About JMPR

The Journal of Medicinal Plants Research (JMPR) provides researchers, students and academicians an avenue to present their findings on the value of medicinal plants, indigenous medications, ethnobotany and ethnomedicine, herbal medicines and the cultivation of aromatic and medicinal plants.

The journal will consider for publication original research, reviews and meta-reviews, and short communication on areas covering nutraceuticals, drug discovery and development, pharmacopoeia, traditional medicine, monographs, and natural products research.

The Journal of Medicinal Plants Research is indexed in:

Open Access Policy
Open Access is a publication model that enables the dissemination of research articles to the global community without restriction through the internet. All articles published under open access can be accessed by anyone with internet connection.

The African Journals of Biotechnology is an Open Access journal. Abstracts and full texts of all articles published in this journal are freely accessible to everyone immediately after publication without any form of restriction.

Article License
All articles published by Journal of Medicinal Plants Research are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited. Citation should include the article DOI. The article license is displayed on the abstract page the following statement:

This article is published under the terms of the Creative Commons Attribution License 4.0. Please refer to https://creativecommons.org/licenses/by/4.0/legalcode for details about Creative Commons Attribution License 4.0
Article Copyright

When an article is published by in the Journal of Medicinal Plants Research, the author(s) of the article retain the copyright of article. Author(s) may republish the article as part of a book or other materials. When reusing a published article, author(s) should;

- Cite the original source of the publication when reusing the article. i.e. cite that the article was originally published in the Journal of Medicinal Plants Research. Include the article DOI
- Accept that the article remains published by the Journal of Medicinal Plants Research (except in occasion of a retraction of the article)
- The article is licensed under the Creative Commons Attribution 4.0 International License.

A copyright statement is stated in the abstract page of each article. The following statement is an example of a copyright statement on an abstract page.

Copyright ©2016 Author(s) retains the copyright of this article.

Self-Archiving Policy

The Journal of Medicinal Plants Research is a RoMEO green journal. This permits authors to archive any version of their article they find most suitable, including the published version on their institutional repository and any other suitable website.

Digital Archiving Policy

The Journal of Medicinal Plants Research is committed to the long-term preservation of its content. All articles published by the journal are preserved by Portico. In addition, the journal encourages authors to archive the published version of their articles on their institutional repositories and as well as other appropriate websites.

https://www.portico.org/publishers/ajournals/

Metadata Harvesting

The Journal of Medicinal Plants Research encourages metadata harvesting of all its content. The journal fully supports and implements the OAI version 2.0, which comes in a standard XML format. See [Harvesting Parameter](#)

Memberships and Standards
Academic Journals strongly supports the Open Access initiative. Abstracts and full texts of all articles published by Academic Journals are freely accessible to everyone immediately after publication.

All articles published by Academic Journals are licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.

Crossref is an association of scholarly publishers that developed Digital Object Identification (DOI) system for the unique identification published materials. Academic Journals is a member of Crossref and uses the DOI system. All articles published by Academic Journals are issued DOI.

Similarity Check powered by iThenticate is an initiative started by CrossRef to help its members actively engage in efforts to prevent scholarly and professional plagiarism. Academic Journals is a member of Similarity Check.

CrossRef Cited-by Linking (formerly Forward Linking) is a service that allows you to discover how your publications are being cited and to incorporate that information into your online publication platform. Academic Journals is a member of CrossRef Cited-by.

Academic Journals is a member of the International Digital Publishing Forum (IDPF). The IDPF is the global trade and standards organization dedicated to the development and promotion of electronic publishing and content consumption.

COUNTER (Counting Online Usage of Networked Electronic Resources) is an international initiative
serving librarians, publishers and intermediaries by setting standards that facilitate the recording and reporting of online usage statistics in a consistent, credible and compatible way. Academic Journals is a member of COUNTER

Portico is a digital preservation service provided by ITHAKA, a not-for-profit organization with a mission to help the academic community use digital technologies to preserve the scholarly record and to advance research and teaching in sustainable ways.

Academic Journals is committed to the long-term preservation of its content and uses Portico

Academic Journals provides an OAI-PMH (Open Archives Initiatives Protocol for Metadata Harvesting) interface for metadata harvesting.
Contact

Editorial Office: jmpr@academicjournals.org

Help Desk: helpdesk@academicjournals.org

Website: http://www.academicjournals.org/journal/JMPR

Submit manuscript online http://ms.academicjournals.org

Academic Journals
73023 Victoria Island, Lagos, Nigeria
ICEA Building, 17th Floor, Kenyatta Avenue, Nairobi, Kenya

Editor-in-chief

Prof. Akah Peter Achunike
Department of Pharmacology & Toxicology
University of Nigeria
Nsukka,
Nigeria.

Associate Editors

Dr. Luís Cláudio Nascimento da Silva
Post-graduation program of Microbial Biology.
CEUMA University
Rua Josué Montello, nº 1, Renascença II
São Luís - MA, CEP 65.075-120

Dr. Isiaka A. Ogunwande
Department of Chemistry
Lagos State University
Ojo,
Nigeria.

Dr. Bachir Raho Ghalem
Biology Department
University of Mascara
Algeria.

Dr. Pramod V Pattar
Department of Botany
Davangere University
Karnataka,
India.

Dr. Parichat Phumkhachorn
Department of Biological Science, Faculty of Science,
Ubon Ratchathani University,
Ubon Ratchathani 34190,
Thailand.

Dr. Anthoney Swamy
Department of Chemistry
School of Science and Technology
University of Eastern Africa
Baraton,
Kenya.

Dr. Arvind K Tomer
Department of Chemistry
University of Phagwara
Punjab
India

Dr. Foluso Oluwagbemiga Osunsanmi
Department of Agricultural Science,
University of Zululand,
South Africa.

Associate Editors

Dr. Shikha Thakur
Department of Microbiology,
Sai Institute of Paramedical and Allied Sciences,
India.

Dr. Naira Peló gia
Institute of Basic Sciences,
Taubaté University,
Brazil
Dr. Ravichandran Veerasamy
Faculty of Pharmacy
AIMST University
Semeling,
Malaysia.

