About AJPP

The African Journal of Pharmacy and Pharmacology (AJPP) provides African and International researchers a platform to highlight studies on drug delivery systems and composition, medication dispensation and management, natural and synthetic drug use and distribution. Other subjects covered include pharmacology, clinical pharmacy and medication counseling. The journal also emphasizes novel developments in drug design and its applications in allied fields.

Indexing
The African Journal of Pharmacy and Pharmacology is indexed in:

- African Index Medicus
- CAB Abstracts
- CABI’s Global Health Database
- Chemical Abstracts (CAS Source Index)
- China National Knowledge Infrastructure (CNKI)
- Dimensions Database
- Google Scholar
- Matrix of Information for The Analysis of Journals (MIAR)
- ResearchGate

Open Access Policy
Open Access is a publication model that enables the dissemination of research articles to the global community without restriction through the internet. All articles published under open access can be accessed by anyone with internet connection.

The African Journal of Pharmacy and Pharmacology is an Open Access journal. Abstracts and full texts of all articles published in this journal are freely accessible to everyone immediately after publication without any form of restriction.

Article License
All articles published by African Journal of Pharmacy and Pharmacology are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited. Citation should include the article DOI. The article license is displayed on the abstract page the following statement:

This article is published under the terms of the Creative Commons Attribution License 4.0 Please refer to https://creativecommons.org/licenses/by/4.0/legalcode for details about Creative Commons Attribution License 4.0
Article Copyright

When an article is published by in the African Journal of Pharmacy and Pharmacology, the author(s) of the article retain the copyright of article. Author(s) may republish the article as part of a book or other materials. When reusing a published article, author(s) should;

Cite the original source of the publication when reusing the article. i.e. cite that the article was originally published in the African Journal of Pharmacy and Pharmacology. Include the article DOI
Accept that the article remains published by the African Journal of Pharmacy and Pharmacology (except in occasion of a retraction of the article)
The article is licensed under the Creative Commons Attribution 4.0 International License.

A copyright statement is stated in the abstract page of each article. The following statement is an example of a copyright statement on an abstract page. Copyright ©2016 Author(s) retains the copyright of this article.

Self-Archiving Policy

The African Journal of Pharmacy and Pharmacology is a RoMEO green journal. This permits authors to archive any version of their article they find most suitable, including the published version on their institutional repository and any other suitable website.

Please see http://www.sherpa.ac.uk/romeo/search.php?id=213&flDnum=|&mode=simple&la=en

Digital Archiving Policy

The African Journal of Pharmacy and Pharmacology is committed to the long-term preservation of its content. All articles published by the journal are preserved by Portico. In addition, the journal encourages authors to archive the published version of their articles on their institutional repositories and as well as other appropriate websites.

https://www.portico.org/publishers/ajournals/

Metadata Harvesting

The African Journal of Pharmacy and Pharmacology encourages metadata harvesting of all its content. The journal fully supports and implement the OAI version 2.0, which comes in a standard XML format. See Harvesting Parameter
Memberships and Standards

OPEN ACCESS

Academic Journals strongly supports the Open Access initiative. Abstracts and full texts of all articles published by Academic Journals are freely accessible to everyone immediately after publication.

creative commons

All articles published by Academic Journals are licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.

Crossref

Crossref is an association of scholarly publishers that developed Digital Object Identification (DOI) system for the unique identification published materials. Academic Journals is a member of Crossref and uses the DOI system. All articles published by Academic Journals are issued DOI.

Similarity Check powered by iThenticate is an initiative started by CrossRef to help its members actively engage in efforts to prevent scholarly and professional plagiarism. Academic Journals is a member of Similarity Check.

CrossRef Cited-by Linking (formerly Forward Linking) is a service that allows you to discover how your publications are being cited and to incorporate that information into your online publication platform. Academic Journals is a member of CrossRef Cited-by.

<idpf>

Academic Journals is a member of the International Digital Publishing Forum (IDPF). The IDPF is the global trade and standards organization dedicated to the development and
promotion of electronic publishing and content consumption.

COUNTER (Counting Online Usage of Networked Electronic Resources) is an international initiative serving librarians, publishers and intermediaries by setting standards that facilitate the recording and reporting of online usage statistics in a consistent, credible and compatible way. Academic Journals is a member of **COUNTER**

Portico is a digital preservation service provided by ITHAKA, a not-for-profit organization with a mission to help the academic community use digital technologies to preserve the scholarly record and to advance research and teaching in sustainable ways.

Academic Journals is committed to the long-term preservation of its content and uses **Portico**

Academic Journals provides an OAI-PMH (Open Archives Initiatives Protocol for Metadata Harvesting) interface for metadata harvesting.
Contact

Editorial Office: ajpp@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/AJPP
Submit manuscript online http://ms.academicjournals.org

Academic Journals
73023 Victoria Island, Lagos, Nigeria
ICEA Building, 17th Floor, Kenyatta Avenue, Nairobi, Kenya
Editors

Prof. Zhe-Sheng Chen
College of Pharmacy and Health Sciences
St. John's University
New York,
USA.

Prof. Mahmoud Mohamed El-Mas
Department Pharmacology and Toxicology
Faculty of Pharmacy
Alexandria University
Egypt

Prof. Mohammed Abdur Rashid
Department of Pharmaceutical Chemistry
Faculty of Pharmacy
University of Dhaka
Dhaka. BANGLADESH.

Dr. Fulya Ustun Alkan
Department of Pharmacology and Toxicology,
Faculty of Veterinary Medicine, Istanbul
University,
Turkey.

Dr. Amel Hashim
Department of Biochemistry and Molecular Biology
Faculty of Pharmacy
Helwan University Egypt.

Dr. Kavitha Balaji
Investigational Cancer Therapeutics,
Anderson Cancer Center
USA.

Dr. Huma Ikram
Department of Biochemistry,
Neurochemistry and Biochemical Neuropharmacology Research Unit,
University of Karachi
Karachi, Pakistan

Dr. Prakash Srinivasan Timiri Shanmugam
Department of Biochemistry and Molecular Biology
Louisiana State University Health Sciences Center
New Orleans, USA.

Dr. Yao Dai
Division of Cardiology
Department of Internal Medicine
School of Internal Medicine,
University of Arkansas for Medical Sciences
USA.

Dr. Hazem Shaheen
Department of Pharmacology
Faculty of Veterinary Medicine
Damanhour University
Egypt.
Editors

Dr. Doaa Ibrahim
Clinical Pharmacy and Pharmacy Practice,
University of Science and Technology
Yemen-Sana’a.

Editorial Board Members

Abiy Habtewold Eyakem
School of Pharmacy, Union University
(Jackson, Tennessee, USA) and School of
Medicine, Addis Ababa University (Addis Ababa,
Ethiopia)

Dr. Ravi Shankar Shukla
Preformulation and Exploratory Research R&D
Amneal Pharmaceuticals
USA.

Prof. Kittisak Sawanyawisuth
Department of Medicine
Faculty of Medicine
Khon Kaen University
Khon Kaen
Thailand.

Dr. Ying-Yong Zhao
Department of Traditional Chinese Medicine
The College of Life Sciences
Northwest University
Xi’an
China.

Dr. Subhalakshmi Ghosh
Department of Pharmaceutical Technology
Jadavpur University
Kolkata
India.

Dr. Maria Ondina Paganelli
Department of Pharmaceutical Sciences,
Faculty of Pharmaceutical Sciences of
Ribeirão Preto University of São Paulo
(USP),
Brazil.

