About AJMR

The African Journal of Microbiology Research (AJMR) is a peer reviewed journal. The journal is published weekly and covers all areas of subject as Environmental Microbiology, Clinical Microbiology, Immunology, Virology, Bacteriology, Phycology, Molecular and Cellular Biology, Molecular Microbiology, Food Microbiology, Mycology and Parasitology, Microbial Ecology, Probiotics and Prebiotics and Industrial Microbiology.

Indexing

CAB Abstracts, CABI’s Global Health Database, Chemical Abstracts (CAS Source Index) Dimensions Database, Google Scholar, Matrix of Information for The Analysis of Journals (MIAR), Microsoft Academic, Research Gate

Open Access Policy

Open Access is a publication model that enables the dissemination of research articles to the global community without restriction through the internet. All articles published under open access can be accessed by anyone with internet connection.

The African Journal of Microbiology Research is an Open Access journal. Abstracts and full texts of all articles published in this journal are freely accessible to everyone immediately after publication without any form of restriction.

Article License

All articles published by African Journal of Microbiology Research are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited. Citation should include the article DOI. The article license is displayed on the abstract page the following statement:

This article is published under the terms of the Creative Commons Attribution License 4.0 Please refer to https://creativecommons.org/licenses/by/4.0/legalcode for details about Creative Commons Attribution License 4.0
Article Copyright

When an article is published by in the African Journal of Microbiology Research, the author(s) of the article retain the copyright of article. Author(s) may republish the article as part of a book or other materials. When reusing a published article, author(s) should; Cite the original source of the publication when reusing the article. i.e. cite that the article was originally published in the African Journal of Microbiology Research. Include the article DOI. Accept that the article remains published by the African Journal of Microbiology Research (except in occasion of a retraction of the article)

The article is licensed under the Creative Commons Attribution 4.0 International License.

A copyright statement is stated in the abstract page of each article. The following statement is an example of a copyright statement on an abstract page. Copyright ©2016 Author(s) retains the copyright of this article.

Self-Archiving Policy

The African Journal of Microbiology Research is a RoMEO green journal. This permits authors to archive any version of their article they find most suitable, including the published version on their institutional repository and any other suitable website.

Digital Archiving Policy

The African Journal of Microbiology Research is committed to the long-term preservation of its content. All articles published by the journal are preserved by Portico. In addition, the journal encourages authors to archive the published version of their articles on their institutional repositories and as well as other appropriate websites.

https://www.portico.org/publishers/ajournals/

Metadata Harvesting

The African Journal of Microbiology Research encourages metadata harvesting of all its content. The journal fully supports and implement the OAI version 2.0, which comes in a standard XML format. [See Harvesting Parameter](#)

Memberships and Standards
Academic Journals strongly supports the Open Access initiative. Abstracts and full texts of all articles published by Academic Journals are freely accessible to everyone immediately after publication.

All articles published by Academic Journals are licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.

Crossref is an association of scholarly publishers that developed Digital Object Identification (DOI) system for the unique identification published materials. Academic Journals is a member of Crossref and uses the DOI system. All articles published by Academic Journals are issued DOI.

Similarity Check powered by iThenticate is an initiative started by CrossRef to help its members actively engage in efforts to prevent scholarly and professional plagiarism. Academic Journals is a member of Similarity Check.

CrossRef Cited-by Linking (formerly Forward Linking) is a service that allows you to discover how your publications are being cited and to incorporate that information into your online publication platform. Academic Journals is a member of CrossRef Cited-by.

Academic Journals is a member of the International Digital Publishing Forum (IDPF). The IDPF is the global trade and standards organization dedicated to the development and promotion of electronic publishing and content consumption.
Contact

Editorial Office: ajmr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/AJMR
Submit manuscript online http://ms.academicjournals.org

Academic Journals
73023 Victoria Island, Lagos, Nigeria
ICEA Building, 17th Floor,
Kenyatta Avenue, Nairobi, Kenya.
Editors

Prof. Adriano Gomes da Cruz
University of Campinas (UNICAMP),
Brazil.

Prof. Ashok Kumar
School of Biotechnology
Banaras Hindu UniversityUttar Pradesh,
India.

Dr. Mohd Fuat Abd Razak
Infectious Disease Research Centre,
Institute for Medical Research, Jalan
Pahang, Malaysia.

Dr. Adibe Maxwell Ogochukwu
Department of Clinical Pharmacy and
Pharmacy Management,
University of Nigeria
Nsukka, Nigeria.

Dr. Mehdi Azami
Parasitology & Mycology Department
Baghaeei Lab.
Isfahan, Iran.

Dr. Franco Mutinelli
Istituto Zooprofilattico Sperimentale delle
Venezie Italy.

Prof. Ebiamadon Andi Brisibe
University of Calabar,
Calabar,
Nigeria.

Prof. Nazime Mercan Dogan
Department of Biology
Faculty of Science and Arts
University Denizli Turkey.

Prof. Long-Liu Lin
Department of Applied Chemistry
National Chiayi University
Chiayi County Taiwan.

