ABOUT JMA

The Journal of Microbiology and Antimicrobials (JMA) (ISSN 2141-2308) is published monthly (one volume per year) by Academic Journals.

Journal of Microbiology and Antimicrobials (JMA), is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as Disorders of the immune system, vaccines and antimicrobial drugs, Microbial Metabolism, Protozoology etc.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JMA are peer-reviewed.

Contact Us

Editorial Office: jma@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://academicjournals.org/JMA
Submit manuscript online http://ms.academicjournals.me/
Editors

Ass. Prof. Aamer Ikram
Department of Microbiology,
Armed Forces Institute of Pathology,
Pakistan

Prof. Wang Jianhua
Gene Engineering Lab
Feed Research Institute,
Chinese Academy of Agricultural Sciences
China

Dr. Mohd. Shahid
Antimicrobial Agents & Drug Section
Department of Medical Microbiology
Jawaharlal Nehru Medical College & Hospital
Aligarh Muslim University
India

Dr. Anil Vyas
Microbial Biotechnology & Biofertilizer Lab.
Department of Botany
J.N.V. University
India

Dr. (Mrs.) Amita Jain
Dept. of Microbiology
King George Medical University,
India

Dr. Eduardo Mere
Department of Biochemistry
University Federal of Rio de Janerio,
Brazil

Dr. Shwikar Mahmoud Abdel Salam
Department of Microbiology
Faculty of Medicine
Alexandria University
Egypt.

Dr. Gideon Mutie Kikuvi
Institute of Tropical Medicine and Infectious Diseases
Jomo Kentatta University of Agriculture and Technology
Kenya.
Editorial Board Members

Dr. Manal El Said El Sayed
Bilharz Research Institute (TBRI)
Ministry of Scientific Research
Egypt.

Dr. Amber Farooqui
Sardinian Research and Development (SARD)
Porto Conte Research Institute
Alghero, Italy.

Dr. Chang-Gu Hyun
Laboratory of Bioresources
Jeju Biodiversity Research Institute (JBRI)
Jeju Hi-Tech Industry Development Institute (HiDI)
Korea.

Dr. Vasant P. Baradkar
Department of Microbiology
Government Medical College
Aurangabad, India.

Prof. Omar Abd El-Fattah Mohamed Fathalla
Medicinal Chemistry Department
National Research Centre
Dokki, Egypt.

Dr. Amber Farooqui
Dept. di Scienze Biomediche
Universita di Sassari
Italy.

Dr. Kosta V. Kostov
Military Medical Academy
Department of Pulmonology
Bulgaria.

Dr. Antonio Rivera
Benemérita Universidad Autónoma de Puebla
Puebla, Mexico.

Dr. Mohammad Rahbar
Department of Microbiology
Iranian Reference Health Laboratory
Iran.

Dr. Abd El-Latif Hesham
Genetics Department
Faculty of Agriculture
Assiut University
Egypt.

Dr. Samuel Sunday Taiwo
Department of Medical Microbiology and Parasitology
College of Health Sciences
Nigeria.

Dr. Anil Vyas
J.N.V. University
Jodhpur
India.

Dr. Najla Dar-Odeh
University of Jordan
Jordan.

Prof. Asiye Meric
Anadolu University
Faculty of Pharmacy
Department of Pharmacy and Chemistry
Turkey.

Prof. Salah M. Azwai
AlFateh University
Libya.

Prof. Abdel Salam Ahmed
Department of Microbiology
Faculty of Medicine
Alexandria University
Egypt.

Dr. Kuldeep Kumar Shivalya
Indian Veterinary Research Institute
Izatnagar, India.

Prof. Viroj Wiwanitkit
Hainan Medical University
China.

Dr. Hafizah Chenia
School of Biochemistry
University of KwaZulu-Natal
Durban, South Africa.

Dr. Gholamreza Salehi Jouzani
Microbial Biotechnology and Biosafety Department
Agricultural Biotechnology Research Institute of Iran (ABRII)
Iran.