Dr. Riyanto Teguh Widodo,
Pharmaceutical Sciences, Pharmacy,
Institution University of Malaya,
Malaysia.
Table of Content

Antioxidant and cicatrizing activity of the species Abarema cochliacarpos (Gomes) Barneby & J. W. Grimes

Acute toxicity evaluation of ethanolic extract of the air parts of Sida rhombifolia L., in wistar rats
Luciana da Silva Nunes Ramalho, Gabriela Tafaela Dias, Edla Julinda Ribeiro Coutinho Espinola Guedes, Micaelly da Silva Oliveira1, Andressa Brito Lira, Kardilândia Mendes de Oliveira, Otemberg Souza Chaves, Josué do Amaral Ramalho, Alexandre Rolim da Paz, Janine Agra Padilha, Hilzeth de Luna Freire Pessoa, Maria de Fátima Vanderlei de Souza, Caliandra Maria Bezerra Luna Lima and Margareth de Fátima Formiga Melo Diniz 181
Antioxidant and cicatrizing activity of the species Abarema cochliacarpos (Gomes) Barneby & J. W. Grimes

Saskya Araújo Fonseca¹,²*, J. R. M. Costa¹, N. R. S. Gomes⁴, Amanda Lima Cunha³, João Gomes da Costa¹, Thiago José Matos-Rocha¹,⁴, Karwhory Wallas Lins da Silva³, Paulo Henrique Barcellos França², Francisco Feliciano da Silva Júnior¹, Antônio Euzébio Goulart Sant’Ana² and Aldenir Feitosa dos Santos¹,³

¹Centro Universitário Cesmac-CESMAC, Rua Cônego Machado, CEP: 57051-160, Maceió, AL, Brazil.
²Universidade Federal de Alagoas-UFAL, Av. Lourival Melo Mota, S/N - Tabuleiro do Martins, 57072-900, Maceió, AL, Brazil.
³Universidade Estadual de Alagoas-UNEAL, Rua Governador Luiz Cavalcante, S/N - Alto Cruzeiro, CEP: 57300-005, Arapiraca, AL, Brazil.
⁴Universidade Estadual de Ciências da Saúde de Alagoas-UNCISAL, Av. Comendador Leão, 57025-000, Maceió, AL, Brazil.

Received 2 January, 2019: Accepted 4 July, 2019

In equine clinics, skin injuries are some of the most frequently treated injuries, this research evaluated the healing potential and antioxidant activity of *Abarema cochliacarpos* in order to develop a pharmaceutical formulation for treating skin lesions in horses. Firstly, the antioxidant activity of several fractions was evaluated using the 2,2-diphenyl-1-picrylhydrazyl radical method and the thiobarbituric acid test. The determination of phenolic compounds was done by means of the Folin-Ciocalteau test. To assess the wound healing activity the dry powdered stem bark and the aqueous, ethanolic and propylene glycol extracts from the same plant, material were incorporated in a gel formulation and evaluated in equines with induced wounds. Results show that all obtained extracts and their fractions have antioxidant action. Regarding the healing evaluation in equines, the extracts tested and the dry powdered stem bark showed statistically significant activity in the contraction of wounds. Histological analysis revealed the powdered stem bark as the best treatment to induce healing of cutaneous lesions in horses. Experimental studies in animals with different dosages and formulations, besides the isolation of its chemical components, as a tool in the discovery of new healing agents or optimization of the existing ones is recommended.

Key words: *Abarema cochliacarpos*, antioxidant activity, wound healing activity.

INTRODUCTION

Abarema cochliacarpos (Fabaceae) is a native tree from Brazil (popularly called in this country by “barbatimão”) found mainly in the Atlantic forest and Caatinga. Many traditional communities in northeast Brazil use its bark in folk medicine (Agra et al., 2008; Pereia et al., 2013). An ethnopharmacological survey in a Brazilian traditional
community has documented popular uses of this species to treat inflammatory disorders, including ulcerations, and for wound healing purposes (Tenório et al., 2016).

The stem bark used in the preparation of herbal medicines, comprise chemical compounds that include alkaloids, flavonoids, terpenes, stilbenes, steroids, protease inhibitors, and tannins. The latter class of secondary metabolites comprises the majority of components of A. cochliacarpos and have been regarded as the main responsible compounds for its antioxidant activity, as they can scavenge free radicals (Shimizu et al., 2009).

Plant extracts thus represent an important alternative to traditional medicine for the treatment of wounds, because they can act on the surface of the lesion, and through anti-inflammatory activity, create a microenvironment that facilitates fibroplasia. The lesions may heal faster because the wound is decontaminated by the extract's antimicrobial effects, or through changes of pH in the wound, which create an unfavorable environment for the growth of microorganisms.

In equine clinics, skin injuries are some of the most frequently treated injuries, affecting mainly the locomotor limbs. They occur due to the animals' active behavior and rapid reactions, especially in horses involved in sporting activities (Paganela et al., 2009). Horses have sudden reactions that can lead to limb trauma. In addition, inadequate facilities and grazing are also crucial factors for the occurrence of these lesions. Incorrect treatments and the tendency to chronicity of the lesions also hamper the cicatricial process (Viana et al., 2014). Given the interest in development of herbal medicines for the treatment of wounds, and the high incidence of equine skin lesions, the research aims to assess the phytochemical profile, antioxidant activity, and effects of powdered stem bark, natrosol gel formulation obtained from aqueous, ethanolic and propylene glycol extracts of the stem barks of A. cochliacarpos, on healing of skin wounds in horses.

MATERIALS AND METHODS

Study type and setting

The experiment involved both in vitro and in vivo laboratory evaluation. The research was conducted in the multidisciplinary research laboratory of the Centro Universitário Cesmac, located in Maceió, Alagoas; Brazil, and in the Clinical Veterinary School of the same institution, which is located in the city of Marechal Deodoro, Alagoas, Brazil.

Ethical aspects

This study was approved by the Ethics Committee for the use of animals (CEUA) of the Federal University of Alagoas with opinion substantiated n° 43/2012.

Collection and identification of botanical material

The specimen was collected in the municipality of Marechal Deodoro, Alagoas, Brazil. Three samples were collected for botanical identification the specimen was identified at the local of collection by a botanist and samples from stem and leaves were stored in the Herbarium of the Environment Institute, in Alagoas, under MAC registration number: 25.370. The stem bark was dried in the shade at room temperature and powdered afterwards by means of a mill that was used in the preparation of the extract. The stem bark powder was then stored in a tightly sealed dark container. Aliquots of this material were used for incorporation into the gel of natrosol, production of extracts, and phytochemical screening.

Preparation of extracts

Aqueous extract

Extracts from the bark of the stems of A. cochliacarpos were obtained by decoction over 30 min, in a proportion of 100 g of dry powdered bark for each 1000 ml of distilled water. The aqueous extract was then stored at room temperature until it was incorporated into the natrosol gel via the method of Verza (2006).

Propylene glycol extract

To obtain this extract, the powdered material was macerated with an 80% mixture of propylene glycol in distilled water for 24 h. After this period, the extract was filtered in a filter paper (Whatman No 1). The propylene glycol extract was further stored at room temperature until its incorporation into the natrosol gel via the method of Verza (2006).

Ethanolic extract

The ethanolic extract from the barks of the stem of A. cochliacarpos was prepared by a steeping method, in which the plant material was first crushed, then placed in a percolator tube containing absolute ethanol for 72 hours. After this period, the extract was filtered in (Whatman No 1 filter paper). This procedure was repeated until the plant material was exhausted. A portion of the liquid sample was then concentrated in a rotary evaporator under reduced pressure until a crude ethanolic extract (BSE) was obtained (Weber, 2013). The other part of the liquid sample was stored at room temperature until it was incorporated in the natrosol gel.

Preparation of natrosol gel and obtaining gel from A. cochliacarpos

The natrosol gel was prepared according to previously described methodology (Wettasinghe and Shahidi, 1999). After the

*Corresponding author. E-mail: saskya_mcz@hotmail.com.
Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
preparation of the natrosol gel, each extract was incorporated into the natrosol gel in a 10% v/w concentration for a seven-day stability test.