Prof. Natasha Potgieter
University of Venda
South Africa.

Dr. Tamer Edirne
Department of Family Medicine
University of Pamukkale
Turkey.

Dr. Kwabena Ofori-Kwakye
Department of Pharmaceutics
Kwame Nkrumah University of Science &
Technology
Kumasi, Ghana.

Dr. Tülin Askun
Department of Biology
Faculty of Sciences & Arts
Balikesir University Turkey.

Dr. Mahmoud A. M. Mohammed
Department of Food Hygiene and Control
Faculty of Veterinary Medicine
Mansoura University Egypt.
Editors

Dr. James Stefan Rokem
Department of Microbiology & Molecular Genetics
Institute of Medical Research Israel – Canada
The Hebrew University – Hadassah Medical School Jerusalem, Israel.

Dr. Afework Kassu
University of Gondar
Ethiopia.

Dr. Wael Elnaggar
Faculty of Pharmacy
Northern Border University
Rafha Saudi Arabia.

Dr. Maulin Shah
Industrial Waste Water Research Laboratory
Division of Applied & Environmental Microbiology, Enviro Technology Limited
Gujarat, India.

Dr. Ahmed Mohammed
Pathological Analysis Department
Thi-Qar University College of Science
Iraq.

Prof. Naziha Hassanein
Department of Microbiology
Faculty of Science
Ain Shams University
Egypt.

Dr. Shikha Thakur
Department of Microbiology
Sai Institute of Paramedical and Allied Sciences India.

Dr. Samuel K Ameyaw
Civista Medical Center
USA.

Dr. Anubrata Ghosal
Department of Biology
MIT - Massachusetts Institute of Technology
USA.

Dr. Bellamkonda Ramesh
Department of Food Technology
Vikrama Simhapuri University
India.

Dr. Sabiha Yusuf Essack
Department of Pharmaceutical Sciences
University of KwaZulu-Natal
South Africa.

Dr. Navneet Rai
Genome Center
University of California Davis USA.

Dr. Iheanyi Omezuruike Okonko
Department of Virology
Faculty of Basic Medical Sciences
University of Ibadan
Ibadan, Nigeria.

Dr. Mike Agenbag
Municipal Health Services,
Joe Gqabi,
South Africa.

Dr. Abdel-Hady El-Gilany
Department of Public Health & Community Medicine, Faculty of Medicine
Mansoura University
Egypt.
Comparative in vitro antimicrobial effect of Sarcocephalus latifolius (Sm.) E. A. Bruce leaves and roots on foodborne pathogens
Carlos C. Ahoyo, Pauline M. Deguenon, Durand Dah-Nouvlessounon, Haziz Sina, Thierry D. Houehanou, Alain S. Yaoitcha, Lamine Baba-Moussa and Marcel R. B. Houinato
Full Length Research Paper

Comparative in vitro antimicrobial effect of Sarcocephalus latifolius (Sm.) E. A. Bruce leaves and roots on foodborne pathogens

Carlos C. Ahoyo1, Pauline M. Deguenon1,2,*, Durand Dah-Nouvlessounon2, Haziz Sina2, Thierry D. Houehanou1,3, Alain S. Yaoitcha1,4, Lamine Baba-Moussa2 and Marcel R. B. Houinato1

1Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01 P.O. Box 526 Cotonou, Republic of Benin.
2Laboratory of Biology and Molecular Typing in Microbiology, Faculty of Sciences and Technology, University of Abomey-Calavi, 05 PO Box 1604, Abomey-Calavi, Republic of Benin.
3Laboratory of Ecology, Botany and Plant Biology, Faculty of Agronomy, University of Parakou, PO Box 123, Parakou, Republic of Benin.
4National Institute of Agricultural Research of Benin, 01 P.O. Box 884 Cotonou, Republic of Benin.

Received 29 January, 2019; Accepted 29 April, 2019

Sarcocephalus latifolius (Sm.) E. A. Bruce is a plant used traditionally to treat a wide range of infectious diseases, including foodborne ones. This study aimed to compare its roots and leaves extract antibacterial effects in vitro. Thus, these organs were collected, dried and powdered for the extractions and phytochemical screening. Four extracts (water, ethyl-acetate, methanol and ethanol) were tested on ten reference strains (RS) and nine non references strains of Staphylococcus isolated from meat strains (MS) using disk method. Minimal inhibitory (MIC) and bactericidal concentrations (MBC) were determined respectively by macrodilution method and by solid culture medium. The results showed that the MS seem more susceptible than RS. The lowest activity was shown by roots hydro-ethanolic extract on Micrococcus luteus, whereas the highest was obtained with leaves ethanolic extract on Staphylococcus cohnii. The MIC ranges from 0.312 to 25 mg/ml for the MS and from 6.25 to 12.50 mg/ml for the RS. About MBC, they vary from 12.50 to 50 mg/ml for all susceptible tested microorganisms. S. latifolius extracts have an inhibitory effect on both strains such as Staphylococcus xylosus, Escherichia coli O157, Staphylococcus sciuri, Staphylococcus aureus, M. luteus, Candida albicans, S. cohnii, Proteus mirabilis and bactericidal effect on the three last ones. These results support the traditional use of S. latifolius in infectious diseases control; furthermore, its leaves seem more effective than the roots. These findings may serve as a starting point for the development of a new drug for the control of this kind of diseases and could sustain the species use.