Dr. Bellamkonda Ramesh
Department of Food Technology,
Vikrama Simhapuri University,
India
Table of Content

Phytochemical screening, chromatographic profile and evaluation of antimicrobial and antioxidant activities of three species of the Cyperaceae Juss. Family
José Jailson Lima Bezerra, Ticiano Gomes do Nascimento, Regianne Umeko Kamiya, Ana Paula do Nascimento Prata, Patrícia Muniz de Medeiros, Sâmia Andriá Souza da Silva and Cecilia Nascimento de Mendonça

Evaluation of antidiabetic activity of the ethanol extract of *Momordica charantia* L. and the identification of charantin by gas chromatography coupled with Mass spectrometry
Snelle Miakayizila Baonda, Celestine Nkounkou Loumpangou, Raoul Ampa, Arnold Murphy Elouma Ndinga, Longin Justin Clair Bonazaba Milandou, Myriam Bonose and Jean Maurille Ouamba
Phytochemical screening, chromatographic profile and evaluation of antimicrobial and antioxidant activities of three species of the Cyperaceae Juss. Family

José Jailson Lima Bezerra¹*, Ticiano Gomes do Nascimento², Regianne Umeko Kamiya³, Ana Paula do Nascimento Prata¹, Patrícia Muniz de Medeiros¹, Sâmia Andricia Souza da Silva² and Cecília Nascimento de Mendonça³

¹Agricultural Sciences Center, Federal University of Alagoas, Maceió, Alagoas, Brazil.
²Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil.
³Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil.

Received 29 May, 2019; Accepted 5 July, 2019

Some species of the family Cyperaceae have been studied extensively for presenting bioactive compounds of pharmacological interest. Thus, the present research aimed to investigate the antimicrobial, antioxidant and chemical constituents of _Kyllinga odorata_ Vahl, _Oxycaryum cubensis_ Poepp. & Kunth and _Rhynchospora nervosa_ Boeck. Hydroalcoholic extracts (1:1, v:v) of aerial and underground parts. These species were used for analysis of phytochemical prospection, quantification of total flavonoid and phenol content, and for evaluation of _in vitro_ antioxidant activity against DPPH radical (2,2-diphenyl-1-picrylhydrazyl). The ethyl acetate and chloroform phase resulting from the liquid-liquid partitioning of the extracts of _K. odorata_, _O. cubensis_ and _R. nervosa_ were evaluated in _in vitro_ antimicrobial assays and analyzed by high performance liquid chromatography (HPLC-DAD) identification of chemical substances. From the chromatograms obtained by HPLC-DAD, substances of great pharmacological importance were identified, such as: chlorogenic acid, myricitrin, catechin, apigenin, quercetin, luteolin, chrysin and rutin. The hydroalcoholic extract of the aerial parts of _R. nervosa_ had the highest content of flavonoids (1.521 μg EQ/μg) and total phenols (5.020 EGA/μg), suggesting a direct relation with the excellent antioxidant activity of this species (IC₅₀ = 122.11 μg/ml). It was evidenced that the chloroform phase of _O. cubensis_ showed the best result, inhibiting the growth of _Candida albicans_, _Staphylococcus aureus_ and _Pseudomonas aeruginosa_ with the minimum inhibitory concentration of 15.6, 31.2 and 62 μg/ml, respectively.

Key words: Cyperaceae, biological activities, natural products, medicinal plants.

INTRODUCTION

The Cyperaceae family has a cosmopolitan distribution and plays a dominant role in wetland vegetation (Larridon et al., 2013). This family is represented by about 5,000 species distributed among 104-122 genera (Jung and...
Although there are no endemic genera of Cyperaceae in Brazil, it is estimated that 203 are endemic Brazilian species, of which 40 belong to Rhynchospora, 28 to Cyperus, 25 to Scleria, 22 to Bulbostylis, 19 to Pleurostachys, 16 to Eleocharis and 11 to Hypolytrum (Alves et al., 2009).

According to Martins et al. (2013), species of the family Cyperaceae have scientifically proven biological activities in vivo and in vitro, being related to the high content of flavonoids and phenols that occur in these plants. Adeniyi et al. (2014) report that extracts obtained from some species of this family have compounds with antimicrobial properties that can be used in the development of new drugs for the treatment of infectious diseases caused by pathogens.

Among the species of Cyperaceae cited in the literature as possible medicinal plants, the Kyllinga odorata rhizome has been used in Paraguay as a medicine, and that flavones and tannins would be responsible for the diuretic, antispasmodic, anti-diarrheal and astringent activity attributed to this species (González et al., 2009). Pagning et al. (2016) point out that extracts and compounds isolated from a plant of the genus Rhynchospora (Rhynchospora corymbosa) have antimicrobial activity against sensitive microorganisms.

Despite the scientific evidence on the therapeutic use of some species of Cyperaceae, other representatives, such as those of the genus Oxycaryum, for example, have not yet had their medicinal potential scientifically tested, requiring further research. Carneiro et al. (2014) emphasize that multidisciplinary studies regarding potentially medicinal plants are essential, since there is a great need for research regarding isolation, purification, characterization of active principles, and pharmacological investigation of extracts. In this way, the present work was carried out aiming to analyze the chemical constituents and evaluate the antimicrobial and antioxidant activities of the extracts of Kyllinga odorata Vahl, Oxycaryum cubensis Poepp. & Kunth and Rhynchospora nervosa Boeck.

METHODOLOGY

Botanical material

Specimens of Kyllinga odorata Vahl; Oxycaryum cubensis Poepp. & Kunth and Rhynchospora nervosa Boeck were collected at the Agricultural Sciences Center of the Federal University of Alagoas between August and September, 2017. Exsiccate of the botanical material were identified by teacher Ana Paula do Nascimento Prata and deposited in the Herbarium of the Institute of the Environment of Alagoas, under the numbers MAC-64293 (K. odorata), MAC-64295 (O. cubensis) and MAC-64294 (R. nervosa).

Obtaining and concentrating extracts

Both aerial and underground parts of K. odorata, O. cubensis and R. nervosa were oven dried at 45°C and pulverized in a knife mill. The extraction was carried out by maceration using 10 g of powder of the species for 200 ml of hydroalcoholic solution (1:1, v/v). The botanical material in the form of hydroalcoholic extract was concentrated on a rotary evaporator at a constant temperature of approximately 60°C until complete evaporation of the solvent.

Partitioning of bioactive extracts

In order to carry out the liquid-liquid partitioning process of the crude hydroalcoholic extract of K. odorata, O. cubensis and R. nervosa, a separation funnel was used. A total of 20 ml of ethyl acetate was used for 20 ml of crude extracts of the aerial parts and 20 ml of chloroform for 20 ml of crude extracts of the underground parts. The phases resulting from the partitioning were obtained separately, reserved for the analyses in High Performance Liquid Chromatography (HPLC-DAD) and tested against pathogenic microorganisms.

Prospecting phytochemistry (screening)

The accomplishment of the phytochemical triage was based on the methodology proposed by Matos (1997). From the sample of crude extracts obtained from K. odorata, O. cubensis and R. nervosa, a total of 35.0 ml were set apart for phytochemical prospection, divided into seven 3.0 ml portions in test tubes numbered from "1" to "7". The qualitative and semi-quantitative tests were carried out, covering trials for phenols and tannins (by reaction with ferric chloride), anthocyanins, catechins and flavonoids (by pH variation test with sodium hydroxide and hydrochloric acid), and alkaloids (identification with Dragendorff).

