic extracts.

The zebrafish were exposed to various alloxan concentration in half saline solution; 40 mg/100 ml (40 mg), 120 mg/100 ml (120 mg), 300 mg/100 ml (300 mg) and 400 mg/100 ml (400 mg) for 30 min, moved to a 1% water glucose solution in water for 30 min, and then exposed to water for 1 h. After induction, blood glucose levels were measured; *p < 0.05.
reached 300.45-378.34 mg/dl and all exposed zebrafishes did not die. The dosage of 400 mg/100 ml blood glucose levels could reach levels of 400.34-456.67 mg/dl, and therefore, more than 50% of the Zebrafish died. The diabetic zebrafish model induced with only water glucose is required for a longer time compared to the model induced with alloxan.

Changes in the body weight before and after diabetogenic induction is shown in Figure 3. The zebrafish were also weighed to determine the amount of feed to be offered daily. This is used to maintain control variables and identify the differences between the administration of metformin and 95% ethanol extract of yacon leaves.

Antidiabetic activation test

The selection of the dosage of yacon leaf extract was carried out after optimization; a dose of 20, 30 and 40 mg was given for 3 days after the hyperglycemic induction, and the zebrafish blood glucose levels were measured (Figure 2).

Statistic analysis

Glucose level data obtained from each treatment group was tested for normality and homogeneity. If the data are normally distributed and homogeneous, parametric statistical tests were carried out using one-way analysis of variance (ANOVA). If the results showed a significant difference, the analysis was then followed by the Tukey Post Hoc test to see the variations in each group at a significance level of 0.05%.

RESULTS AND DISCUSSION

The data before the acclimatization initially showed non-uniform results; however, afterwards they gained weight and were broadly uniform. This may be a result of food factors, given everyday for 7 days. After the induced hyperglycemia, the zebrafish lost weight. This is because weight loss is one of the typical symptoms of metabolic disorders, experienced by patients with diabetes mellitus, despite having very good appetite (Zhang et al., 2017). The zebrafish lost weight because their energy needs were not met from glucose metabolism because of the fat and protein overhaul. This condition is caused by pancreatic β cell damage after being induced by alloxan, leading to a decrease in the production of in the body, causing glucose to not binding to insulin to produce energy (Zhang et al., 2018; Capiotti et al., 2014).

Figure 4 highlights the blood glucose levels of the normal, diabetic group, positive controls, and administration of yacon leaf extract in 20, 30 and 40 mg dosages. It can be seen that there is a decrease in blood glucose levels by to day 3 in the positive control with yacon leaf extract dosages of 20, 30, and 40 mg. The measurement of blood glucose level of the yacon leaf ethanol extract shows that the higher the dose of ethanol extract, the higher the rate at which blood glucose levels are decreasing in zebrafish.

In the positive control group, metformin had a better decrease in activity because it can reduce more blood glucose levels of zebrafish than the 3 groups of dosages of 95% ethanolic extracts. In another study, the antidiabetic effects of yacon leaf extract were investigated using rat animals induced with streptozotocin. Animal models type 1 diabetes mellitus was caused by the loss of pancreatic β- cells resulting in reduced insulin production (Kinkel and Prince, 2009). An alloxan-induced acute hyperglycemia zebrafish model of type 1 diabetes lead to the generation of a destroyed pancreas. This model is a mild acute hyperglycemia model for short-term experimentation; therefore, further research is needed to develop a permanent model (Kinkel and Prince, 2009).

Based on the results, the hyperglycemic induction with 0.3% alloxan monohydrate using the immersion method with 3% D-glucose and aquadest, damaged the pancreatic β cells of the zebrafish, resulting in reduced insulin production in the body, and high glucose in the blood. Glucose in zebrafish bodies could not bind to insulin and glucose levels in normal controls do not change the condition of hyperglycemia from day 1 to 3. This is due to an increase in blood glucose levels by zebrafish treated with alloxan induction and glucose,
resulting in an inability to regulate insulin. This led to the destruction of pancreatic β cells which could be seen by increased blood glucose levels of zebrafish. Overall, these data indicated that zebrafish could be induced to the develop mild and stable hyperglycemia and this model was appropriate for these experiments (WHO, 2016). A significant advantage of using zebrafish for diabetes research is that hyperglycemic can be induced by simply adding glucose to the fish water. In contrast, rodent models of diabetes typically require the injection of the toxic glucose analogue, streptozotocin or alloxan, which preferentially kill pancreatic β cells (Dou et al., 2010).

Conclusion

The results of this study indicated that yacon leaf ethanol extract could reduce blood glucose levels with a dosage of 40 mg. The research showed that an active compound isolated from yacon leaf extract had an antidiabetic effect.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Related Journals:

- Clinical Reviews and Opinions
- Journal of Medicinal Plant Research
- African Journal of Pharmacy and Pharmacology
- Journal of Dentistry and Oral Hygiene
- Journal of Parasitology and Vector Biology
- Journal of Pharmacognosy and Phytotherapy
- Journal of Medical Laboratory and Diagnosis
- Journal of Diabetes and Endocrinology
- Medical Practice and Reviews

www.academicjournals.org