Key words: Pathogens, medicinal plant, Sarcocephalus latifolius, phytochemical screening, metabolites.

INTRODUCTION

Plants are used for centuries for health care taking. Several studies have been conducted during the last decades, concerning their chemical composition and antimicrobial activities which enhanced their use. They are a source of manufactured drugs in developed countries and are directly used as infusion or decoction in developing ones. Infectious or parasitic diseases (gastro-intestinal ailments, hepatitis, tetanus etc.) are serious
public health care problems worldwide (Murray and Lopez, 1997) causing seventeen million deaths, from which the half is in African countries (WHO, 2003). In 2013, 80.2 million diseases cases were foodborne with an increase of 51.1% since 1990 (Murray et al., 2015). They impede people’s health and have a negative impact on the human development index (Petri et al., 2008). These mainly are observed in areas characterized by poor hygiene, lack of drinkable water and health care access, and their rate is expected to increase with current global warming (Altizer et al., 2013; Ong et al., 2018). Worldwide, 22.9% of Disability Adjusted Life Year (DALYs) was caused by infectious and parasitic diseases, but this proportion ranged from 2.7% in formerly socialist economies of Europe to 42.5% in sub-Saharan Africa (Murray and Lopez, 1997). Among those illnesses, diarrheal and foodborne diseases have the highest rate (Kirk et al., 2015). Even in the United States, each year approximately 76 million illnesses, 325,000 hospitalizations and 5,000 deaths are reported (Mead et al., 1999), their highest prevalence concern the African region (10.3, 0.01 and 1%) followed by the South East Asian region (8.07, 0.01 and 0.47%) considering the illnesses cases, deaths and DALYs respectively (Kirk et al., 2015). Foodborne diseases, including both foodborne intoxications and foodborne infections, are terms applied to illnesses acquired by consumption of contaminated food; they are frequently and inaccurately referred to as food poisoning (Chin, 2000).

In Benin like elsewhere in Africa, infectious or parasitic diseases are the primary public health care problem after diseases of the blood or blood-forming organs and specific disorders involving the immune system (malaria, hemorrhagic fever, anemia, icterus, etc.) as Ahoyo et al., (2019). Moreover, these diseases were currently categorized as neglected tropical diseases (Herrick et al., 2017) and need urgent actions to fight them. In this frame, due to inaccessibility to modern medicine, mainly in rural areas, and current pathogens resistance to those medicines, the best option remains to find a local and natural solution to mitigate those health care problems. *Khaya senegalensis* (Desr.) A. Juss., *Sarcoccephalus latifolius* and *Vitellaria paradoxa* C. F. Gaertn. were identified as the main woody species involved in their traditional treatment (Ahoyo et al., 2019). However, *S. latifolius* was the most used due to its medicinal properties regarding stomach disorders and foodborne diseases (Badiaga, 2011; Yinusa et al., 2012; Kaboré et al., 2014).

A native of the African country, *S. latifolius* also called African peach, is a Sudano-Guinean species primarily found in west intertropical Africa. Having 5 to 9 m of height, it is a shrub of about 30 cm of diameter. It has flexible branches, fibrous bark, yellow or white timber, simples and opposite leaves and yellow roots. The leaves remain green throughout the year and flowers arise from January to May.

Moreover, it is involved in the treatment of other diseases such as diabetes (Iwueke et al., 2010; Karou et al., 2011), AIDS (Lamorde et al., 2010), malaria (Idowu et al., 2010; Adomou et al., 2017; Ahoyo et al., 2018), menstrual disorders (Deleke Koko et al., 2011) and for infant caretaking (Kaboré et al., 2014). It is mainly used by African women in Kinshasa (DR Congo) for their intimate hygiene (Ngbolua et al., 2014) and has also veterinary properties such as treatment of bovine Pasteurellosis (Dassou et al., 2014). It is also used as a condiment in Burkina-Faso (Kaboré et al., 2014).

Within medicinal plants trading, *S. latifolius* roots are the most common selling in Benin (Quiroz et al., 2014). In Cameroon, its roots are used for fever, convulsion, headache, inflammatory and neuropathic treatments, whereas leaves are involved in the treatment of nervous system disorders like epilepsy or anxiety (Taiwe et al., 2014). Its roots are the most used plant parts in medicine (Kaboré et al., 2014).

The high use of its roots against diarrheal infectious is linked to their coumarins and polyphenolic compounds which possess anti-inflammatory, antimicrobial and anticoagulant properties (Badiaga, 2011). Several studies are mainly focused on its roots by assessing its efficacy *in vitro* (antileishmanial (Ahua et al., 2007), against Herpes simplex virus type 1 and African swine fever virus (Silva et al., 1997)) and *in vivo* (antidiarrheal (Owolabi et al., 2010), antimalarial, against nociception, inflammation, and pyrexia (Abbah et al., 2010), hepatoprotective (Yesufu et al., 2010)).