Total flavonoids

The total content of flavonoids was determined using the spectrophotometric method with 5% aluminum chloride (AlCl₃) reaction in methanol (Alves and Kubota, 2013). A total of 100 μl of 5% aluminum chloride was added to a 5 ml volumetric flask, then aliquots of the extracts of the aerial parts (AP) and underground parts (UP) of K. odorata (AP: 1212, 1010, 808, 606, 404 μg/ml and UP: 3258, 2896, 2534, 2172 and 1810 μg/ml), O. cubensis (AP: 3392, 2968, 2544, 2120 and 1696 μg/ml and UP: 2178, 1936, 1694, 1452 and 1210 μg/ml) and R. nervosa (AP: 819, 702, 585, 468 and 351 μg/ml and UP: 1674, 1488, 1302, 1116 and 930 μg/ml) at five different concentration points. The final volume of the flask was adjusted with methanol and after 30 min the absorbance was measured at 425 nm.

Total flavonoid content was determined using a standard quercetin curve at seven points of concentrations 4, 5, 6, 7, 8, 9 and 10 μg/ml. The equation obtained from the quercetin standard curve was: \(y = 0.0987x - 0.0541 \), where y is the absorbance and x is the concentration; \(R² = 0.9993 \). The total content of flavonoids was expressed as μg of quercetin equivalents (EQ/μg) per μg of the extracts of K. odorata, O. cubensis and R. nervosa, considering their dry extract content.

Total phenols

For the determination of total phenolics, the Folin-Ciocalteu method was used as described by Waterman and Mole (1994), with some adaptations. Aliquots of the extracts of the aerial parts (AP) and underground parts (UP) of K. odorata (AP: 280, 420, 560, 700 and 840 μg/ml and UP: 452, 543, 633, 724 and 814 μg/ml), O. cubensis (AP: 255, 383, 510, 638 and 766 μg/ml and UP: 363, 423, 484, 544 and 605 μg/ml) and R. nervosa (AP: 76, 95, 114, 133 and 152 μg/ml and UP: 325, 372, 418, 465 and 511 μg/ml) at five different concentrations. Subsequently, 0.25 ml of the Folin-Ciocalteu reagent was added and after 2 min, 1 ml of sodium carbonate...
Identification of bioactive compounds

The separation of the bioactive compounds was carried out in High Performance Liquid Chromatography (HPLC) with ultraviolet detector (UV) and diode array (DAD), where ethyl acetate and chloroformic phases of K. odorata, O. cubensis and R. nervosa were injected at a flow rate of 0.6 ml/min for 72 min using a Jupiter 5u C18 300A reverse phase column as stationary phase and a mixture of methanol, water and 0.1% trifluoroacetic acid as mobile phase. Chromatograms were recorded at wavelengths at 254 nm.

To identify the substances, an analytical standard was used specifying the retention time obtained from the sample and its respective wavelengths (Table 1).

In vitro antioxidant activity

Free radical scavenging (FRS) by the DPPH method was evaluated following the methodology of Mensor et al. (2001) with adaptations. To measure the scavenging capacity of the DPPH radical (2,2-diphenyl-1-picrylhydrazyl), 2.0 ml of DPPH solution was inserted into a 5 ml flask. Subsequently, aliquots of the extracts of the aerial parts (AP) and underground parts (UP) of K. odorata (AP: 808, 606, 404, 202, 101 and 40 μg/ml and UP: 724, 434, 382, 181, 90 and 36 μg/ml), O. cubensis (AP: 848, 636, 424, 212, 106 and 42 μg/ml and UP: 484, 363, 242, 121, 60 and 24 μg/ml) and R. nervosa (AP: 936, 702, 468, 234, 117 and 46 μg/ml and UP: 372, 279, 186, 93, 46 and 18 μg/ml) were added at six different concentration points. The final volume of the flask was filled with ethanol and after 30 min the absorbance was measured at 518 nm.

The DPPH radical scavenging capacity was calculated according to the equation: Radical scavenging capacity DPPH (%) = \((100 - ((\text{ABS sample} - \text{ABS white}) \times 100) / \text{ABS control})) \). Where: \text{ABS Sample} = \text{Absorbance of the sample solution in DPPH}; \text{ABS Control} = \text{Absorbance of reference solution in DPPH}; \text{ABS white} = \text{Absorbance of sample solution without DPPH}. The results concerning the antioxidant activity were expressed by means of the calculation of IC50 (inhibitory concentration), where the equation of the line referring to the absorbance values of the extracts was used, replacing the value of \(y \) with 50 to obtain the concentration of the sample with the capacity to reduce 50% of the DPPH radical (Lőbo et al., 2010).

In vitro antimicrobial activity

The efficiency of the ethyl acetate and chloroformic phases obtained from K. odorata, O. cubensis and R. nervosa were tested against the following pathogenic microorganisms: Staphylococcus aureus (Gram-positive bacterium); Pseudomonas aeruginosa (Gram-negative bacterium), and Candida albicans (fungus).

Minimum inhibitory concentration (MIC)

The serial microdilution technique was performed in triplicate, following the methodologies described by Sampaio et al. (2009), CLSI (2012), and Arendrup et al. (2012), with modifications. The ethyl acetate and chloroformic phases of the aerial and underground portions of K. odorata, O. cubensis and R. nervosa were diluted in DMSO at 1% in H2O at 2500 μg/ml. Subsequently, the phases were diluted into 96-well microplates containing 80 μl of Brain Heart Infusion (BHI) medium per well. Inoculations of S. aureus cells ATCC 27664, P. aeruginosa ATCC 25619 or C. albicans ATCC 36802 were standardized using the colony suspension method and the MacFarland 0.5 scale, as described in the protocols of CLSI (2012) and Arendrup et al. (2012). At each phase dilution, 20 μl of a microbial suspension containing 106 CFU/ml of S. aureus cells ATCC 27664 or P. aeruginosa ATCC 25619 or 105 CFU/ml of C. albicans ATCC 36802 were added, thus obtaining the serial dilution, 15,62, 31,25, 62,50, 125, 250, 500, and 1000 μg/ml of the phases, in the final volume of 100 μl per well. As a negative control, the same microbial inocula were used in BHI broth without antimicrobials. The MIC was determined by spectrophotometry in an Elisa reader at 560-630 nm after 24 h of incubation in aerophy at 37°C. The MIC was defined as the lowest concentration range of antimicrobial capable of inhibiting 100% of the microbial growth, in relation to the negative control.

Statistical analyzes

Statistical analyzes were performed using GraphPad Prism 5.0 software and Microsoft Excel® 2010 software. Average tests were carried out to differentiate phenol and total flavonoid contents of the extracts of O. cubensis, K. odorata and R. nervosa. The comparison between the groups was performed through analysis of variance (ANOVA), considering all results with p below 0.05 using the Tukey
test at 5% probability.