Chemical study of the ethanolic extract

The Crude Ethanolic Extract (CEE) of the A. cochliacarpos stem bark was fractioned through a liquid-liquid partition method. The extract was dissolved in mixture of methanol and water at a ratio of 6:4, respectively. From the methanol/water phase, the process of partition was initiated using the solvents hexane, chloroform and ethyl acetate, resulting in Hexane Fraction (HF), Chloroform Fraction (CF) and Ethyl Acetate Fraction (EAF), respectively. The fractions were then subjected to HPLC-DAD (High Performance Liquid Chromatography-Diode Array Detector), TLC (thin layer chromatography), phytochemical prospecting, evaluation of antioxidant activity, and determination of phenolic compounds.

Phytochemical screening

Phytochemical screening was performed for searching the following metabolites: pyrogallic tannins, phlebotonic tannins, phenols, anthocyanins, anthocyanidins, flavonoids, xanthones, flavonones chalcones, aurones, flavononols, leucoanthocyanidins, catechin, flavonones, flavanones, xanthones, steroids, triterpenoids, and saponins (Matos, 1997).

Analysis of antioxidant activity by radical 2,2-diphenyl-1-picrilidrazila

In the analysis of antioxidant activity by radical 2,2-diphenyl-1-picrilidrazila (DPPH), vegetable samples, HF, CF and AEF were dissolved in 95% ethanol, applied in chromatoplates (Gel silicic F254, disabled) and eluted in solvent system containing ethyl acetate/formic acid (8:2). After elution, chromatoplates were immersed in ethanolic solution of DPPH 0.3 μg/mL for 10 seconds. The appearance of yellow spots underneath the purple coloration is indicative of antioxidant activity.

Absorbance values were converted to antioxidant activity percentages (AAO%) using the formula: AAO% = 100 - ([ABSA - ABSB] X 100)/ABSC, where ABSA represents the absorbance of the sample, ABSB is the absorbance of the blank, and ABSC is the absorbance of the control sample. Quantitative assessment of antioxidant activity was done by monitoring the free radical DPPH consumption and by measuring the decrease in absorbance of solutions at different concentrations (Eurides et al., 2007). Samples from BSE, HF, CF and AEF were diluted in triplicate in ethanol with final concentrations of 250, 125, 50, 10 and 5 μg/mL. Reactions were carried out at room temperature for 30 minutes. Readings of the absorbances were subsequently made at 518 nm.

Evaluation of antioxidant activity by the Thiobarbituric acid method

For evaluation of the antioxidant activity by the Thiobarbituric acid method (TBA), homogenized egg yolk solution was used as a rich medium in lipids. The procedure was performed triplicate, in accordance with the methodology described by Ferreira (2010). Five test tubes were set up containing 0.5 mL of egg yolk (10% w/v) and 0.1 mL of the plant samples was dissolved in the least amount of methanol and the volume diluted to 1 mL with water. Three concentrations were tested for each BSE solution: 100, 500 and 1000 μg/mL.

Next, 2.2 chloride 1-azo-bis (2-amidinopropano)-ABAP (0.07 mol/L) was added to each tube to induce lipid peroxidation, followed by a 20% solution of acetic acid (pH 3.5) and 1.5 mL of TBA (0.8% w/v) solution in sodium dodecyl sulfate-SDS (1.1% w/v). To allow observation of the complete lipid peroxidation, the antioxidants 3.5-di-tert-butyl-4-α-tocopherol and butylated hydroxytoluene BHT were used as positive standards in the same conditions to which plant extracts were subjected. The vials were placed in a water bath at 95°C under stirring over 60 min. After cooling, 5 mL of 1-butanol were added to each tube, and the tubes were centrifuged at 3000 rpm for 10 min.

To allow observation of the complete lipid peroxidation, the antioxidants 3.5-di-tert-butyl-4-α-tocopherol and butylated hydroxytoluene BHT were used as positive standards in the same conditions to which plant extracts were subjected, allowing the observation of the complete lipid peroxidation. Absorbance of organic supernatant layer was measured in a spectrophotometer at a wavelength of 532 nm. The values obtained were applied in the following formula to determine the antioxidant content of plant samples in percentage (IA%): IA% = (1 - A/C) x 100, where C is the absorbance of the control and the fully oxidized, the arithmetic mean of the sample tested absorbances.

Determination of phenolic compounds

The vegetable samples CEE, HF, CF, and EAF were evaluated at a concentration of 2.0 mg/mL. 0.5 mL of a 2N Folin-Ciocalteau reagent solution was added to 0.5 mL of each sample, followed by 1.0 mL of water (in triplicate). After stirring for 2 min, 0.5 mL of 10% (w/v) aqueous sodium carbonate (Na₂CO₃) was added to the tube. Then the samples were incubated for 2 h at room temperature (while protected from light). Absorbance values were obtained by readings at 750 nm, using the Folin-Ciocalteau reagent in methanol as blank sample. In order to build a calibration curve, gallic acid solutions were used at concentrations of 0.15, 0.1, 0.05, 0.025, 0.01, and 0.005 μg/mL. Total phenol values were expressed as gallic acid equivalents (Junqueira, 1999).

EC calculation

Results of in vitro tests were expressed in EC₅₀ values (Nascimento et al., 2014), which is the concentration required to produce half (50%) of maximum effect estimated at 100% for the plant extract.

In vivo assay

Animal selection

Two male and three female horses were selected from the farm of the CESMAC Veterinary Medicine School. All animals were of mixed race, aged between 2.5 and 3 years, weighing from 270 to 320 kg, and were clinically healthy and well-nourished. The animals were fed with a balanced diet (corn + wheat + soy) at a rate of 2.5 kg/day, bulky (Tifton Grass) 28 kg/animal/day and water ad libitum. The animals were accommodated in individual stalls covered with sand.
Surgical procedure

After anesthesia, administered intravenously using 10% xylazine (0.5 mg/kg/EV), the animals were trichotomized, and a skin antisepsis was made with 1% povidone-iodine. Then, five circular and symmetrical wounds were made aseptically in the thoracic region, at the lateral to dorsal midline of each animal with the help of scalpel blade No. 23, after local anesthesia with lidocaine hydrochloride 2%, according to the method of Andriguetto and Perly (2002). The five wounds were made with the help of a punch of 3 cm, measuring approximately 3.0 × 3.0 cm, with a distance of 5 cm between them. The damage included the epidermis, dermis, and subcutis. After the surgical procedure, the wounds were measured with Vernier Calipers 200 × 0.05 mm/8 × 1/128, France.

Clinical evaluation of wounds

Clinical evaluations were performed visually by the same individual every 72 h, observing the presence of hyperemia, edema, pain, discharge, itching, crust, contraction, granulation tissue, and scar tissue in accordance with Ardisson et al. (2002).

Morphometric analysis of wounds

For the acquisition of the area of wounds, measurements of diameters at the time of biopsy to 0, 3, 7 and 14 days post-op were carried out. All wounds were measured with the aid of calipers (Andriguetto and Perly, 2002) and from these elements, the following equation was formulated: where A represents the area (cm²), and r the radius. The degree of contraction, expressed in percentage, was measured by the equation proposed by Ramsey et al. (1995) where Wo = initial wound area and Wi = wound area on the day of the biopsy: 100 x (Wo-Wi)/Wo = % contraction.

Treatment for the wounds

Wounds were treated daily at 24 h intervals, using powdered stem barks as well as aqueous, ethanolic and propylene glycol extracts of A. cochliacarpos in a gel formulation. Four wounds were treated with A. cochliacarpos and the remaining wound was treated with Dakin (0.5% NaOCl). Treatments were applied on wounds of different positions for each animal. Throughout the experiment, bandages were not applied to the wounds.

Histological procedures

The animals underwent incisional biopsy of the skin for bilateral microscopic analysis of the healing process. Microscopic assessments were carried out at the end of the trial period. Material collection was performed for histopathological analysis, with tissue removal foursquare measuring about 2 x 2 cm, in order to include the entire diameter of the wound, as well as tissue adjacent to injury. The collected material was fixed in 10% buffered formalin for 24 h, being subjected to routine histological processing, included in paraffin and then cut into 6 cm. set microtome. Then, the cuts were stained by hematoxylin and eosin and then examined using a light microscope (Barroso et al., 2010). Microscopic analysis of the healing of each of the wounds was descriptive, qualitative evaluating the morphology of the inflammatory process, granulation tissue, cellularity, neovascularization and fibroplasia, as well as the evolution of the healing process throughout the ages (Barroso et al., 2010).