The roots utilization could jeopardize the species survival than the leaves (Kaboré et al., 2014). Hence, it is necessary to compare its leaves antimicrobial activity to the roots ones. The leaves will be advocated whether the two parts have at least the same effects; moreover, the leaves can contain a high number of secondary metabolites and could be more effective in disease treatment (Nacoulma-Ouedraogo, 1996). In this frame, this study aims to assess and compare the *in vitro* antimicrobial activity between *S. latifolius* leaves and roots to foodborne pathogens.

MATERIALS AND METHODS

Tested microorganisms

The nineteen microorganisms that were tested are composed of:
i. Ten (10) reference strains with five Gram-positive bacteria (*Staphylococcus aureus* ATCC 29213, *S. epidermidis* T22695, *Micrococcus luteus* ATCC 10240, *Streptococcus oralis* and *Enterococcus faecalis* ATCC 29212); four Gram-negative bacteria (*Pseudomonas aeruginosa* ATCC 27853, *Proteus mirabilis* A24974, *Proteus vulgaris* A 25015 and *Escherichia coli* ATCC 25922) and one yeast (*Candida albicans* MHRM);

ii. Six (06) *Staphylococcus* species (*S. sciuri*, *S. aureus*, *S. simulans*, *S. xylosus*, *S. cohnii* and *S. haemolyticus*) isolated from three different meat products in Ivory Coast by Attien et al. (2011) and stored in the Laboratory of Biology and Molecular Typing in Microbiology (University of Abomey-Calavi, Benin);

iii. Two (02) *Salmonella enterica* serovars (*Salmonella typhi* and *S. paratyphi*) isolated from meat and

iv. Two (02) clinical strains of *E. coli* isolated from diarrheal infections.

The non-reference isolates were obtained from the Laboratory of Biology and Molecular Typing in Microbiology of the University of Abomey-Calavi of Benin.

Plant material collection

The leaves and roots of *S. latifolius* were collected in the Monts Kouffe forest in Center of Benin. Voucher specimens (AA 6739 / HNB) were collected and deposited in the National Herbarium of Benin. These plant organs were cut into pieces, dried between 25 and 30°C at the laboratory for 15 days and then ground to powdered-form which was then kept in an air-tight plastic bag until use. The powder was used for extraction with five solvents (ethanol, hydro-ethanol, methanol, hexane and ethyl acetate).

Hydro-ethanolic and methanolic extraction

An adaptation of Guédé-Guina et al. (1995) protocol was used. Briefly, 50 g of powder had been macerated in 500 ml of solvents (distilled water-ethanol (v/v) or methanol) on electronic agitator for 48 h at ambient temperature (20°C). The obtained product was filtered twice with hydrophilic cotton and once on Whatman No 1 paper. This filtrate was dried at 45°C for total hydro-ethanolic and methanolic extracts obtaining.

Successive extraction with ethanol, hexane and ethyl-acetate

The extracts were obtained according to the method described by N’Guessan et al. (2007). One hundred (100) g of powder was macerated in 1000 ml of ethanol 96° under agitator for 48 h at ambient temperature. The homogenate was filtered thrice on hydrophilic cotton and once on Whatman No 1. The 1/5 of the obtained filtrate was evaporated at 40°C to get the ethanolic extract. To 4/5 fraction, was added 50 ml of hexane. After agitation, the mixture was transferred within decanter ampoule. The upper phase was reaped and evaporated to get he hexanic extract. After that, 50 ml of ethyl acetate and 50 ml of distilled water were added to the lower phase and shook for 20 min in a decanter ampoule. Finally, the upper phase was reaped and evaporated for ethyl acetate extract obtaining.

Phytochemical screening

The qualitative phytochemical screening was performed based on coloring or precipitation reactions. It is made directly on the powder of the *S. latifolius* organ according to Ali et al. (1998).

Antimicrobial activity assessment

Sensibility tests

The antimicrobial activity of the extracts was evaluated using the disk diffusion method described by Bauer et al. (1966). Indeed, 1 ml of bacterial culture (adjusted to 0.5 McFarland standards) was spread on a Petri dish containing Mueller-Hinton agar (Bio-Rad, France) (SFM, 2008). Two to four sterile disks (5 mm) are deposited in the Petri dish previously flooded with bacterial culture under aseptic conditions. These disks were inoculated with 30 μl of tested extract (50 mg/ml). The disk was then kept at room temperature 15-30 min before being incubated at 37°C for 24 h (Adesokan et al., 2007) and 48 h. The inhibition diameters were measured using a scale after incubation times of 24 and 48 h. The experience was repeated twice for each extract.