Dr. Wilson Parawira
Institute of Food, Nutrition and Family Sciences
University of Zimbabwe
Zimbabwe.

Dr. Subhash C. Mandal
Division of Pharmacognosy
Department of Pharmaceutical Technology
Jadavpur University
India.
Dr. Adesemoye A. O.
Department of Plant Pathology
Centre for Integrated Plant Systems
Michigan State University
USA.

Dr. Giselli Fernandes Asensi
Universidade Federal do Rio de Janeiro
Brazil.

Dr. Babu Joseph
Acharya’s Bangalore School
India.

Dr. Aamer Ali Shah
Faculty of Biological Sciences
Quaid-i-Azam University
Islamabad,
Pakistan.

Dr. Tadele Tolosa
Jimma University
College of Agriculture and Veterinary Medicine
Ethiopia.

Dr. Urveshkumar D. Patel
Department of Pharmacology and Toxicology
Veterinary College
Anand Agricultural University
India.

Dr. Saeed Zaker Bostanabad
Islamic Azad University
Iran.

Dr. Rakesh Kumar Singh
Florida State University
College of Medicine
USA.

Assoc. Prof. Vintila Iuliana
Dunarea de Jos University
Romania.

Dr. Saganuwan Alhaji Saganuwan
University of Agriculture Makurdi
Dept. of Physiology, Pharmacology and Biochemistry
Makurdi,
Nigeria.

Dr. Eskild Petersen
Dept. of Infectious Diseases
Aarhus University Hospital
Norrebrogade,
Denmark.

Dr. Adenike Adedayo Ogunshe
University of Ibadan
Nigeria.

Dr. Praveen Rishi
Panjab University
India.

Prof. Zeinab Nabil Ahmed Said
Microbiology & Immunology Department
Faculty of Medicine
Al-Azhar University
Egypt.

Ass. Prof. Abdulaziz Zorgani
Medical School
Edinburgh University
Edinburgh,
UK.

Dr. Subramanian Kaviarasan
Dept of Molecular Medicine
University Malaya
Kuala Lumpur,
Malaysia.

Ass Prof. Nongyao Kasatpibal
Faculty of Nursing,
Chiang Mai University
Thailand.

Dr. Saganuwan Alhaji Saganuwan
University of Agriculture Makurdi
Dept. of Physiology, Pharmacology and Biochemistry
Makurdi,
Nigeria.

Dr. Praveen Rishi
Panjab University
India.

Prof. Zeinab Nabil Ahmed Said
Microbiology & Immunology Department
Faculty of Medicine
Al-Azhar University
Egypt.

Ass. Prof. Abdulaziz Zorgani
Medical School
Edinburgh University
Edinburgh,
UK.

Dr. Adenike Adedayo Ogunshe
University of Ibadan
Nigeria.

Dr. Rakesh Kumar Singh
Florida State University
College of Medicine
USA.

Assoc. Prof. Vintila Iuliana
Dunarea de Jos University
Romania.

Dr. Saganuwan Alhaji Saganuwan
University of Agriculture Makurdi
Dept. of Physiology, Pharmacology and Biochemistry
Makurdi,
Nigeria.

Dr. Eskild Petersen
Dept. of Infectious Diseases
Aarhus University Hospital
Norrebrogade,
Denmark.

Dr. Elpis Giantsou
Cambridge University Hospitals
UK.

Dr. Tadele Tolosa
Jimma University
College of Agriculture and Veterinary Medicine
Ethiopia.

Dr. Urveshkumar D. Patel
Department of Pharmacology and Toxicology
Veterinary College
Anand Agricultural University
India.

Dr. Saeed Zaker Bostanabad
Islamic Azad University
Iran.

Dr. Rakesh Kumar Singh
Florida State University
College of Medicine
USA.

Assoc. Prof. Vintila Iuliana
Dunarea de Jos University
Romania.

Dr. Saganuwan Alhaji Saganuwan
University of Agriculture Makurdi
Dept. of Physiology, Pharmacology and Biochemistry
Makurdi,
Nigeria.