Statistical analysis

The results of the area and contraction of the wounds had been expressed on average ± shunting line standard, submitted to analyses of variance, and also to Tukey’s test, considering significant comparative values to the level of 5% of significance. Statistical analysis was performed using SPSS to determine the linear regression and the coefficient of determination (R²), which best explain the antioxidant potential of plant samples.

RESULTS

Preparation and fractionation of the ethanolic extract

From the crude extract (598 g) of stem bark, approximately 35 grams (5.85% yield) of the CF, 15 grams of EAF (2.50% yield) and 2 g of HF (0.33% yield) were obtained through primary fractionation. Fractionation of the crude extract with solvents of increasing polarity allows inferring the classes of substances extracted in the different fractions, in accordance with the known solubilities and polarities presented by various substances (Müller, 2006).

Phytochemical prospection

The phytochemical screening revealed different classes of secondary metabolites including phlebotonic tannins, flavonols, xanthones, flavones, catechins, steroids, and saponins, as shown in Table 1.

Quantitative assessment by DPPH assay

A significant radical scavenging activity was found for the crude extract at low concentrations as shown in Figure 1. Furthermore, fractionation of the crude extract showed that the activity was retained by the EAF (Figure 2) since higher scavenging of radicals could be attained at lower concentrations. In contrast, similar scavenging activity for CF (Figure 3) and HF fractions (Figure 4) were achieved with higher concentrations and indicates that the compounds responsible for the activity in the crude extract had greater affinity by ethyl acetate solvent.

Determination of phenolic compounds

Total phenolic content found in the screening was of 181.8 mg Gallic acid equivalents/g of the sample with regard to CEE extract, and 50% of this content was found in AEF.

Antioxidant content percentage

The most common technique used to measure lipid peroxidation is the test of Thiobarbituric Acid (TBA), a
Table 1. Prospection of the chemical constituents of stem bark of *A. cochliacarpos*.

<table>
<thead>
<tr>
<th>Secondary metabolite</th>
<th>CEE</th>
<th>EAF</th>
<th>CF</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrogalic tannins</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Phlebotonic tannins</td>
<td>N</td>
<td>P</td>
<td>P</td>
<td>N</td>
</tr>
<tr>
<td>Phenols</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Anthocyanins and anthocyanidins</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Flavonols, xanthones and flavonones</td>
<td>N</td>
<td>P</td>
<td>P</td>
<td>N</td>
</tr>
<tr>
<td>Chalcones and aurones</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Flavononols</td>
<td>P</td>
<td>P</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Leucoanthocyanidins</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Catechin</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Flavonones</td>
<td>P</td>
<td>P</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Flavanonols and xanthones</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Steroids</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>Triterpenoids</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Saponins</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>N</td>
</tr>
</tbody>
</table>

(P) indicate the presence of compounds; (N) indicate the absence of compounds. CEE, Crude Ethanolic Extract; EAF, Ethyl Acetate Fraction; CF, Chloroform Fraction; HF, Hexanic Fraction.

Figure 1. Antioxidant activity percentage of CEE from stem bark of *A. cochliacarpos*.

The spectrophotometric method that measures the concentration peroxidation products. The final product measured is the malondialdehyde or reactive substances formed from barbituric acid. In TBA test, the CEE extract presented the highest antioxidant capacity when compared to BHT at concentrations of 1000, 500 and 100 μg/ml, as shown in Table 2.

Evolution of the wound areas

The wound areas gradually decreased with the evolution of time over the course of 14 days of treatment (Figure 5). After 24 h from the beginning of the treatment, hyperemic areas were observed in the wounds, with zones of intense vascularization. The edges were well defined geometrically; however, the presence of edema and crusting areas were sometimes displayed at the outer regions of the wounds. Throughout the course of the experiment, those wounds treated with *A. cochliacarpos* presented irregular thick crusts and dryness.

The reduction of the wound area occurred due to the mechanism of contraction and the centripetal movement of the wound border towards the center, in order to reduce the area to be covered by the proliferating...
epithelium. The diameter and contraction data as a function of the different treatments are shown in Table 3. Based on results shown in Table 3, it was attested that the dry powdered stem bark as well as the ethanolic and

Figure 2. Antioxidant activity percentage of EAF from stem bark of *A. cochliacarpos*.

Figure 3. Antioxidant activity percentage of CF from stem bark of *A. cochliacarpos*.

Figure 4. Antioxidant activity percentage of the HF from stem bark of *A. cochliacarpos*.
Table 2. Antioxidant activity of CEE extract from stem bark of *A. cochliacarpos*.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Concentrations of the samples/AI Values%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000 μg/ml</td>
</tr>
<tr>
<td>CEE</td>
<td>30.00</td>
</tr>
<tr>
<td>Control BHT</td>
<td>28.66</td>
</tr>
</tbody>
</table>

Figure 5. Wound areas of different groups following 14 days treatment.

Table 3. Mean and standard deviation of the diameter and contractions of the lesions according to the application of the different treatments.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Area</th>
<th>Diameter</th>
<th>Contraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanolic</td>
<td>692 ±78</td>
<td>30 ± 2a</td>
<td>22 ± 9a</td>
</tr>
<tr>
<td>Aqueous</td>
<td>729 ±103a</td>
<td>30 ± 2a</td>
<td>12 ± 6b</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>697±72c</td>
<td>29 ± 2b</td>
<td>19 ±9c</td>
</tr>
<tr>
<td>Powdered bark</td>
<td>683±85c</td>
<td>30 ± 2b</td>
<td>22 ±10a</td>
</tr>
<tr>
<td>Dakin’s solution</td>
<td>679±88c</td>
<td>29 ± 2b</td>
<td>25 ± 7a</td>
</tr>
<tr>
<td>Saline</td>
<td>710 ±57b</td>
<td>30 ± 1.23b</td>
<td>16 ± 7b</td>
</tr>
</tbody>
</table>

Means followed by the same letter in a column do not differ statistically at the 5% probability level by the Duncan or Scott-Knott test.

propylene glycol extracts had the best performances in relation to reducing diameters and areas of induced wounds, with a wound healing activity comparable to Dakin’s solution (p<0.05).

Histological analysis

Histological evaluation of wounds on the 14th day revealed significant differences regarding the inflammatory response and deposition of granulation tissue between the aqueous, ethanolic, propylene glycol extracts and powdered bark of *A. cochliacarpos*. The best healing occurred using the bark powder, followed by propylene glycol and ethanolic extracts. Because the treated animals exhibited less ulceration associated with neutrophilic inflammation and a greater organization of connective tissue, as illustrated by Figure 6A, B and C. The water extract and the Dakin fluid were less effective treatments. Wounds treated with these...
Figure 6. (A): Histopathological appearance of the lesion treated with: A. powdered stem bark. Re-epithelialization process. Presence of granulation tissue HE organized. 10 x objective; (B) Propylene glycol extract. Edema and fibrin. Bacterial colony. Ulceration with edema and fibrin. 40 x objective; (C) Propylene glycol extract. Injury with ulceration and inflammatory neutrophilic infiltrate. Irregular re-epithelialization. 40 x lens; (D). Propylene glycol extract. Ulceration associated with neutrophilic infiltration. Eosinophilic inflammation. Granulation tissue. 10x lens; (E). Dakin fluid. Ulcer associated with neutrophilic infiltrate. Granulation tissue with infiltrated mononuclear cells; (F). Powdered stem bark (Granulation tissue). Eosinophilic inflammation. 40 x lens.

substances presented greater inflammatory response, sharp ulceration associated with moderate neutrophilic inflammation, and disordered of connective tissue. These changes are not expected with that intensity on the 14th day. Histological features of the healing provided by these extracts are shown in Figure 6D and E. The presence of mononuclear infiltrates (macrophages and lymphocytes) and granulomas was observed as expected. The inflammatory phase was characterized by the presence of inflammatory cells in scar tissue, especially polymorphonuclear leukocytes (PMN) and macrophages. The wound treated with powdered stem bark accelerated re-epithelialization by the end of 14th day, which indicates the end of the healing process and suggesting greater efficacy of the product. All lesions presented a moderate to severe eosinophilic inflammatory reaction Figure 6F. Probably due to the response to induced tissue injury in the dermis of horses.