Determination of minimum inhibitory concentration (MIC)

The method of macrodilution with visual observation previously used by Dah-Nouvellessounon et al. (2015) was used. Firstly, the extracts were diluted in sterilized distilled water to the highest concentration of 50,000 μg/ml and then nine dilutions were performed to obtain the concentrations of 25,000, 12,500, 6,250, 3,125, 1,562.5, 781.25, 390.62, 195.31 and 97.65 μg/ml in screw capped. Then, 1 ml of the bacteria inoculum (10⁶ cfu/ml) was added to 1 ml of the above mentioned concentrations to obtain 2 ml as a final volume. Culture medium without extracts and others without microorganisms were used as a control. Tubes were incubated at 37°C for 18 - 24 h and growth was indicated by turbidity. The MIC is the lowest concentration of the compound at which the microorganism tested does not demonstrate visible growth (turbidity).

Determination of minimum bactericidal concentration (MBC)

Referring to the results of MIC test, all tubes showing no microorganism growth were identified. Each tube was inoculated into a Petri dish containing MH agar and incubated at 37°C for 24 h. The lowest concentration of the extract in which the microorganism did not grow on solid medium was considered as the Minimum Bactericidal Concentration (Moroh et al., 2008).

Identification of inhibitory and bactericidal effect of extracts

Bactericidal or inhibitory effect of extract depends on the ratio CMB/CMI (Berche et al., 1991). It is bactericidal when the ratio is comprised between 1 and 2; and inhibitory if it is between 4 and 16.

Data analysis

The extraction yielding was obtained by dividing the anhydrous mass of the extract by plant material used (Harborne, 1998). The used formula is:

\[
R = \frac{Me}{Mp} \times 100
\]

With R, the yield in percentage; Me, the anhydrous mass of the extract; and Mp, the plant material’s mass.

A principal component analysis using the package FactoMineR (Le et al., 2008) and Factoextra (Kassambara and Mundt, 2017) showed the sensibility pattern of tested microorganisms (10
Table 1. Leaves and roots of *S. latifolius* yield.

<table>
<thead>
<tr>
<th>Type of extract</th>
<th>Water-ethanolic</th>
<th>Ethanolic</th>
<th>Methanolic</th>
<th>Ethyl acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organ</td>
<td>Leave</td>
<td>Root</td>
<td>Leave</td>
<td>Root</td>
</tr>
<tr>
<td>Powder mass (g)</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Extract mass (g)</td>
<td>6.6</td>
<td>6.6</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td>Yield (%)</td>
<td>6.6</td>
<td>6.6</td>
<td>6.8</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Table 2. Phytochemical compounds of *S. latifolius* organs.

<table>
<thead>
<tr>
<th>Family</th>
<th>Class</th>
<th>Leave</th>
<th>Root</th>
<th>Leave</th>
<th>Root</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitric compounds</td>
<td>Alkaloids</td>
<td>++</td>
<td>++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tannins</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catechetic tannins</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallic tannins</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavonoid</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly-phenolic compounds</td>
<td>Anthocyanin</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leuco-anthocyanins</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coumarin</td>
<td>++</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinonics derived</td>
<td>++</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triterpenoids</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terpenic compounds</td>
<td>Steroids</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardenolides</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanogeniques derived</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saponosides (IM)</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reducing Compounds</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterosides or glycosides</td>
<td>Free anthracenics</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-heterosides</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-heterosides at GR</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-heterosides</td>
<td>-</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucilage’s</td>
<td>-</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+/- indicates presence/absence.

Phytochemical profiling

Various primary compounds are present in leaves and roots of *S. latifolius*. Among researched compounds, Anthocyanins and Leuco-anthocyanins were absent within polyphenolics class whereas derived cardenolides and cyanogenic were absent among Terpenics ones. Among heterosides, only the roots contain C-heterosides and mucilages as presented in Table 2.

RESULTS

Extraction yield

The extraction yielding by each solvent was shown in Table 1. It varied following the kind of extracts and plant organs used. The methanolic extract has the highest yield (13.6% for the leaves and 12.8% for the roots), whereas the acetic extract has the lowest (5%). The leaves and the roots yield followed the same trend.

Antimicrobial activity

Sensibility of tested microorganisms to leaves and roots extracts of *S. latifolius*

The sensibility of tested microorganisms to plant extracts...
was observed at 50 mg/ml of extracts (Table 3). At 20 mg/ml, the extracts did not produce any effect on those microorganisms.

The isolates of meat origin seemed to be more susceptible than reference ones. In fact, the lowest activity was shown by roots hydro-ethanolic extract (RHE) on *M. luteus* (reference strains), whereas the highest was observed by leaves ethanolic extract (LEE) on *S. cohnii* as illustrated in Figure 1.