Dr. Eskild Petersen
Dept. of Infectious Diseases
Aarhus University Hospital
Norrebrogade,
Denmark.

Dr. Elpis Giantsou
Cambridge University Hospitals
UK.

Ass Prof. Emana Getu Degaga
Addis Ababa University
Ethiopia.

Dr. Subramanian Kaviarasan
Dept of Molecular Medicine
University Malaya
Kuala Lumpur,
Malaysia.

Ass Prof. Nongyao Kasatpibal
Faculty of Nursing,
Chiang Mai University
Thailand.

Dr. Praveen Rishi
Panjab University
India.

Prof. Zeinab Nabil Ahmed Said
Microbiology & Immunology Department
Faculty of Medicine
Al-Azhar University
Egypt.

Ass. Prof. Abdulaziz Zorgani
Medical School
Edinburgh University
Edinburgh,
UK.

Dr. Adenike Adedayo Ogunshe
University of Ibadan
Nigeria.

Dr. Rakesh Kumar Singh
Florida State University
College of Medicine
USA.

Assoc. Prof. Vintila Iuliana
Dunarea de Jos University
Romania.

Dr. Saganuwan Alhaji Saganuwan
University of Agriculture Makurdi
Dept. of Physiology, Pharmacology and Biochemistry
Makurdi,
Nigeria.

Dr. Eskild Petersen
Dept. of Infectious Diseases
Aarhus University Hospital
Norrebrogade,
Denmark.

Dr. Elpis Giantsou
Cambridge University Hospitals
UK.
Prof. Yulong Yin
Institute of Subtropical Agriculture
The Chinese Academy of Science
China.

Prof. Mohan Karuppayil
School of Life Sciences
Swami Ramanand Teerth Marathwada (SRTM) University
Maharashtra,
India.

Dr. Sunil Gupta
National Centre for Disease Control
India.

Dr. Elpis Giantsou
Cambridge University Hospitals
England.

Dr. Mustafa Gul
Kahramanmaras Sutcuimam University
Faculty of Medicine
Department of Microbiology and Clinical Microbiology
Turkey.

Dr. Nese Karaaslan Biyikli
Anadolu Medical Center
Turkey.

Dr. Zafar Iqbal
Dept Plant Pathology
University College of Agriculture
Andras Fodor
Pakistan.

Ass Prof. Habil András Fodor
Department of Plant Protection
Georgikon Faculty
Pannonia University
Hungary.

Dr. Neelam Mewari
Department of Botany
University of Rajasthan
Rajasthan,
India.

Dr. Elpis Giantsou
Cambridge University Hospitals
UK.

Dr. Sanjib Bhattacharya
Bengal School of Technology
India.

Dr. Habibur Rahman
PSG Colege of Pharmacy
India.

Md. Elisa Bassi
Department of Dermatology
Delmati Hospital
Italy.

Iheanyi Omezuruike Okonko
University of Ibadan
Nigeria.

Ass. Prof. Weihua Chu
Dept. of Microbiology
School of Life Science & Technology
China Pharmaceutical University
China.

Dr. Mat Yamage
World Organization for Animal Health (OIE)
Japan.

Dr. Ali Abbas Qazilbash
United Nations Industrial Development Organization
Pakistan.

Dr. Kulachart Jangpatarapongsa
Department of Clinical Microbiology
Mahidol University
Thailand.

Dr. Nasrin Ghasemi
Research and Clinical Centre for Infertility
Yazd Shahid Sadoughi University of Medical Sciences
Yazd,
Iran.

Dr. Johnson Afonne
Department of Pharmacology
College of Health Sciences
Nnamdi Azikiwe University
Nigeria.

Dr. Branka Vasiljevic
Institute of Molecular Genetics and Genetic Engineering
Serbia.

Dr. Mehmet Ulug
BSK Anadolu Hospital
Infectious Diseases and Clinic Microbiology
Turkey.

Dr Ömür Baysal
Turkish Ministry of Agriculture and Rural Affairs
West Meditereanean Agricultural Research Institute (BATEM)
Plant Pathology and Molecular Biology Departments
Antalya,
Turkey.