RESULTS AND DISCUSSION

Phytochemical prospecting

From the preliminary phytochemical analyses of the hydroalcoholic extracts of K. odorata, O. cubensis, and R. nervosa, it was possible to evidence the occurrence of some groups of bioactive compounds of therapeutic and alimentary importance (Table 2). The chemical reactions observed in the extracts of the aerial and underground parts of the three species studied suggested the occurrence of phenols, flavonoids, catechins, flavonones, flavones, and xanthones, and alkaloids.

In these analyses, the substances known as anthocyanin, anthocyanidin and leucoanthocyanidins were not identified. The absence of these compounds in extracts of green coloration (for the aerial parts) and brown (for the underground parts) is justifiable, for anthocyanins are pigments belonging to a subgroup within the flavonoids that occur mainly in many fruits, vegetables and flowers, showing a great variety of colors that oscillate between intense red to violet and blue (Patras et al., 2010; Petroni and Tonelli, 2011; Ribeiro et al., 2011).

It was evidenced that extracts of the underground parts of K. odorata presented a greater amount of precipitate by the Dragendorff test in relation to the other species, suggesting that the rhizomes of this plant are rich in alkaloids. In phytochemical analyses performed by Majumder (2013), it was possible to identify the occurrence of alkaloids from the ethanolic extracts of the Kyllinga nemoralis roots. Verma et al. (2016) also observed the presence of alkaloids from a phytochemical prospection using the methanolic extract of Kyllinga triceps, indicating that plants of the genus Kyllinga are sources of this bioactive compound.

Total flavonoids

From the results obtained from the quantification test of the total flavonoids present in the crude extracts of the species studied, it was possible to evidence that the aerial parts of R. nervosa (1.521 μg EQ/μg) and K. odorata (1.024 μg EQ) presented a higher content of flavonoids when compared to O. cubensis (0.284 μg EQ/μg). In relation to the underground parts of these species, the amount of total flavonoids is lower when compared to the aerial parts, except for O. cubensis (0.330 μg EQ/μg), which did not differ statistically between the two extracts analyzed (Figure 1).

In general, flavonoids are found in all vascular plants and represent one of the most important and diversified phenolic groups among products of natural origin. In addition, these substances are of great interest for human health and nutrition (Hichri et al., 2011; Carrera et al., 2014). Although the data of this research point to R. nervosa as the species with the highest flavonoid content in its aerial parts, no records were found in the literature that prove this same tendency. Another species that showed good results was K. odorata. Studies indicate that the methanolic extract of K. erecta (a representative

Table 2. Phytochemical prospection of the hydroalcoholic extracts of Kyllinga odorata Vahl; Oxycaryum cubensis Poepp. & Kunth, and Rhynchospora nervosa Boeck.

<table>
<thead>
<tr>
<th>Phytochemical compounds</th>
<th>OCEAP</th>
<th>KOEAP</th>
<th>RNEAP</th>
<th>OCEUP</th>
<th>KOEUP</th>
<th>RNEUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenols</td>
<td>++</td>
<td>+++</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Tannins</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flabfenic tannins</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anthocyanin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Antocyanidin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leucoantocianidines</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Catechins</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>-</td>
<td>+++</td>
</tr>
<tr>
<td>Flavanones</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Flavones</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Flavonols and xanthones</td>
<td>+++</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Chalcones and auronas</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flavononols</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(+) weakly positive reaction, (++) positive reaction, (+++) reaction strongly positive, (-) absent.
Figure 1. Total flavonoid content of the hydroalcoholic extracts of Kyllinga odorata Vahl; Oxycaryum cubensis Poepp. & Kunth and Rhynchospora nervosa Boeck.

Equal letters indicate that there is no significant difference and different letters indicate that there is significant difference between the groups according to the Tukey test. P value considered significant below 0.05.

Figure 2. Total phenol content of the hydroalcoholic extracts of Kyllinga odorata Vahl; Oxycaryum cubensis Poepp. & Kunth and Rhynchospora nervosa Boeck.

Equal letters indicate that there is no significant difference and different letters indicate that there is significant difference between the groups according to the Tukey test. P value considered significant below 0.05.

of the genus Kyllinga) has a high content of flavonoids and phenolic content. Consequently, it has high antioxidant activity (Augustus et al., 2015).

Total phenols

The analyses concerning the quantification of the total phenol content of the hydroalcoholic extracts of the three species studied are in agreement with the results found for total flavonoids, since the aerial parts of R. nervosa differ statistically from the other samples, indicating a much higher amount of phenolic compounds (5.020 μg EGA/μg) (Figure 2). It is important to note that reports about the chemical constitution of R. nervosa are scarce in the literature, which makes the present study important for the phytochemical knowledge of this species and the genus Rhynchospora itself. Natural products have stood out as therapeutic and alimentary alternatives. Thus, the aerial parts of R. nervosa can serve as the basis for the development of new pharmacological research, since phenolic compounds are known for their many benefits (Crozier et al., 2010; Cartea et al., 2011).

Identification of chemical compounds

According to the chromatograms obtained by the high performance liquid chromatography (HPLC) of the aerial parts of K. odorata, O. cubensis and R. nervosa, substances of therapeutic and nutritional importance were identified. In the ethyl acetate phase of K. odorata (Figure 3), it was possible to identify only myricitrin. According to research conducted by Tucker et al. (2006), twenty-three different chemical constituents were identified as dominant components of dihydroquinone and aristolochene in K. odorata. These authors also emphasize that dihydroquinone and aristolochene were not previously reported in the essential oils of Cyperaceae.

Catechin and chlorogenic acid were the only substances identified in the chromatogram of the aerial parts of O. cubensis (Figure 4). It was not possible to identify the major compounds that occur in this species by means of the techniques used. It was possible to identify catechin and apigenin (Figure 5) from the chromatographic profile of the ethyl acetate phase of the aerial parts of R. nervosa. Apigenin is one of the most bioactive flavones and is widely distributed in the plant kingdom. Its consumption is highly recommended for a healthy diet (Shukla and Gupta, 2010). According to Begum and Prasad (2012), it is plausible to assume that apigenin has a protective effect against oxidative stress induced by radiation, and this may be related to its antioxidant action. These data can serve as a basis to explain the potent antioxidant effect evaluated in the present study, from hydroalcoholic extracts of R. nervosa.

The major compound identified in the chloroformic
phase chromatogram of the underground part of *K. odorata* is a flavonoid known as Chrysin (Figure 6). From the phytochemical studies performed by Noori et al. (2015), it was evidenced that Chrysin was also identified in other species of the family Cyperaceae. Khoo et al. (2010) highlighted the importance of this substance in the process of inhibiting the proliferation and induction of apoptosis in cancer cells, being more potent than other flavonoids in the treatment of leukemia.