The first two axes of the principal component analysis (PCA) performed on the matrix of the inhibition diameters, explained 61% of the total variation among the microorganism susceptibility to extracts and revealed five groups as shown in Figure 2. About 68% (13) of tested microorganisms were sensible to plant extracts. The groups are:

i. Group G0: *P. aeruginosa, P. mirabilis, S. epidermidis, E. faecalis, S. haemolyticus, S. xyloxus, S. cohnii*. The remains of tested microorganisms, the investigated compounds, the mean sensibility to all tested extracts.

ii. Group G1: *S. oralis* is susceptible to leaves ethanolic extract (LEE).

iii. Group G2: *S. aureus, M. luteus* and *S. sciuri* are very susceptible to roots methanolic extracts (RME).

iv. Group G3: leaves hydro-ethanolic (LHEE) and acetic extract (LAE) are efficacious on *C. albicans*.

v. Group G4: *E. coli O157* is equally (p-value = 0.2774) susceptible to leaves methanolic (LME) and roots acetic extracts (RAE).

Minimum inhibitory (MIC) and bactericidal concentration (MBC)

The plants’ extract showed various MIC and MBC values according to tested microorganisms. The MIC obtained for both reference and meat isolates were presented in Table 4 whereas the MBC were presented in Table 5.

Bactericidal and inhibitory extracts

Based on CMB/CMI reports, ethanolic extract of leaves had a bactericidal effect on *C. albicans* and *P. mirabilis*. The same effect was observed about hydroethanolic extracts of leaves on *S. cohnii*. The remaining extracts had just inhibitory effects on the other tested microorganisms as presented in Table 6.

DISCUSSION

Several parameters affect the extraction procedure such as the chemical form of investigated compounds, the extraction method, the size of sampled particles, the used plant parts, the solvent polarity, the drying conditions and
Figure 1. Growth inhibition diameter of tested microorganisms induced by *S. latifolius* leaves and roots extracts.

The methanolic extract produced the highest yield, whereas the lowest was obtained with the ethyl acetate ones. It could be because of the extraction capacity of a solvent depends on its polarity and affinity for phyto-molecules (Dah-Nouvlessounon et al., 2015). Furthermore, the majority of natural’s products seem more soluble in methanol than other more polar solvents (Telli et al., 2010). In this way, Telli et al. (2010) found this solvent, as the most efficient for polyphenols extraction from date fruits. Unlikely, Ibanez et al. (2003) showed that the extraction yield was positively correlated with solvent polarity.

Even no polar solvent (hexane for example) showed sometimes better extraction yield (Herzi, 2013). To improve the extraction yield, link to the tested metabolites, a selective extraction using a solvent of an appropriate polarity driving by the principle of *like dissolves like* is advocated. Thus, nonpolar solvents are used to solubilize mostly lipophilic compounds (alkanes, fatty acids, pigments, waxes, sterols, some terpenoids, alkaloids and coumarins). Medium-polarity solvents are used to extract compounds of intermediate polarity (some alkaloids, flavonoids), while more polar ones are used for more polar compounds (flavonoid glycosides, tannins, some alkaloids). Water is not used often as an initial extractant, even if the aim is to extract water-
soluble plant constituents (glycosides, quaternary alkaloids, tannins) (Sarker et al., 2006). Further supercritical fluid extraction studies may undertake to improve the extraction yield regarding their particular faculties for natural products extraction from plants (Castioni et al., 1995).

Concerning observed variations between the yields of leaves and roots extractions, it may be due to the chemical composition of those plant organs and the physiological status of the harvested plant species. The yield was better with leaves extracts than roots. It is well known that the quantity of secondary metabolites has a variable distribution through different plant organs (Figueiredo et al., 2008). Moreover, leaves as the plant photosynthesis center, hold the greatest rate of those secondary metabolites.

Leaves and roots of *S. latifolius* contain the major kinds of secondary metabolites such as alkaloids, tannins, flavonoids, terpenes and saponins. The identified secondary metabolites within those organs are well known for their biological activities (antiviral, antibacterial, anti-inflammatory, etc). Moreover, the total absence of cyanogenic heterosis confirmed the non-toxic effect of this species and hence, allows its great use in folk medicine like showed by other studies.

Figure 2. Pattern of tested microorganism’s sensibility to *S. latifolius* extracts.
(Ahoyo et al., 2018; Kaboré et al., 1995). Also, tannin's antiseptic, antifungal and antibacterial effects were shown by Mesia et al. (2005). Their presence in both leaves and roots explain this species prescription as antidiarrheal or gastrointestinal disorders regulator.

Deleke Koko et al. (2011), found Anthocyanins and C-heterosides within leaves and roots of S. latifolius whereas, those compounds were absent within the present study findings. Also, Alkaloids, derived quinones, gallic tannins, steroids and triterpenoids revealed in the present phytochemical screening were not found by Deleke Koko et al. (2011). These changes may be due to the variation of environmental conditions of the plants’ collection areas which are under different climatic characteristics. They collected their plants at Pendjari, Sudanian zone of Benin, while there have been collected in the Sudano-Guinean zone of Benin for this study. Even Badiaga (2011) found in Mali that climate variation did not influence the plant metabolites production, their effect seems currently irrefutable.