DISCUSSION

The DPPH assay is a widely used antioxidant procedure that asserts the ability of a compound to scavenge free radicals (Bendini et al., 2007). Several advantages have contributed to its dissemination as a first choice method of evaluation for antioxidant potential of foods (Floegel et al., 2011), plant extracts (Mensor et al., 2001) or isolated compounds (Villeño et al., 2007) which include its low cost, ease of handling and valid accuracy (Kedare and Singh, 2011).

The extracts obtained herein were able to scavenge the DPPH radical and act as potential antioxidants. This property correlates to the presence of some classes of secondary metabolites in the stem barks of *A. cochliacarpos*. As we have shown by the preliminary phytochemical screening, tannins and flavonoids are present in the stem bark of this species, and may be regarded as responsible for the antioxidant properties of the extracts since they are widely acknowledged as potent radical scavengers (Hatano, 1995; Nanjo et al., 1996; Cai et al., 2006).

Polyphenolic compounds comprise a large class of secondary metabolites featuring more than one phenolic ring in their core structure, which is derived from shikimate or polyketide metabolic pathway (Quideau et al., 2011). Their antioxidant mechanisms have been known for some time and relate to the presence of the phenolic ring, which provides the ability to scavenge free radicals and form itself stable free radicals, by hydrogen-
atom transfer, or cation radicals, via single-electron transfer (Leopodini et al., 2011; Aquino et al., 2017). The stability of the radical formed is explained by the delocalization of the unpaired electron through the framework of phenolic rings existent in the molecular structure of these secondary metabolites (Quideau et al., 2011; Leopodini et al., 2010).

Wound healing is a complex and stepwise process that comprises different but complementary biochemical and cellular events in order to provide anatomical reconstruction and physiological regeneration of damaged tissue in most cases (Broughton et al., 2006). We believe in the viewpoint that describes the wound healing as a four-stage process: coagulation, inflammation, proliferation and remodeling. The first stage, coagulation, takes place immediately after injury and involves the formation of blood clot to avoid excessively bleeding. Secondly, recruitment of inflammatory cells ensues due to the release of chemoattractant substances so that bacterial dissemination is prevented and removal of damaged tissue is carried out. At the same time, proliferation occurs and includes re-epithelialization and angiogenesis which altogether leads to wound contraction. Finally, this is followed by remodelling of the extracellular matrix and deposition of collagen to restore tensile strength of the newly formed tissue (Velnar et al., 2009).

Wound contraction involves a reduction in the size of the wound from the day of operation until complete epithelialization occurs. The qualitative histological criteria analysed in order to assay the degree of wound healing comprise the presence of inflammatory cells and necrotic tissue, the extent of epithelialization and angiogenesis, and the organization of connective tissue (Thakur et al., 2011). The results in Table 3 confirm increased rate of wound contraction. These observations are further supported by histopathological evidences that confirmed enhanced epithelialization by ethanolic and propylene glycol extracts, as well as the powdered stem bark, when compared to the control.

The inflammatory stage features the infiltration of mononuclear and polymonuclear leukocytes at the skin continuity solution in order to provide defense against micro-organisms and to promote debridement of necrotic tissue (Koh et al., 2011). Even though inflammation is indispensable to wound healing, the migration of neutrophils to the wound site has marked influence in increasing the levels of Reactive Oxygen Species (ROS) locally. This can induce tissue damage to healthy cells by destroying their membranes through lipid peroxidation or by causing damage to essential macromolecules such as proteins and nucleic acids. This ultimately might delay or impair wound healing (Schäfer and Werner, 2008).

There are reports of the use of *A. cochliacarpos* to alleviate inflammatory diseases, through studies using experimental models in vitro and in vivo (Sánchez-Fidalgo et al., 2013). Furthermore, the antiulcer effect of the aqueous extract of stem bark of *A. cochliacarpos* was tested in experimental alcohol gastric ulcers and had efficacy in promoting the healing of colonic lesions and reducing neutrophil infiltration, which may be related to the decrease of proinflammatory cytokines and down-regulation of inflammatory COX-2 (cyclooxygenase-2) and iNOS proteins (inducible Nitric Oxide Synthase), as well as JNK activation (c-Jun N-terminal Kinase) (Da Silva et al., 2010).

In addition, *A. cochliacarpos* has pharmacological potential against Gram-positive bacteria, mainly of the genus *Staphylococcus*, and can be exploited in the future to obtain bioactive compounds with antibacterial action (Tenório et al., 2016). The hydroethanolic extract from stem barks of *A. cochliacarpos* for the treatment of rats with induced burns and infected with strains of *S. aureus* reported that the animals showed complete healing in 21 days (Soares et al., 2013).

The relevance of the antioxidant activity in wound healing is well described (Süntar et al., 2012). Since phenolic compounds such as flavonoids and tannins are present in *A. cochliacarpos* extracts, and as these agents influence one or more phases of healing process, the wound healing activity might be related to these compounds. Several plant species from the Brazilian Caatinga ecoregion are known for their high total phenolic content, and hence are used for medicinal purposes by traditional communities to treat inflammatory conditions and for healing wounds (Oliveira et al., 2013). The phytochemistry of *A. cochliacarpos* was investigated in more detail by nuclear magnetic resonance studies that pointed to the presence of proanthocyanidins, mainly catechins (Da Silva et al., 2010).

Polyphenols are able to prevent lipid peroxidation directly by scavenging free radicals or by delaying the onset of cell necrosis and improving vascularity, which contributes to increase collagen viability, reduce cell damage and promote DNA synthesis (Getie et al., 2002). Moreover, tannins are known for promoting capillary vasoconstriction, which decrease vascular permeability and cause a local anti-inflammatory effect in addition to their action as scavengers of reactive species, which greatly contributes to their antioxidant potential and hence favours the healing (Lopes et al., 2005). As radicals can damage cell structures including membrane lipids, proteins, enzymes, and nucleic acids, the antioxidant role of tannins might be one of the most important components of wound healing (Edwin et al., 2008).

The solubility of polyphenols is determined by the chemical nature of the plant sample, as well as the polarity of the solvents used for extraction procedure. In addition, other factors such as the ratio between solid and solvent, and the particle size of the sample may influence the content of polyphenols (Dai and Mumper,
Ethanol extracts of barks usually present a higher content of polyphenols in their composition when compared to aqueous extracts of the same plant parts, as shown by several investigations (Igbinosa et al., 2011; Olajuyigbe and Afolayan, 2011; Iloki-Assanga et al., 2015; Pawar and Dasgupta, 2016). Since the wound healing activity of A. cochliacarpos might be connected to the antioxidant activity of its chemical constituents, this may partially explain the lower efficacy of the aqueous extract.

Conclusion

The crude ethanolic extract and the ethyl acetate fractions of the A. cochliacarpos showed antioxidant action in quantitative and qualitative DPPH and TBA assays. After partition, the ethyl acetate fraction was particularly distinctive, with 95.45% of antioxidant activity occurring in a concentration of 50 µg/ml for DPPH. These results are likely due to the presence of flavonoids, as well as hydrolysable and condensed tannins, indicated by the chromatographic profile and phytochemical screening. The ethyl acetate fraction also presented the highest content of phenolic compounds: 0.010 mg of Gallic acid/g of the sample.