Some of the major substances in the chloroformic phase of the underground parts of *O. cubensis* have not been fully elucidated by the standards used (Figure 7). Luteolin was an important compound identified in this chromatographic run. According to Seelinger et al. (2008), luteolin is a flavone that can be found in many medicinal plants. These authors also report that this substance, like other flavonoids, is often found in plants in the form of glycosides. According to López-Lázaro (2009), numerous preclinical studies have demonstrated that luteolin has a wide range of biological activities and several mechanisms of action have been elucidated and even used in the treatment of cancer.

The major compound present in the chloroformic phase of the underground part of *R. nervosa* presented wavelengths different from the standard used for the recognition of the substances analyzed by liquid chromatography (Figure 8). Thus, it is necessary to carry out analyses using infrared and nuclear magnetic resonance (NMR) techniques in order to elucidate the chemical structure of this substance.
Among the analyzed samples, it was observed that the extract of the aerial parts of *R. nervosa* presented the best result, requiring a concentration of only 122.11 μg/ml for the reduction of 50% of the DPPH radical. As for the hydroalcoholic extracts of *K. odorata* and *O. cubensis*, concentrations above 280 μg/mL were required for the occurrence of the same reduction of the DPPH radical and, therefore, present a lower antioxidant activity than that observed in the aerial parts of *R. nervosa* (Table 3).

According to Palacios et al. (2011), phenolic compounds are responsible for the antioxidant activity. Thus, considering that the aerial parts of *R. nervosa* presented high levels of phenols and total flavonoids, it was expected that their antioxidant activity would also be higher when compared to the other extracts analyzed by the DPPH method. The scavenging potential of free radicals has been evaluated from extracts of the Cyperaceae family. Forero-Doria et al. (2014) elucidated the antioxidant properties of *Cyperus digitatus*, indicating that extracts from this plant may be useful in preventing the progress of various disorders related to oxidative stress. According to Aeganathan et al. (2015), the chloroformic fractions of the rhizomes of *Cyperus rotundus* also presented an excellent antioxidant activity.

In vitro antioxidant activity

The ethyl acetate (aerial parts) and chloroformic phases (underground) of *K. odorata*, *O. cubensis* and *R. nervosa* were evaluated against *Candida albicans* (fungus), *Staphylococcus aureus* (Gram-positive bacteria) and *Pseudomonas aeruginosa* (Gram-negative). From the results obtained (Table 4), it was observed that the phases of the aerial parts of the three species studied did not present any significant effect when tested against the pathogenic microorganisms by means of serial microdilutions. The best results were observed in the chloroformic phases of the underground parts of *O. cubensis* against *C. albicans* (15.6 μg/ml), *S. aureus* (31.2 μg/ml) and *P. aeruginosa* (62.5 μg/ml).

The *C. albicans* pathogen was susceptible to all chloroformic phases of the analyzed plant underground parts. It is noteworthy that CFOCUP inhibited fungal growth in MIC of 15.6 μg/ml. From these data, a perspective is created for later analyses of the main chemical constituents present in the underground parts of *K. odorata*, *O. cubensis* and *R. nervosa* that are responsible for the control of *C. albicans*, considering that this microorganism is the causative agent of candidiasis: an opportunistic infection of difficult control in immunocompromised patients (Adeniyi et al., 2014). In general, the underground parts of some Cyperaceae species may be important sources of anti-candida bioactive products (Duarte et al., 2005). Adeonipekun et al. (2014) also reported in their work that the ethanolic extract of the roots of *Pycreus smithianus* (family Cyperaceae) showed strong activity in relation to the control against *C. albicans*.

In addition to being effective against fungal growth, CFOCUP also had the best inhibitory activity at the concentration of 31.2 μg/ml when tested against *S. aureus*. The ground phases of *K. odorata* and *R. nervosa* also showed good results against Gram-positive bacteria, but at higher concentrations (250 μg/ml). Data that prove the effectiveness of the extracts or phases of the analyzed species are scarce in the literature, suggesting that the present study has an innovative character. From the studies carried out with *Cyperus rotundus*, one of the most extensively studied species of Cyperaceae, it was observed that extracts of this whole plant showed high...
activity against Gram-positive bacteria, including *S. aureus* (Kabbashi et al., 2015).

Concerning *P. aeruginosa*, only the chloroformic phases of the underground parts of *K. odorata* (500 μg/ml) and *O. cubensis* (62.5 μg/ml) showed inhibitory activity, suggesting that this gram-negative bacterium has greater resistance when compared to the other evaluated microorganisms. Several studies have demonstrated the resistance of *P. aeruginosa* to the currently available antibiotics, so it is extremely important to make advances in research aimed at discovering more effective drugs to fight the infections caused by this super bacterium (Breidenstein et al., 2011; Gellatly and Hancock, 2013).

Conclusion

The ethyl acetate and chloroformic phases of *K. odorata, O. cubensis* and *R. nervosa* were identified as substances of great pharmacological importance by means of the CLAE-DAD technique, such as: myricitrin, catechin, apigenin, quercetin, luteolin, chrysin and rutin. However, it is worth mentioning that new experiments using nuclear magnetic resonance (NMR) techniques are necessary to elucidate the chemical structures of unknown compounds that were not identified by the standard used in liquid chromatography.

The hydroalcoholic extracts of the aerial parts of these species presented higher levels of flavonoids and total phenols when compared with the extracts of the underground parts. In regard to the antioxidant activity, it was clear that the hydroalcoholic extract of the aerial parts of *R. nervosa* presented the best result in relation to the other samples evaluated. This may be directly related to the high content of phenols and flavonoids that occur in the aerial parts of this species. Only the chloroformic phases of the underground parts of the three species studied showed inhibitory activity against *S. aureus, C. albicans* and *P. aeruginosa*. It is important to mention that CFCUP stood out among the other analyzed fractions, exhibiting control of the pathogens in much lower concentrations. Thus, it can be suggested that the underground parts of *K. odorata, O. cubensis* and *R. nervosa* can be sources of important bioactive substances against fungi and bacteria that affect human health.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Adeniyi TA, Adeonipekun PA, Omotayo EA (2014). Investigating the

Table 3. In vitro antioxidant activity of the hydroalcoholic extracts of *Kyllinga odorata* Vahl; *Oxycaryum cubensis* Poepp. & Kunth and *Rhynchospora nervosa* Boeck.

<table>
<thead>
<tr>
<th>Hydroalcoholic extracts – AP</th>
<th>IC₅₀ – μg/mL</th>
<th>AA (% ± SD)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. odorata</td>
<td>546.70</td>
<td>46.62 ± 0.09</td>
</tr>
<tr>
<td>O. cubensis</td>
<td>293.30</td>
<td>54.94 ± 0.26</td>
</tr>
<tr>
<td>R. nervosa</td>
<td>122.11</td>
<td>61.00 ± 0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydroalcoholic extracts – UP</th>
<th>IC₅₀ – μg/mL</th>
<th>AA (% ± SD)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. odorata</td>
<td>608.85</td>
<td>42.76 ± 0.41</td>
</tr>
<tr>
<td>O. cubensis</td>
<td>268.27</td>
<td>43.49 ± 0.09</td>
</tr>
<tr>
<td>R. nervosa</td>
<td>287.67</td>
<td>45.12 ± 0.12</td>
</tr>
</tbody>
</table>

AP: Aerial part; UP: Underground part; AA: Antioxidant activity; ¹average ± standard deviation.