Ethanol, hydro-ethanolic, methanolic and ethyl acetate extracts of leaves and roots of S. latifolius inhibited at 50 mg/ml, 68.42% of the growth of the tested microorganisms. Although, hydro-ethanolic extracts seem more efficacious. The extracts were efficacious on P. mirabilis, S. cohnii, C. albicans, M. luteus, S. aureus, S. sciuri, E. coli 0157 and S. xylosus. Among the pathogens of greatest concern today, is E. coli 0157 (Mead et al., 1999).

The foodborne strains seem more susceptible than reference ones. This lack of resistance can be due to some mutations they face in natural environment or within the biological systems (like animal’s body) within which they live. In this sense, Anowi et al. (2017) and Okwori et al. (2008) found similar results in antimicrobial activity of S. latifolius leaves assessing. Although, S. Typhi, not sensible in this study was found to be sensible to this species leaves alcoholic extracts (Sourabie et al., 1995). This difference of sensibility may be due to the difference between the used alcohol concentrations.

Minimum inhibitory and bactericidal concentration varied following kinds of extracts and strains. They inhibited the growth of the majority of tested strains, both Gram – and Gram +. The minimum inhibitory concentration ranged from 0.312 to 25 mg/ml.

Leaves ethanolic extracts had a bactericidal effect on both yeast (C. albicans), and Gram – reference strains (P. mirabilis), whereas the hydro-ethanolic had the same effect on Gram + foodborne strain (S. cohnii). The only difference between those two extracts was about concentration.

Leaves hydro-ethanolic extracts can be obtained by increasing the ethanolic extract volume with distilled water. Likewise, ethanolic extracts of leaves of S. latifolius seems efficacious on the majority of bacterial classes independently on their sources. Extract efficacy depends strongly on plants species, the used part, the kind of solvent and also to tested microorganisms. About

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>LEE</th>
<th>LME</th>
<th>LHEE</th>
<th>LAE</th>
<th>RHEE</th>
<th>RME</th>
<th>RHEE</th>
<th>RAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.25</td>
<td>12.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>0</td>
<td>0</td>
<td>6.25</td>
<td>12.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. mirabilis</td>
<td>12.50</td>
<td>0</td>
<td>6.25</td>
<td>6.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M. luteus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>6.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>12.50</td>
<td>12.50</td>
<td>0</td>
<td>6.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.25</td>
</tr>
<tr>
<td>P. vulgaris</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. oralis</td>
<td>50</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E. faecalis</td>
<td>0</td>
<td>0</td>
<td>12.50</td>
<td>12.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E. coli</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. albicans</td>
<td>6.25</td>
<td>6.25</td>
<td>12.50</td>
<td>6.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. sciuri</td>
<td>0</td>
<td>0</td>
<td>3.12</td>
<td>0</td>
<td>6.25</td>
<td>6.25</td>
<td>12.50</td>
<td>25</td>
</tr>
<tr>
<td>S. haemolyticus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12.50</td>
<td>0</td>
</tr>
<tr>
<td>S. simulans</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. xylosus</td>
<td>0</td>
<td>3.12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.25</td>
<td>0</td>
</tr>
<tr>
<td>S. cohnii</td>
<td>3.12</td>
<td>0</td>
<td>12.50</td>
<td>12.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E. coli 0157</td>
<td>0</td>
<td>6.25</td>
<td>3.12</td>
<td>6.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.25</td>
</tr>
<tr>
<td>E. coli</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Paratyphy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Typhy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

LEE: Leaves ethanolic extract; LHEE: Leaves hydro-ethanolic extract; LME: Leaves methanolic extract; LAE: Leaves acetic extract; REE: Roots ethanolic extract; RHEE: Roots hydro-ethanolic extract; RME: Root methanolic extract; RAE: Roots acetic extract.
would be beneficial to improve the borne. The rates of survival, growth manufacture to deal with food. This study highlighted is species like Ethanol was the metabolites of this isolation, purification and assess the contents secondary collection. The present finding could be used to sustain this species reproduction of harvested individuals (Ticktin, 2004). Indeed, several findings through the world established that roots are the most used part for this species, as its most efficacious part (Kaboré et al., 2014; Tabuti et al., 2003). Its leaves of S. latifolius could be used instead of its roots. Moreover, leaves extracts had a great inhibition zone on bacterial growth than roots ones. Okwori et al. (2008) also found similar results; these results imply that the leaves of S. latifolius are more efficacious than roots extract. Candeias et al., 2009; and indol-alkaloids (Nworgu et al., 2010) for antimicrobial activity. Hence, the pure components would be used more safely and efficaciously.

Conclusion

To better evaluate the used species in traditional medicine, this study highlighted S. latifolius compounds and their efficacy on some microorganisms. The species extracts deal with tested microorganisms at dose non-depending on their sources and strains. Ethanol was the best solvent for the extraction of this species material in order to assess its pharmacological activities. The results support strongly the use of S. latifolius in folk medicine for infectious and parasitic diseases treatment and advocate preferring the leaves instead of its roots in such diseases combating.