This study confirmed microscopically and macroscopically that the healing process in horses was mediated by the use of A. cochliacarpos ethanolic and propylene glycol extracts, as well as the powdered stem bark, being the latter the best in terms of decrease in diameter of wounds and wound contraction. Thus the enhanced ability of wound healing in equines with the extracts could be explained on the basis of antioxidant effects of the chemical constituents of A. cochliacarpos and the in vivo model in equines showed enhanced rate of wound contraction and drastic reduction in healing time than control, which might be due to enhanced re-epithelialization.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Kedare SB, Singh RP (2011). Genesis and development of DPPH...

Acute toxicity evaluation of ethanolic extract of the air parts of *Sida rhombifolia* L., in wistar rats

Luciana da Silva Nunes Ramalho¹, Gabriela Tafaela Dias², Edla Julinda Ribeiro Coutinho Espinola Guedes¹, Micaelly da Silva Oliveira¹, Andressa Brito Lira², Kardilândia Mendes de Oliveira¹, Otemberg Souza Chaves², Josué do Amaral Ramalho¹, Alexandre Rolim da Paz³, Janine Agra Padilha², Hilzeth de Luna Freire Pessoa⁴, Maria de Fátima Vanderlei de Souza⁶, Caliandra Maria Bezerra Luna Lima⁵ and Margareth de Fátima Formiga Melo Diniz⁶

¹PostGraduate Program in Technology Development and Innovation in Medicines, Health Sciences Center, Federal University of Paraíba, 58051-900 Paraíba, Brazil.
²PostGraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba, 58051-900 Paraíba, Brazil.
³Department of Medical Sciences, Health Sciences Center, University of Paraíba, 58051-900 Paraíba, Brazil.
⁴Department of Biological Sciences, Health Sciences Center, University of Paraíba, 58051-900 Paraíba, Brazil.
⁵Department of Physiology and Pathology, Health Sciences Center, University of Paraíba, 58051-900 Paraíba, Brazil.
⁶Department of Pharmaceutical Sciences, Health Sciences Center, University of Paraíba, 58051-900 Paraíba, Brazil.

Received 8 February, 2019; Accepted 5 July, 2019

Sida rhombifolia L., popularly known in Brazil as “SIDA” or “mata-pasto”, is considered a weed; a plant of the American continent and widely distributed in North Africa, belongs to the Malvaceae family. In Brazil, *S. rhombifolia* L. is scattered throughout the national territory, infesting agricultural crops. Certain species of the genus Sida, including *S. rhombifolia*, are widely used in Indian, Chinese, African and American medicine. The present study was carried out with the objective of evaluating the non-clinical acute toxicity of crude ethanolic extract (CEE) obtained from *S. rhombifolia* L. In treated males, there was a statistically significant reduction in water and feed intake. Biochemical analyzes showed statistically significant changes in the parameters of aspartate aminotransferase, alanine aminotransferase and creatinine; hematological parameters showed altered erythrocytes, mean corpuscular volume, mean corpuscular hemoglobin and eosinophil parameters; observed only in treated male animals. The animals' organs showed no significant changes. The results suggest that the ethanolic extract obtained from *S. rhombifolia* L. presents low acute dose toxicity. However, chronic toxicological studies should be performed to demonstrate the safety of long-term use of the drug.

Key words: *Sida rhombifolia* L., acute non-clinical toxicity, hematological parameters, biochemical analyses, histopathological parameters.

INTRODUCTION

From antiquity, medicinal plants have been the most important and best known therapeutic resource; their usage represents a characteristic link with the human species (Almeida et al., 2008). At present, due to the
immense biological diversity of flora on the planet and the apparent shortage of new drugs proceeding from this same diversity, there is a growing interest in natural product research, which could uncover new treatments for various diseases. Thus, phytotherapy in popular medicine, the seeking of new products with therapeutic properties based on ethno-pharmacological studies has grown (Elisabetksy, 2001; Maciel et al., 2002; Butler, 2004; Milição et al., 2012).

According to the World Health Organization (2011), from 70 to 95% of underdeveloped country populations depend on medicinal plants as their only form of disease treatment. This is because of the high cost of synthetic drugs. Most natural products come from popular culture, in the form of infusions, decoctions, tinctures and alcoholic solutions obtained from artisanal techniques, without having proven pharmacological properties, at least through non-clinical studies. This confirms the need to carry out toxicological and pharmacological studies aiming to transform such natural products into safe, effective and quality drugs (Veiga and Pinto, 2005; Franca et al., 2008; WHO, 2011).

Sida rhombifolia is a botanical genus inserted in the *Malvaceae* family, belonging to the order Malvales which contains 243 genera and 4225 species (Stevens, 2003), which present as sub-shrubs, shrubs and rarely as trees (Baracho, 1998). Species of this family are greatly distributed around the world, being found predominantly in tropical regions, and especially in South America (Heywood, 1993). In Brazil, it is scattered throughout the national territory, infesting agricultural crops. According to Fleck et al. (2003) *S. rhombifolia* L. is the most widespread species of *Sida* in the country. *S. rhombifolia* L. is popularly known in Brazil as “matapasto”, “guanxuma”, and “relógio”. Certain species of the genus *Sida*, including *S. rhombifolia* are widely used in Indian, Chinese, African and American medicines. Differing types of extracts and components isolated from these plants have demonstrated antimicrobial, anti-inflammatory, analgesic, anti-ulcerogenic, hypotensive, antioxidant and anti-diabetic activities, confirming the folk lore and beliefs about the species (Ajithabai et al., 2012; Pradhan et al., 2013; Galal et al., 2015).

Studies have reported isolated and identified phytochemicals from aerial parts of *S. rhombifolia* L. using chromatographic and spectroscopic methods. The study led to the isolation of the scopoletin, escoporone, ethoxy-ferulate, kaempferol, kaempferol-3-O-D-glycosyl-6-O-D-rhamnose, quindolinone, 11-methoxy- quindoline, quindoline and the salt of cryptolepine.

In addition, quindolinone and the salt of cryptolepin induced vasorelaxation dependent on the vascular endothelium, justifying the use of the species in folk medicine in India (Chaves., et al 2017). Based on the search for new pharmacologically active and safe agents, having several phytochemical constituents isolated from the aerial parts of *S. rhombifolia* L. (Chaves., Et al. 2017), this study evaluated the toxicity of the crude extract of *S. rhombifolia* which used non-clinical tests following the recommendations of the National Agency of Sanitary Surveillance (ANVISA).

MATERIALS AND METHODS

Plant collection

Aerial parts of *S. rhombifolia* L. (*Malvaceae*) were collected in the municipality of Santa Rita-Paraiba and botanical identification was performed by Dr Maria de Fátima Agra of Federal University of Paraiba. The exsiccate material is filed at the Prof. Lauro Pires Xavier Herbarium of Federal University of Paraiba under No. Agra 7045.

Preparation of *S. rhombifolia* L. crude ethanolic extract

The crude ethanolic extract was prepared by the staff at the Phytochemical Laboratory of Professor Dr. Maria de Fátima Vanderlei. Aerial parts of *S. rhombifolia* L. were dehydrated in an oven with circulating air at an average temperature of 40°C for 96 h. They were then ground in a mechanical mill, obtaining approximately 5.5 kg of powder. It was macerated in 95% ethanol (EtOH) for 72 h for extraction of the organic constituents. The extractive solution was concentrated in an evaporator at 40°C, providing approximately 570.0 g of crude ethanolic extract (CEE).

Experimental animals

24 *Wistar* rats were used, albinos, adults, male and female (nulliparous and non-pregnant), weighing between 180 and 220 g, as provided by the Prof. Thomas George bioterium of Research Institute for Drugs and Medicines of Federal University of Paraiba (IPeFarM/UFPB). The experimental protocol was approved by the Ethics in Animal Experimentation (CEUA) of Federal University of Paraiba (UFPB) , (process No. 029/2015). All were grouped in polyethylene cages, containing six animals each, and maintained under controlled conditions at a temperature of 21 ± 2°C, without any medications, and having free access to food (pellets) and water.