Dr. Pooja Jain
University of California
Department of Pathology
Medical Sciences
Irvine, CA
USA.

Dr. Chellaiah Edward Raja
Cancer Biology Unit
School of Biological Sciences
M.K. University
India.
Prof. Zeinab Nabil Ahmed Said
Faculty of Medicine (for girls)
Al-Azhar University
Egypt.

Prof. Manal Mohammad Baddour
Alexandria University
Faculty of Medicine
Microbiology and Immunology Dept.
Azarita,
Egypt.

Dr. Bechan Sharma
Department of Biochemistry
Centre for Biotechnology
University of Allahabad
Allahabad,
India.

Ass. Prof. Ravichandran Veerasamy
Faculty of Pharmacy
AIMST University
Malaysia.

Dr. Mohammad Ibrahim
Programa de Pós-Graduação em Bioquímica Toxicológica
Centro de Ciências Naturais e Exatas
Universidade Federal de Santa Maria
Brazil.

Dr. Sudheer Bobba
Department of Drug Metabolism and Pharmacokinetics
Covance Laboratories
USA.

Dr. Kannan Alpadi
Department of Molecular Biology and Biochemistry
Baylor College of Medicine
USA.

Dr. Shaohua Chen
Department of Plant Pathology
South China Agricultural University
Guangzhou,
China.

Dr. Prasun Kumar
Department of Microbial Biotechnology and Genomics
CSIR-Institute of Genomics and Integrative Biology
India.
Table of Content

Plasmid curing of antibiotic resistant Escherichia coli isolates from urine and stool samples
Oriomah Churchill and Akpe Azuka Romanus
Full Length Research Paper

Plasmid curing of antibiotic resistant *Escherichia coli* isolates from urine and stool samples

Oriomah Churchill* and Akpe Azuka Romanus

Department of Biology, School of Basic Studies, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria.

Received 4 October, 2018; Accepted 21 June, 2019.

The origin of bacteria resistance to antibiotics can either be chromosomal or extra-chromosomal (plasmid mediated) and one way of determining the origin of bacterial drug resistance is by plasmid elimination. In this study, the antibiotic susceptibility of seven *Escherichia coli* isolates (numbered 1-7) from urine and stool samples, were assessed using the disk diffusion method. The 10 antibiotics used were: nitrofurantoin (100 µg), ciprofloxacin (5 µg), tetracycline (50 µg), norfloxacin (10 µg), amoxycillin (20 µg), ofloxacin (5 µg), chloramphenicol (10 µg), cefuroxime (30 µg), ampicillin (10 µg) and gentamicin (10 µg). All isolates (100%) were observed to have shown resistance to ampicillin. Isolate No 6 was resistant to 70% of the antibiotics while isolate No 7 was observed to be resistant to 30% of the antibiotics. In order to determine if the resistance is plasmid mediated or chromosomal-borne, two of the isolates (29%) that showed resistance to more than one antibiotic were subjected to acridine orange mediated plasmid elimination. Isolate No 6 lost its resistance to 5 out of the 7 antibiotics (71%) while isolate number 7 lost its resistance to 2 out of the 3 antibiotics (67%) after the curing. Loss of resistance after the plasmid curing was an indication that the resistance was plasmid-mediated while the resistance mechanism for those that retained their resistance after plasmid curing was chromosomal-borne. It was suggested that further studies be done for the characterization of resistance plasmids on *E. coli* and policies be set that will minimize the indiscriminate use of antibiotics.

Key words: Antibiotics, chromosomal, *Escherichia coli*, plasmid, resistance, sensitivity, susceptibility.