For better accuracy of its use, further studies will focus on the fractioning of its brutes' extracts in order to isolate pure efficacious compounds and their suitable dosage. Clinical studies starting with those results can allow new specific drug manufacture to deal with foodborne diseases. Even, as saying, prevention is better than cure, prevention by avoidance of undercooked meat or seafood, unpasteurized milk or soft cheese, could also serve as a key to the control of foodborne diseases.

Table 5. Minimum Bactericidal Concentration of plants extracts.

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>LEE</th>
<th>LME</th>
<th>LHEE</th>
<th>LAE</th>
<th>REE</th>
<th>RME</th>
<th>RHEE</th>
<th>RAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>0</td>
<td>0</td>
<td>12.50</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. mirabilis</td>
<td>25</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M. luteus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>50</td>
<td>12.50</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>S. oralis</td>
<td>50</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E. faecalis</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. albicans</td>
<td>12.50</td>
<td>12.50</td>
<td>50</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E. coli</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. vulgaris</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. sciuri</td>
<td>0</td>
<td>0</td>
<td>12.50</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>S. xylosus</td>
<td>0</td>
<td>12.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>S. cohnii</td>
<td>12.50</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E. coli 0157</td>
<td>0</td>
<td>25</td>
<td>12.50</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Isolated meat strains</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. haemoliticus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>S. Paratypsy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. simulans</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. Typhy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Legend: LEE: Leaves ethanolic extract; LHEE: Leaves hydro-ethanolic extract; LME: Leaves methanolic extract; LAE: Leaves acetic extract; REE: Roots ethanolic extract; RHEE: Roots hydro-ethanolic extract; RME: Root methanolic extract; RAE: Roots acetic extract.
Table 6. Inhibitory and bactericidal effects of *S. latifolius* on tested microorganisms.

<table>
<thead>
<tr>
<th>Extract</th>
<th>Strain</th>
<th>CMB/CMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAE</td>
<td>C. albicans</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>P. mirabilis</td>
<td>-</td>
</tr>
<tr>
<td>LME</td>
<td>S. xylosus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>E. coli O157</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>C. albicans</td>
<td>2</td>
</tr>
<tr>
<td>LEE</td>
<td>P. mirabilis</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>S. cohnii</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>C. albicans</td>
<td>4</td>
</tr>
<tr>
<td>LHEE</td>
<td>P. mirabilis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>S. cohnii</td>
<td>2</td>
</tr>
<tr>
<td>RAE</td>
<td>S. xylosus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>E. coli O157</td>
<td>4</td>
</tr>
<tr>
<td>RHEE</td>
<td>M. luteus</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>S. sciuri</td>
<td>4</td>
</tr>
<tr>
<td>REE</td>
<td>S. aureus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>S. sciuri</td>
<td>4</td>
</tr>
<tr>
<td>RME</td>
<td>M. luteus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>S. sciuri</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend: LEE: Leaves ethanolic extract; LHEE: Leaves hydro-ethanolic extract; LME: Leaves methanolic extract; LAE: Leaves acetic extract; REE: Roots ethanolic extract; RHEE: Roots hydro-ethanolic extract; RME: Root methanolic extract; RAE: Roots acetic extract.

CONFLICT OF INTERESTS

The author has not declared any conflict of interests.

FUNDING STATEMENT

This work was supported by the « Fonds National de la Recherche Scientifique et de l’Innovation Technologique (FNRSIT) du Bénin » through the project « Biologie de la Conservation et Ethnopharmacologie des Lignes médicaux de la pharmacopée béninoise (BIOCEL) » (Grant No 05/MESRS/FNRSIT/SSE/SA).

ACKNOWLEDGEMENT

Authors acknowledge the Fonds National de la Recherche Scientifique et de l’Innovation Technologique (FNRSIT) du Bénin for its support.

REFERENCES

Analyses de la biologie de Nauclea latifolia et de son efficacité sur la santé.

1. Introduction

1.1. Contexte

La Nauclea latifolia, appartenant à la famille des Rubiaceae, est une plante médicinale africaine récoltée au Mali. Elle est utilisée par les thérapeutes traditionnels pour divers traitements, notamment en Afrique de l'Ouest. Cette étude vise à évaluer les propriétés antioxydantes et antidiabétiques de l'extrait aqueux de feuilles de cette plante.

1.2. Méthodes

Les analyses physico-chimiques et les tests de cellules ont été effectués pour caractériser les propriétés de la plante. Les résultats obtenus montrent des propriétés antioxydantes et antidiabétiques significatives.

1.3. Résultats

Les résultats obtenus ont montré que l'extrait aqueux de feuilles de Nauclea latifolia possède des propriétés antioxydantes et antidiabétiques. Ces propriétés pourraient être utiles dans le traitement des maladies chroniques comme le diabète et le vieillissement prématuré.

1.4. Conclusions

Cette étude souligne l'intérêt de la plante Nauclea latifolia pour sa richesse en antioxydants et ses propriétés antidiabétiques. Elle met également en évidence l'importance de recherches supplémentaires pour évaluer pleinement ses propriétés.

2. Mots-clés

Nauclea latifolia, antioxydants, antidiabétiques, extraction aqueuse, plante médicinale.