Acute toxicological testing

The parameters evaluated for acute toxicological tests were based on ANVISA Resolution RE 90/2004 (Brazil, 2004), using Wistar rats of both sexes. The rats were divided into two groups: control and treated. Each group consisted of 12 animals, 6 males and 6 females. The control group was distributed in two boxes that

*Corresponding author. E-mail: luciananramalho@yahoo.com; Tel. +55083987758018.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
separated the animals by sex and the animals received water by gavage. The treated groups were equally distributed and received the dose of crude ethanolic extract (EEC) at 2000 mg / kg body weight (bW). After the administration of EEC, the observation of behavioral parameters with pharmacological screening was performed at intervals of: 30, 60, 120, 180 and 240 min, according to the experimental protocol developed, as previously described (Almeida et al., 1999). After 14 days of experimentation, the animals were by sacrificed administration of excess anesthetic (anesthesia of 80 mg / kg of xylazine and 5 mg / kg of ketamine), following the recommendations of the scientific community. Blood was withdrawn for laboratory analysis of hematological and biochemical parameters.

Laboratory analysis of the blood

Collection of the samples was carried out by bleeding the brachial plexus. The blood was collected in tubes with the anticoagulant ethylenediamine tetraacetic acid (EDTA) for determination of hematological parameters, and in tubes with separator gel - Microtainer®BectonDickson® - which were centrifuged for 10 min at 2026 g of force, to obtain serum for determination of biochemical parameters. The hematological analyses consisted in the study of the red cell series (erythrogram), white cell (WBC), and the platelet count. The erythrogram included the erythrocyte count, hematocrit, mean corpuscular volume (MCV), hemoglobin, mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC). The WBC included a global leukocytes and cell differentiation counts. The biochemical analyses were performed for the serum samples. The total cholesterol, urea, glucose, triglycerides, alkaline phosphatase (ALP), albumin, globulin, and transaminases; Aspartate Amino Transferase (AST) and Alanine Amino Transferase (ALT), uric acid, creatinine, total protein, calcium ions and magnesium were analyzed in an automated biochemical apparatus ChemWell-T®.

Anatomy-pathological examination

The organs of the animals (livers and kidneys) were sectioned and immersed in a fixative solution. After 12 h of fixation, samples for histopathological processing were obtained by inclusion in paraffin and stained with hematoxylin and eosin.

Statistical analysis

For statistical analysis of the results, we used the Mann-Whitney and test "t" un-paired, using the software GraphPadPrism® 6.0. The results were considered significant for p values < 0.05.

RESULTS

Behavioral evaluation and lethality

In the evaluation of behavioral changes after administration of the oral dose of the crude ethanolic extract (S. rhombifolia L.) at the dose of 2000 mg/kg body weight (bW), no motor and / or sensorial deficiencies were observed, nor did the dose tested cause no deaths in the animals within 14 days.

Weight evolution

Compared to their respective control groups, there was no statistically significant change in weight evolution of the male or female rats treated with S. rhombifolia L. of crude ethanolic extract (CEE) at an oral dose of 2000 mg/kg body weight (bW). The results are seen in Table 1.

Water and food consumption

The ingestion of water and feed was measured daily during the acute treatment with the substance. In the treated males, a statistically significant decrease in the consumption of water and ration was observed. On the other hand, the females did not show any changes in either parameter. The results are presented in Table 2.

Biochemical parameters

Biochemical findings were obtained from animal serum analyzes after the 14-day experimental period (Table 3). The animals treated (male) presented higher levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and creatinine.

Hematological parameters

The hematological alterations obtained from the plasma analyses of the animals after the 14-day experimental period are described in Table 4. For the males treated with S. rhombifolia L. of crude ethanolic extract CEE at an oral dose of 2000 mg/kg body weight (bW), there were significant differences between the control and treated groups for erythrocytes, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and eosinophils at 2000 mg/kg bw.

Anatomy pathological study

Macroscopically, the organs did not present significant anatomical changes (Figure 1).

DISCUSSION

During the study, and after the administration of S. rhombifolia L. CEE at an oral dose of 2000 mg/kg body weight (bW), no sign of severe toxicity or death of animals was detected during the 14 days of evaluation, which corroborates previous studies conducted by Sireretawong et al. (2008). In the behavioral screening assessment, the first four hours after administration of the
Table 1. Weight evolution of Wistar rats, male and female, after 14 days of administration of *S. rhombifolia*.

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Control</th>
<th>Treated (2000 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males 1º</td>
<td>43.92 ± 29.09</td>
<td>22.38 ± 6.80</td>
</tr>
<tr>
<td>Males 2º</td>
<td>22.45 ± 11.23</td>
<td>11.42 ± 3.10</td>
</tr>
<tr>
<td>Females 1º</td>
<td>6.28 ± 6.70</td>
<td>4.27 ± 6.19</td>
</tr>
<tr>
<td>Females 2º</td>
<td>2.30 ± 4.10</td>
<td>5.25 ± 2.43</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± S.D. (n=6). "t" test Mann-Whitney.*p< 0.05.

Table 2. Water consumption and ration of male and female Wistar rats after administration of *S. rhombifolia* L.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control</th>
<th>Treated (2000 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water consumption (ml)</td>
<td>259.8±15.10</td>
<td>221.0±27.68***</td>
</tr>
<tr>
<td>Ration consumption (g)</td>
<td>151.3±3.80</td>
<td>131.5±13.05***</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water consumption (ml)</td>
<td>192.8±27.94</td>
<td>184.9±23.08</td>
</tr>
<tr>
<td>Ration consumption (g)</td>
<td>100.7±10.43</td>
<td>107.8±7.01</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± S.D. (n=6). "t" test Mann-Whitney.*p<0.05, **p< 0.01, ****p<0.001.

Table 3. Biochemical parameters obtained from the serum of rats treated with *S. rhombifolia* L.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control</th>
<th>Male Treated (2000 mg/kg)</th>
<th>Control</th>
<th>Female Treated (2000 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total protein (g/l)</td>
<td>6.20±0.83</td>
<td>6.83±1.25</td>
<td>6.49±0.68</td>
<td>7.60±0.72</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>59.40±14.19</td>
<td>124.70±50.64*</td>
<td>65.80±23.04</td>
<td>63.50±13.43</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>162.80±62.15</td>
<td>337.7±192.80*</td>
<td>185.60±84.50</td>
<td>178.30±42.04</td>
</tr>
<tr>
<td>ALP (U/L)</td>
<td>339.2±114.1</td>
<td>346.0±19.30</td>
<td>176.0±58.15</td>
<td>189.20±31.45</td>
</tr>
<tr>
<td>Globulin (g/dl)</td>
<td>3.47±0.91</td>
<td>4.10±1.34</td>
<td>3.48±0.76</td>
<td>4.22±0.41</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>66.00±8.28</td>
<td>74.83±15.69</td>
<td>66.40±9.55</td>
<td>80.50±15.54</td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>125.125.00±33.59</td>
<td>100.30±36.15</td>
<td>98.25±26.83</td>
<td>155.30±49.83</td>
</tr>
<tr>
<td>Calcium (mg/dl)</td>
<td>12.89±2.91</td>
<td>11.89±1.38</td>
<td>10.15±1.14</td>
<td>11.14±1.78</td>
</tr>
<tr>
<td>Uric acid (mg/dl)</td>
<td>0.99±0.33</td>
<td>0.97±0.10</td>
<td>1.19±0.48</td>
<td>1.24±0.27</td>
</tr>
<tr>
<td>Urea (mg/dl)</td>
<td>60.00±1.87</td>
<td>72.00±13.37</td>
<td>59.33±8.08</td>
<td>70.00±9.50</td>
</tr>
<tr>
<td>Serum-creatinine (μmol/L)</td>
<td>0.30±0.06</td>
<td>0.43±0.04*</td>
<td>0.42±0.09</td>
<td>0.42±0.03</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td>2.73±0.28</td>
<td>2.74±0.15</td>
<td>3.04±0.17</td>
<td>3.37±0.36</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>102.6±12.48</td>
<td>112.5±15.68</td>
<td>89.20±18.74</td>
<td>107.8±12.91</td>
</tr>
</tbody>
</table>

ALT, Alanine Amino Transferase; AST: Aspartate Amino Transferase; ALP: Alkaline phosphatase. Values are expressed as mean ± S.D. (n=6).*"t" test Mann-Whitney.*p<0.05.