INTRODUCTION

Escherichia coli is a rod-shaped, Gram-negative facultative aerobic, coliform bacterium of the genus *Escherichia* which is classified as member of Enterobacteriaceae within the Gamma Proteobacteria class, found in the lower intestine of warm blooded organisms (Tenaillon et al., 2010). Despite most strains being commensal inhabitants of the intestine, there are also some extraintestinal pathogenic *E. coli* (ExPEC) bacteria which have the ability to cause diverse and serious diseases, such as urinary tract infections (UTIs) and bacteremia (Wiles et al., 2008; Ron, 2010; Kanayama et al., 2015). Treatment of these infections with the use of antibiotics has become a global concern due to the emergence of resistant *E. coli* strains which is

Corresponding author. E-mail: oriomahchurchill@gmail.com, Tel: +2348138298636.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
rapidly on the increase (Peralta et al., 2007; Ngwai et al., 2010; Wang et al., 2017).

Currently, two general mechanisms of resistance can be found in E. coli; those associated with mutations in the chromosome and those related to plasmids. Mutation in the chromosome may alter the target site and reduce the intracellular accumulation of the antibiotics. It can also lead to the production of enzymes that degrade antibacterial drugs (Miller et al., 2014). The plasmids (R plasmids) have been reported to be the most frequent causes of antibiotic resistance in most bacteria including the E. coli which have exhibited resistance to beta lactam antibiotics, aminoglycosides and fluoroquinolone (Carattoli, 2013; Miller et al., 2014; Zhang et al., 2014). The plasmids which are extra-chromosomal materials also allow the movement of genetic materials, including antimicrobial resistant genes between bacterial species and genera through gene exchange processes thereby causing a rapid increase in antibiotic resistance (Carattoli, 2013).

Since antibiotic resistance in bacteria can either be chromosomal or plasmid mediated, subjecting the bacterial cells to processes that lead to plasmid elimination is one way of determining the general mechanisms of bacterial drug resistance. Thus, this is a preliminary study that was designed to determine if the antibiotic resistance in the E. coli isolates was plasmid mediated or chromosomal-borne by treatment of the resistant isolates with acridine orange and carrying out susceptibility tests on the antibiotics tested.

MATERIALS AND METHODS

Sample collection

Seven clinical isolates of E. coli from urine and stool samples were collected from the diagnostic laboratory centre of the Department of Medical Laboratory Sciences, Ambrose Alli University, Ekpoma and coded as isolate no. 1-7. Isolates were inoculated on nutrient agar plate and incubated at 37°C for 24 h before they were confirmed using Gram’s reaction, indole, motility, methyl red, nitratase and oxidase tests.

Antibiotic sensitivity assay of bacterial isolates

Isolates were subjected to antibiotic screening by disk diffusion method as described by the Clinical and Laboratory Standards Institute (CLSI) (2017). Inocula were prepared by diluting overnight cultures in sterile NaCl (0.9%) suspension and then marched with McFarland turbidity index. Then, 0.1 mL of the bacterial suspension was then plated on to Mueller Hinton Agar and the commercially available antibiotic disks were placed on the lawn of the culture and the plates incubated overnight at 37°C. The ten antibiotics used were nitrofurantoin (100 µg), ciprofloxacin (5 µg), tetracycline (50 µg), norfloxacin (10 µg), amoxycillin (20 µg), ofloxacin (5 µg), chloramphenicol (10 µg), cefuroxime (30 µg), ampicillin (10 µg) and gentamicin (10 µg). The sensitivity, intermediate and resistance were determined by the diameter of the zone of complete growth inhibition around each disk according to the CLSI (2017) reference standards.

Plasmid curing analysis

Two of the isolates (29%); isolate no. 6 and 7 showing resistance to more than one antibiotic were subjected for the plasmid curing experiment in order to determine if the resistance is plasmid-borne or chromosomal. The curing of the resistant E. coli was done using sub-inhibitory concentration of 0.1 mg/mL of acridine orange as described by Rasool et al. (2003) and Yah et al. (2007) with slight modification. Isolates were grown for 24 h at 37°C in Mueller-Hinton broth containing 0.1 mg/mL acridine orange. The broth was agitated to homogenize the content and loopful of the broth were inoculated on Mueller-Hinton Agar plate and antibiotic sensitivity testing was carried out as previously described. Presence or increase of zone of inhibition on the Mueller Hinton agar around the antibiotics where zone of inhibition were not initially observed or on antibiotics with lower zone of inhibition respectively when compared to the CLSI (2017) reference standard was an indication of a plasmid mediated resistance which has been cured, while the absence of zone of inhibition on Mueller Hinton agar was an indication of chromosomal resistance or plasmid not cured.