Table 4. Determination of the Minimal Inhibitory Concentration (MIC) of the ethyl acetate and chloroformic fractions of the aerial and underground parts of *Kyllinga odorata* Vahl; *Oxycaryum cubensis* Poepp. & Kunth and *Rhynchospora nervosa* Boeck.

<table>
<thead>
<tr>
<th>Strains</th>
<th>EAFKOAP μg/ml</th>
<th>CFKOUP μg/ml</th>
<th>EAFOCAP μg/ml</th>
<th>CFOCUP μg/ml</th>
<th>EAFRNAP μg/ml</th>
<th>CFRNUP μg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>-</td>
<td>31.2</td>
<td>-</td>
<td>15.6</td>
<td>-</td>
<td>125</td>
</tr>
<tr>
<td>S. aureus</td>
<td>-</td>
<td>125</td>
<td>-</td>
<td>31.2</td>
<td>-</td>
<td>125</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>-</td>
<td>500</td>
<td>-</td>
<td>62.5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Full Length Research Paper

Evaluation of antidiabetic activity of the ethanol extract of *Momordica charantia* L. and the identification of charantine by gas chromatography coupled with Mass spectrometry

Snelle Miakayizila Baonda¹,²*, Celestine Nkounkou Loumpangou¹, Raoul Ampa¹, Arnold Murphy Elouma Ndinga¹,², Longin Justin Clair Bonazaba Milandou¹, Myriam Bonose² and Jean Maurille Ouamba

¹Unit of Chemistry of Plant and of the Life, Faculty of Sciences and Technology Marien N’GOUABI University, B.P. 69, Brazzaville Congo.
²Paris sud university, lip (Sys)2, LETIAM, IUT of Orsay, Plateau de moulon, 91400 Orsay, France.

Received 22 February, 2019; Accepted 3 June, 2019

The aerial parts of *Momordica charantia* L. are very often used in traditional Congolese medicine for their multiple virtues. Our study focused on the identification of a well-known antidiabetic molecule: the charantine and also the antidiabetic properties of the ethanol extract of *M. charantia* L. After being treated with MSTFA (N-Methyl-N-(trimethylsilyl) trifluoroacetamide) and using gas chromatography-Mass spectrometry, the analysis of the extract of the leafy stem of *M. charantia* L., var abreviata, harvested in Brazzaville (Congo) led to the identification of a recognized antidiabetic molecule stigmasterol glucoside or β sitosterol: the charantine. When testing the ethanolic extract on albino Wistar rats that were made diabetic by injecting the streptozotocin, this reduces glycemia significantly by 51.62% after three hours. The significant results of the antidiabetic tests and the identification of the charantine in the plant justify its use in the traditional medicine in Congo Brazzaville.

Key words: *Momordica charantia* L, gas chromatography, mass spectrometry, charantine, antidiabetic.

INTRODUCTION

Diabetes is a metabolic and hereditary disease due to lack or insufficiency or misuse of insulin production by the body (Altman et al., 2012). Nowadays, it is considered as a major public health problem. In 2015, there were nearly 441 million of diabetics in the world (Cho et al., 2018). In the republic of Congo, many people suffer from diabetes, although a lot of cases remain undiagnosed. On the occasion of the World Diabetes Day, the latest survey of the Ministry of Health revealed a prevalence of 9%. According to the World Health Organisation (WHO) more than 80% of diabetes related deaths occur in low- and middle-income countries because of a poor medical
Figure 1. *Momordica charantia* L.

monitoring (Jaffiol, 2011). Many plants are traditionally used as antidiabetic, some of them are on the basis of producing of drugs. This is the case of metformin and other antidiabetic drugs belonging to the class of biguanides, all inspired by galegine isolated from *Galega officinalis* (Fabaceae) (Khodadadi, 2016).

Momordica charantia L. is a plant of the Cucurbitaceae’s family, found in African wild flora. It is widely spread throughout tropical African area and is taken for the wild form of the species. It is harvested in a natural state and used as a vegetable or medicinal plant (Schmelzer and Gurib-Fakim, 2008) (Cantwell et al., 1996).

In Congo, this plant is used in traditional medicine as antidiabetic and for its many other medicinal virtues (antimalarial, deworming, laxative, etc...). The ethnobotanical survey conducted in Brazzaville (Congo) by Ampa and al showed that *M. charantia* L. is a widely used antidiabetic plant (Ahombo et al., 2012; Adjanohoun et al., 1988). Although Congolese traditional healers prescribe the plant to diabetics, no antidiabetic and phytochemical studies have been made on the species present in Congo Brazzaville. Studies performed on this plant in China and India have revealed the presence of flavonoids, tannins, alkaloids, cardiac glycosides, saponins and steroids. More molecules like momordicosides, momordenol, momordicin, cucurbitacin, charantine were identified and isolated and among them some tested antidiabetic compounds such as antidiabetic activities of vicine, polypeptide P, charantine and many other triterpenoid (Singh et al., 2012; Majekodunmi et al., 1990; Sabira et al., 1997; Kimura et al., 2005; Sonal and Pratima, 2015; Haixia et al., 2004). Charantine, stigmasterol and β-sitosterol glucose steroidal saponins with effective antidiabetic properties. Some studies have shown that *M. charantia* has insulin secretory properties (Kedar and Chakrabarti, 1982). Several Works in Asia highlight that it is possible to extract charantine in seeds, in fruits, and in leaves of *M. charantia* L., by chromatographic and spectral methods such as high performance liquid chromatography (HPLC), high performance thin layer chromatography (HPTLC), ultraviolet spectrometry, infrared spectrometry (Haixia Z, Xiaozuo Z, Yawei W, Mancanq L, Zhide H, 2004).

This research focuses on evaluating the antidiabetic activity of the ethanolic extract of the *M. charantia* L. in Congo and to verify the presence of the charantine (antidiabetic molecule) by a method using gas chromatography coupled with mass spectrometry. The purpose of this paper is to confirm the antidiabetic activity of *M. charantia* species found in Congo Brazzaville.

MATERIALS AND METHODS

Plant material

Aerial parts from *M. charantia* L. (Figure 1) were collected in MFIOU a southern district of Brazzaville (Congo). Botanical identification of the plant was made in the Research Institute of Exact and Natural Sciences (IRSEN). The voucher specimen deposited in the national herbarium is Mampouya C. Mounsambote JM # 201 August 10, 2017.