CEE no changes at the level of the Central Nervous System (CNS) or (Autonomic Nervous System (ANS) were detected, indicating that the plant has no activity on these systems.

Analyzing any possible toxic effects, the body weight gains of the animals and consumption of water and ration were observed and are shown in Tables 1 and 2, respectively. A significant decrease in the consumption of water and rations of treated males was detected, which may be associated with general discomfort, leading to a decrease in feeding of the treated rats, as suggested previously by Adeneye and Agbaje (2008), or it may be
Table 4. Hematological parameters obtained from the plasma of rats treated with *S. rhombifolia* L.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control (2000 mg/kg)</td>
<td>Control (2000 mg/kg)</td>
</tr>
<tr>
<td>Hemoglobin (g/dl)</td>
<td>16.32 ± 0.62</td>
<td>16.33 ± 0.71</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>39.58 ± 1.17</td>
<td>38.76 ± 1.28</td>
</tr>
<tr>
<td>MCV (μm³)</td>
<td>51.04 ± 3.17</td>
<td>43.28 ± 0.71**</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>21.06 ± 1.38</td>
<td>17.65 ± 0.34**</td>
</tr>
<tr>
<td>MCHC (g/dl)</td>
<td>41.24 ± 0.72</td>
<td>40.78 ± 0.44</td>
</tr>
<tr>
<td>Leukocytes (10³/mm³)</td>
<td>8.62 ± 3.43</td>
<td>5.15 ± 2.17</td>
</tr>
<tr>
<td>Neutrophils (%)</td>
<td>26.40 ± 4.40</td>
<td>21.20 ± 4.55</td>
</tr>
<tr>
<td>Eosinophils (%)</td>
<td>1.00 ± 0.00</td>
<td>0.00 ± 0.00**</td>
</tr>
<tr>
<td>Lymphocytes (%)</td>
<td>66.80 ± 7.80</td>
<td>76.17 ± 8.28</td>
</tr>
<tr>
<td>Monocytes (%)</td>
<td>4.40 ± 3.21</td>
<td>4.83 ± 2.56</td>
</tr>
<tr>
<td>Platelets (10³/mm³)</td>
<td>900.80 ± 143.10</td>
<td>671.50 ± 173.96</td>
</tr>
</tbody>
</table>

MCV: mean corpuscular volume, MCH: mean corpuscular hemoglobin, MCHC: Mean corpuscular hemoglobin concentration. Values are expressed as mean ± S.D. (n=6). "t" test Mann-Whitney *p < 0.05 **p < 0.01.

Figure 1. Histopathology of liver (A) and kidney (B) organs of male and female rats treated with the crude ethanolic extract of *S. rhombifolia* L. at an oral dose of 2000 mg / kg. None of the animal organs presented histological peculiarities (liver and kidneys). Hepatic tissue and space-door (black arrow) without particularities (Female liver - A). Liver tissue and space-door (black arrow) without particularities (Male liver - B). Renal tubules and glomeruli (black arrow) without particularities (female kidneys - C). Renal tubules and glomerulus (black arrow) without particularities (male kidney - D). H & E 200x.
that *S. rhombifolia* L., interferes directly in the lipid metabolism of treated animals, which leads to a decrease in the body weight of these animals. However, the decrease was not statistically significant, indicating that CEE has low toxicity; since in general changes behavior and weight gain are critical parameters for assessment of effects of a compound on animals; such changes are often the first signs of toxicity and indicative of adverse drug effects (Auletta, 1995; Teo et al., 2002; El-Sanusi and El-Adam, 2007).

During biochemical parameter analyses we observed an increase in the levels of ALT and AST for the treated males, whereas in females, there were no statistically significant changes. The liver is one of the most important organs in the body, being responsible for the metabolism and detoxification of all toxins that enter the body. Liver function may be evaluated through blood tests to provide information about the status of the liver and cellular integrity. Certain enzymes and proteins can be used as indicators of liver problems, such as ALT, AST, gamma-glutamyl transferase and bilirubin (Brandt et al., 2009). Certain drugs and medications are known to induce lipid peroxidation, causing swelling and necrosis of the liver cells, which results in the release of cytosolic enzymes, such as ALT, AST and ALP (Agbor et al., 2005). Thus, increases of ALT and AST in plasma may be indicative of hepatic lesions.

ALT is considered the most sensitive parameter for the liver, in cases of liver damage this enzyme leaks into the bloodstream. As an example of drugs that have high hepatotoxicity and cause changes in the levels of ALT and AST, stanozolol and acetaminophen are highlighted, yet they are routinely used (Basu et al., 2009; Mosallanejad et al., 2011). The increase in AST and ALT caused by the administration of CEE for *S. rhombifolia* L. indicates that the plant presents some signs of hepatotoxicity; as support of Ouédraogo et al. (2013), with similar results. When we observed the values obtained, there was a significant increase in creatinine levels for treated rats compared to the control group. However, this result has no clinical significance, since it is within the reference values (Giknis and Clifford, 2006; Castello Branco et al., 2011). Regarding the values obtained from the treated females, we did not obtain significant alterations of this group.

Blood parameter analysis is important for risk assessments of certain substances when administered to humans; the hematological system has great value to predict the first signs of toxicity. The hematopoietic system is very susceptible to toxic substances; an important system for analyzing physical health, and to evidence pathology in humans and animals (Olson et al., 2000; Li et al., 2010). Few statistically significant differences were found among the majority of hematological parameters between the control and treated groups. However, a significant decrease between the controls and the treated groups for the parameters of erythrocytes, MCV, MCH, and eosinophils for the males treated was observed. In the females, no parameter suffered statistically significant alteration, indicating that *S. rhombifolia* L. CEE presented low toxicity relative to the hematological system (Konaté et al., 2012).

The increase in the erythrocyte values of the male rats may be related to sex, because the erythrocyte number varied and males obtain higher values than those of women. Another factor that controls the emission of erythrocytes in the blood is the level of oxygenation of the tissues, in conditions of low oxygen pressure, during oxygen depletion erythropoiesis stimulation occurs (Lorenzi, 2006). The mean corpuscular volume (MCV) is considered one of the main criteria for the classification of anemic disorders, however, the decline in the MCV of the males cannot be considered as indicative of anemia, since the value was still close to reference and the other parameters that may indicate an anemia were not significantly altered (Bessman et al., 1983). The changes in the values of MCH and for eosinophils, despite being statistically significant do not have clinical relevance, since the values were close to reference. Such differences can be explained by biological variability among rats (Lewis et al., 2002; Giknis and Clifford, 2006; Castello Branco et al., 2011).

Qualitative macroscopic analyzes revealed that the dose tested did not produce changes in the vital organs of the treated animals and no changes suggestive of toxic effects were observed in the histopathological analyzes. These results are in agreement with the data obtained in the biochemical analyzes.

Conclusion

After acute treatment at oral dose of 2000 mg / kg body weight (bW) in male and female rats with crude ethanolic extract of *S. rhombifolia* L. (CEE), it was observed that the plant had no activity at the levels of the CNS or ANS, and has little influence on animal feeding, leading to only small weight losses. Regarding the toxicity, evaluated by biochemical and hematological parameters, it was observed that CEE has low toxicity. Few parameters showed significant changes. This justifies the extensive popular use found in the Brazilian northeast and allows a more comprehensive evaluation being necessary to evaluate the potential toxicity of this plant species when used chronically.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors thank the Federal University of Paraíba/
Brazil for the supply of laboratory facilities, and also to the Phytochemistry Laboratory of Prof. Dr. Raimundo Braz Filho for contributing with the extract of the plant. As well as the Brazilian agency CAPES for financial support.

REFERENCES