RESULTS

Antibiotic sensitivity assay of bacterial isolates

The results obtained from the antibiotics sensitivity of the E. coli isolates indicated that all isolates (100%) were resistant to ampicillin. However, all the isolates (100%) were susceptible to ciprofloxacin and gentamcin. Resistance to nitrofurantoin, tetracycline, norfloxacin, amoxycillin, ofloxacin, chloramphenicol and ampicillin (70% of the antibiotics) was observed for isolate no. 6 while isolate no. 7 was observed to be resistant to nitrofurantoin, tetracycline and ampicillin (30% of the antibiotics) as presented in Table 1.

Plasmid curing analysis and antibiotic sensitivity assay of bacterial isolates after curing

The two isolates (29%); isolate no. 6 and 7 with resistance to more than one antibiotic were subjected to plasmid curing. Isolate no. 6 lost its resistance to 5 (nitrofurantoin, norfloxacin, amoxycillin, ofloxacin and chloramphenicol) out of the 7 antibiotic (71%) as resistance to tetracycline and ampicillin (29%) was observed while isolate no. 7 lost its resistance to 2 (nitrofurantoin and ampicillin) out of the 3 antibiotics (67%) as resistance to tetracycline (33%) was observe after the curing. Although isolate no. 6 was still resistant to ampicillin, an increase in the diameter of zone of inhibition was observed as against what was recorded before curing as indicated in Table 2.

DISCUSSION

The indiscriminate use of antibiotics has increased the occurrence of antibiotic resistance in bacteria which has caused formidable global health challenges to man and
animals (Tzouvelekis et al., 2014). Previous studies have also shown the elevated trend in antibiotic resistance in *E. coli* (Johnson et al., 2007; Arathy et al., 2011; Nsofor et al., 2013; Yassin et al., 2017). The results obtained from the sensitivity test on the *E. coli* illustrated that all isolates were resistant to ampicillin. High level of ampicillin resistance by *E. coli* isolates had been reported (Nahid et al., 2010; Ngwai et al., 2010; Sheng et al., 2013). However, the multi-drug resistance that was observed in isolates no. 6 and 7 to nitrofurantoin, tetracycline, norfloxacin, amoxycillin, ofloxacin, chloramphenicol and ampicillin were nitrofurantoin, tetracycline and ampicillin respectively could be as a result of one or more drug resistance mechanisms that are being mediated by the bacterial plasmid or chromosome (Carattoli, 2013; Miller et al., 2014; Zhang et al., 2014). The plasmid curing assay on the two *E. coli* isolates revealed that 71 and 67% of the antibiotic resistance observed in isolate no. 6 and 7 respectively were plasmid-mediated, which is line with previous studies (Zaman et al., 2010; Vinay et al., 2013; Ojo et al., 2014). However, the 29 and 33% resistance for isolate no. 6 and 7 respectively that was still retained after the curing indicated chromosomal-borne resistant gene (Nguyen et al., 2014). Although resistance to ampicillin was still retained by isolate no. 6, zone of inhibition of diameter 13 mm was observed as against none that was observed before the curing which may be an indication that the ampicillin resistant was being mediated by both the plasmid and the bacterial chromosome (Jesús et al., 2014).

Conclusion

This is a preliminary study showing the susceptibility and resistance of *E. coli* to the various tested antibiotics, where resistance to the most used antibiotic like ampicillin, nitrofurantoin, amoxycillin and tetracycline were observed. There was an indication from the curing experiment that most of the resistance shown to the antibiotics was plasmid-mediated, and this can easily be transferred from one strain to another or from one organism to another within the same environment. This study intends to carry out molecular study on the plasmid-borne and chromosomal-borne gene associated with antibiotic resistance using wide range of sample numbers. However, since overuse and misuse of antibiotics aid the development of resistance to antibiotics and most antibiotic resistance are plasmid

Table 1. Results of the antibiotics susceptibility test of the *Escherichia coli* isolates before curing.