Animal material

Male albino Wistar weight from 200 to 350 g were used. These rats were raised at the pet shop of the Faculty of Science and Technology of Marien Ngouabi University. They were fed with a complete diet (proteins, lipids, carbohydrates and mineral salt) and had free access to water.

Extraction and analysis equipment

This study was carried out using the following laboratory equipment:
Table 1. Analytical operating conditions in gas chromatography.

<table>
<thead>
<tr>
<th>Chromatograph parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillary column</td>
<td>20 m × 0.18 m × 0.15µm</td>
</tr>
<tr>
<td>Carrier gas</td>
<td>Helium</td>
</tr>
<tr>
<td>Pressure at the top of the column</td>
<td>100 kpa</td>
</tr>
<tr>
<td>Split flow</td>
<td>30 ml/min</td>
</tr>
<tr>
<td>Injector temperature</td>
<td>290°C</td>
</tr>
<tr>
<td>Temperature of the transfer line</td>
<td>320°C</td>
</tr>
<tr>
<td>Initial temperature</td>
<td>240°C</td>
</tr>
<tr>
<td>Rate</td>
<td>20°/min</td>
</tr>
<tr>
<td>Final temperature</td>
<td>340°C</td>
</tr>
</tbody>
</table>

Table 2. Analytical operating conditions in Mass spectrometer.

<table>
<thead>
<tr>
<th>Mass spectrometer parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source temperature</td>
<td>290°C</td>
</tr>
<tr>
<td>Voltage</td>
<td>70 eV</td>
</tr>
<tr>
<td>Number of scan / s</td>
<td>2.1</td>
</tr>
<tr>
<td>Mass range</td>
<td>45 - 900</td>
</tr>
</tbody>
</table>

(i) for sample preparation a soxhlet extractor, a BUCHI rotary evaporator;
(ii) for sample analysis a Hewlett Packard 6890 gas chromatograph coupled with MS Engine Hewlett Packard 5973 quadrupole mass spectrometry;
(iii) for evaluation of the antidiabetic activity: a glucometer of brand one touch with strips.

Preparation of the ethanolic extract

Aerial parts of *M. charantia* L. were dried in a dry place away from the light for a week and then crushed. The powder was stored in a glass vial. 20 g of the powder obtained were put in a cellulose cartridge and then extracted for 3 h with ethanol in a Soxhlet extractor with a capacity of 250 ml. The resulting extract was dried using a rotary evaporator to obtain a dry ethanolic extract.

Biological methods

Induction of diabetes

Male rats of an average weight between 200 and 350 g were anaesthetised with diethyl ether and then made diabetic by intravenous injection of streptozotocin (Sigma Aldrich) freshly prepared in sodium chloride buffer solution (0.9 %), at 55 mg / kg. Rats' Glycemia was monitored 72 h later. Rats with glycemia higher than 1.40 g/L were selected for the experiment (Andrade-Cetto et al., 2000).

Evaluation of the antidiabetic activity

The diabetic animals were fasted for 12 h and divided into three lots of five rats each. These different lots received respectively: distilled water (10 ml/kg), Glibenclamide (10 mg/kg) and ethanolic extract (400 mg/kg). Glycemia was taken every 4 h. A drop of blood collected by making a slight incision of the distal end of the tail of the rat was deposited on the reactive range of the strip. The reading is done on the glucometer which displayed the results in mmol/ml, then they were converted into g/L.

Statistical analysis

The results of the blood glucose are presented in the average form ± average standard error. Variance analysis (ANOVA) and the Student's test were used for the statistical study. The number of experiments in each group was n = 5. At the P <0.05 threshold, the values of blood glucose variation were considered significant.

Chemical methods

Methods of analysis

Treatment of the ethanolic extract: 2 mg of the dry ethanolic extract were added to 500 µl of the bypass reagent (pyridine / MSTFA) and then placed in an oil bath at 80°C for 2 h. The reagent was then evaporated to dryness using a rotary evaporator, the residue is taken up with 500 µl of hexane. The solution obtained is then ready for analysis in gas chromatography coupled with mass spectrometry (GC-MS) in split mode. 10 µl of the sample were injected. The duration of the analysis was 120 min, the acquisition began at 25 min.

Analysis of the extract in GC-MS: The operating conditions and the parameters of the chromatograph coupled with the mass spectrometer for the analysis of the ethanolic extract after derivatization are shown in Tables 1 and 2. The mass spectra are recorded in electronic impact mode with an ionization energy of 70 eV in “full-scan” mode. Chemical identification is carried out by comparing the mass spectrum obtained with that of reference. The
RESULTS

Efficiency of extraction

The extraction of 20 g of M. charantia L aerial parts with ethanol gave a crude weighing 2.34 g, which was a 2.34 g, and yield of 11.7%.

Effect of streptozotocin on normal rats

After injection of streptozotocin, polyuria and elevation of fasting rat glucose were observed with values between 1.40 and 2.53 g/L. These parameters justify that the rats were indeed made diabetic.

Evaluation of the antidiabetic effect of the ethanolic extract of M. charantia

Table 3 presents the evolution of the mean blood glucose level with percentages of glycemic reduction in diabetic rats that have been orally treated with ethanol extract, Glibenclamide and distilled water at the doses indicated above. As shown in the table, only the rats that received glibenclamide and plant extract showed significant reductions in blood glucose levels in the first hour, respectively 22.73 and 29.67% versus 8.99% for those that received distilled water. The latter showed no significant reduction in blood glucose until the fourth hour, while the other two lots of rats showed very significant reductions in blood glucose levels until the fourth hour (p <0.05). At the fourth hour, the percentage reduction in glycemia of rats treated with glibenclamide continued to increase (58.44% at the third hour for 59.10% at the fourth hour), while that of the rats treated with the extract plant starts to decline (51.62 to 47.56% at the fourth hour).

GC-MS analysis of M. charantia L. ethanolic extract and identification of sterol glucoside: charantin

The exploitation of the chromatogram with the database available in the laboratory enabled us to identify at different retention times several compounds and particularly β-sitosterol glucoside (charantin) with a retention time of 73.84 min (Figure 3). Mass spectrum related to the peak eluted at 73.84 is shown in Figure 2. On this mass spectrum, the following can be observed:

(i) The base peak is at m / z is 204,09 ;
(ii) Peaks of 395.34 and 451.10 are fragments of sterol and glucoside respectively
(iii) Ions at m/z : 147; 204; 217; 305 and 361 are characteristic of the carbohydrate moiety;
(iv) m/z : 129 and 255 are peaks characteristic of the sterol part;
(v) The molecular peak is that of which m / z = 861.43.