<table>
<thead>
<tr>
<th>Isolate no.</th>
<th>Source of isolate</th>
<th>Sex of patient</th>
<th>Age of patient (years)</th>
<th>Resistant pattern</th>
<th>Diameter of inhibition zone (mm) in the nearest whole number.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antibiotics concentration present in the disc (µg).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N (100) CIP (5) TE (50) NB (10) AX (20) OF (5) C (10) CF (30) AM (10) GN (10)</td>
</tr>
<tr>
<td>1.</td>
<td>Stool</td>
<td>Male</td>
<td>3</td>
<td>AM</td>
<td>19 32 16 24 20 24 24 32 10 20</td>
</tr>
<tr>
<td>2.</td>
<td>Stool</td>
<td>Male</td>
<td>4</td>
<td>AM</td>
<td>18 35 17 20 24 22 18 35 10 20</td>
</tr>
<tr>
<td>3.</td>
<td>Stool</td>
<td>Female</td>
<td>9</td>
<td>AM</td>
<td>18 34 14 17 25 23 21 32 9 23</td>
</tr>
<tr>
<td>4.</td>
<td>Stool</td>
<td>Male</td>
<td>4</td>
<td>AM</td>
<td>18 32 17 24 25 24 21 33 10 19</td>
</tr>
<tr>
<td>5.</td>
<td>Stool</td>
<td>Female</td>
<td>13</td>
<td>AM</td>
<td>17 33 13 16 23 24 22 31 10 20</td>
</tr>
<tr>
<td>6.</td>
<td>Urine</td>
<td>Female</td>
<td>18</td>
<td>N, TE, NB, AX, OF, C, AM</td>
<td>0 30 0 10 0 10 12 32 0 18</td>
</tr>
<tr>
<td>7.</td>
<td>Stool</td>
<td>Female</td>
<td>5</td>
<td>N, TE, AM</td>
<td>0 35 9 22 17 23 20 31 10 20</td>
</tr>
</tbody>
</table>

N=nitrofurantoin, CIP=ciprofloxacin, TE=tetracycline, NB= norfloxacin, AX= amoxycillin, OF=ofloxacin, C=chloramphenicol, CF=cefuroxime, AM=ampicillin GN=gentamicin.

Table 2. Results of the antibiotics susceptibility test of the multi-drug resistant *Escherichia coli* isolates after curing.

<table>
<thead>
<tr>
<th>Isolate no.</th>
<th>Resistant pattern</th>
<th>Diameter of inhibition zone (mm) in the nearest whole number.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Antibiotics concentration present in the disc (µg).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N (100) CIP (5) TE (50) NB (10) AX (20) OF (5) C (10) CF (30) AM (10) GN (10)</td>
</tr>
<tr>
<td>6.</td>
<td>N, TE, NB, AX, OF, C, AM</td>
<td>TE, AM 18 33 0 21 13 26 16 31 13 18</td>
</tr>
<tr>
<td>7.</td>
<td>N, TE, AM</td>
<td>TE 17 33 10 22 16 25 26 33 19 20</td>
</tr>
</tbody>
</table>

N=nitrofurantoin, CIP=ciprofloxacin, TE=tetracycline, NB= norfloxacin, AX= amoxycillin, OF=ofloxacin, C=chloramphenicol, CF=cefuroxime, AM=ampicillin GN=gentamicin.
mediated which are capable of easily being transferred to non resistant microbial species, it is advisable to set up policies that will minimize the indiscriminate use of antibiotic especially the ones with lesser reports of the emergence of resistance.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENT

The authors’ appreciation goes to the Department of Medical Laboratory Sciences, Ambrose Alli University, Ekpoma for giving out the isolates that were used in this study.

REFERENCES