All of these spectral data are oriented towards a steroid compound whose basic skeleton is a stigmasterol; m/z = 395.34 (Figure 3) stuck to a sugar: glucose; m/z = 451.10 (Figure 4). The steryl glycoside TMSi ether allowed it to be analysed by GC/MS on a short packed column or by a capillary column operated at high temperature. The mass spectrum of steryl glycoside TMSi ether shows, molecular peak is not perceivable and it is dominated by ions arising from hexose TMSi ether moiety (m/z 361, 217, 204, 191 and 147). The base peak for a hexose pyranoside moiety is at m/z 204 but for a furanoside the prominent ion is m/z 217. The presence of stigmasterol glucoside (charantin) by

--

Table 3. Evolution of the glycemia and the percentage reduction of the blood glucose of the rat over the time after administration of the ethanolic extract of M. charantia L.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Water (10 ml/kg)</th>
<th>Glibenclamide (10 mg/kg)</th>
<th>Ethanol extract (400 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.78± 0.07</td>
<td>1.54 ± 0.04</td>
<td>2.46 ± 0.11</td>
</tr>
<tr>
<td>1</td>
<td>2.53 ± 0.04 (8.99 %)</td>
<td>1.19 ± 0.03 (22.73%)**</td>
<td>1.73 ± 0.02 (29.67%)**</td>
</tr>
<tr>
<td>2</td>
<td>2.37 ± 0.01 (14.74%)</td>
<td>0.80 ± 0.06 (48.05%)***</td>
<td>1.20 ± 0.04 (51.22%)***</td>
</tr>
<tr>
<td>3</td>
<td>2.39 ± 0.02 (14.02 %)</td>
<td>0.64 ± 0.05 (58.44 %)**</td>
<td>1.19 ± 0.03 (51.62 %)**</td>
</tr>
<tr>
<td>4</td>
<td>2.43 ± 0.01 (12.59 %)</td>
<td>0.62 ± 0.04 (59.10%)***</td>
<td>1.29 ± 0.03 (47.56%)***</td>
</tr>
</tbody>
</table>

Significant difference between rats that received only water (negative controls): *** p <0.05;
() = Percentage reduction in blood glucose (P.R.)

\[
P = \frac{(\text{blood glucose at } t_0 - \text{blood glucose at } t_x)}{\text{blood glucose at } t_0} \times 100
\]
Figure 2. Chromatogram of the ethanolic extract of *M. charantia* obtained in GC-MS.

Figure 3. Mass spectrum corresponding to peak at t = 73.65 min in GC-MS analysis of ethanolic extract of *M. charantia*.

GC-MS analysis of the ethanolic extract of the leafy stems of *M. charantia* was confirmed on the basis of the comparison of the mass spectrum obtained with the work of Phillips KM. In addition, Figure 3 shows the characteristic mass spectrum of sterol glucoside peaks. Characteristic peaks of the steroid fragment were also observed in this spectrum (Phillips et al., 2005; Goad and Akihisa, 1997).

The data from the chromatogram and the mass spectrum obtained made it possible to emphasize the presence of charantine in the ethanolic extract of *M. charantia* L. with structure as shown in Figure 5.

DISCUSSION

Previous work has shown that the isolation and identification of charantine is performed using several techniques such as: HPTLC, LC-MS or HPLC-DAD (Sonal and Pratima, 2015; Thomas et al., 2012). This work identified this compound in the various organs (leaf, fruit and seed) of *M. charantia* L., a species harvested in China and India using techniques such as HPTLC, LC-MS and HPLC-DAD (Ahmad et al., 2014). However, to date, analytical and phytochemical studies to identify antidiabetic compounds in the species present in Central Africa have not yet been carried out.

The bibliographic data showed that charantine has antidiabetic properties (Sonal and Pratima, 2015). In the Republic of Congo (RC), Chad and Benin, the plant is used in traditional medicine to treat diabetes. The presence of this molecule could justify its use in traditional medicine against diabetes (Sakine et al., 2014; Ahombo et al., 2012; Lalèyè et al., 2015). The charantine
has been isolated in the seeds, fruits and leaves of *M. charantia*. The molecule has been tested to treat diabetes. The work by Sonal and Pratima (2015) showed that at the dose of 50 mg / kg, the analyses give a 42% reduction on glycemia percentage after 4 h, this percentage is reduced at the 5th hour by 28% (Laëyé et al., 2015; Pitiphanpong et al., 2007). The ethanolic extract of *M. charantia* aerial parts administered at a dose of 400 mg / kg in male rats gave significant antidiabetic activity. This extract caused a drop in blood sugar until the 3rd hour but we observe at the 4th hour a slight increase in blood sugar. Previous work by Nagy (2012) has shown that the aqueous extract and even the ethanolic extract of *M. charantia* L. reduces blood glucose levels in type 2 diabetic rats. Other studies have suggested the existence of charantine having an effect on blood glucose (Nagy et al., 2012).

The results obtained make it possible to point out that the ethanolic extract of *M. charantia* decreases blood glucose at a dose of 400 mg / kg, which shows that the plant has antidiabetic effects. These effects may be due to the presence of certain chemical components such as flavonoids, alkaloids, saponins (Day et al., 1990; Coskun et al., 2005; Han et al., 2008; Neha et al., 2016). The work by Jesada et al. (2007) on the *M. charantia* was able to isolate and highlight the charantine, besides the results by Wang has shown that this molecule has antidiabetic virtues more particularly insulinosécrétrices properties (Pitiphanpong et al., 2007; Wang et al., 2014). The presence of charantine in our species could justify the reduction of glycemia in diabetic rats treated with extracts of *M. charantia* and the use of this plant as an antidiabetic in Congolese traditional medicine.

Conclusion

The aerial parts of *M. charantia* L. are in common use in traditional Congolese medicine for their multiple virtues. In addition to the current use of *M. charantia* L. decoction, the ethanol extract also has considerable antidiabetic activity. The present study based on the demonstration of the antidiabetic properties of the ethanolic extract of *M. charantia* L. and also on the identification of a recognized antidiabetic molecule: the charantine.

The charantine identification was made by gas chromatography coupled to the mass spectrometry of the extract of the aerial parts of *M. charantia* L. var abreviata harvested in Brazzaville (Congo), after treatment with MSTFA. The separation and identification of the

This study is financially supported by the SCAC of the French Embassy and carried out in the UC2V and LBP

This reference article is not available. Please use the bibliography instead.

Khodadadi S (2016). Administration of Galega officinalis in experimental diabetes and the demonstration of the charantine justify the use of this plant in traditional medicine by the traditional healers in Congo Brazzaville.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

This CONFLICT OF INTERESTS evaluation was carried out on a column consisting of 5% phenyl-95% methylpolysiloxane. All mass spectra were recorded in electronic impact with an ionization energy of 70 eV. The ethanol extract, tested by injection of streptozotocin on albinor Wistar rats made diabetic, induced a significant reduction in blood glucose (51.62%) at the 3rd hour. The significant results of the antidiabetic tests and the demonstration of the charantine justify the use of this plant in traditional medicine by the traditional healers in Congo Brazzaville.
