ABOUT JVMAH

The Journal of Veterinary Medicine and Animal Health (JVMAH) is published monthly (one volume per year) by Academic Journals.

The Journal of Veterinary Medicine and Animal Health (JVMAH) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject like the application of medical, surgical, public health, dental, diagnostic and therapeutic principles to non-human animals.

The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JVMAH are peer-reviewed.

Contact Us

Editorial Office: jvmah@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JVMAH
Submit manuscript online http://ms.academicjournals.me/.
Editors

Dr. Lachman Das Singla
Department of Veterinary Parasitology
College of Veterinary Science
Guru Angad Dev Veterinary and Animal Sciences
University
Ludhiana-141004
Punjab
India

Dr. Viktor Jurkovich
Szent István University,
Faculty of Veterinary Science,
István utca 2. H-1078 Budapest
Hungary
Editorial Board Members

Dr. Adeolu Alex Adedapo
Department of Veterinary Physiology
Biochemistry and Pharmacology
University of Ibadan
Nigeria

Prof. Anca Mihaly Cozmuta
Faculty of Sciences
North University of Baia Mare
Romania, Victoriei Str. 76 A, Baia Mare
Romania

Dr. Ramasamy Harikrishnan
Faculty of Marine Science
College of Ocean Sciences
Jeju National University
Jeju city
Jeju 690 756
South Korea

Dr. Manoj Brahmbhatt
Department Of Veterinary Public Health & Epidemiology,
College Of Veterinary Science,
Anand Agricultural University,
Anand,
India
Characterization of antimicrobial resistance in *Staphylococcus aureus* isolated from bovine mastitis in Central Ethiopia

Bezina Arega Emeru, Yohannes Equar Messele, Desiye Tesfaye Tegegne, Shimels Tikuye Yalew, Shelema Kelbessa Bora, Mossisa Dire Babura, Mergie Taye Beyene and Gebremeskel Mamu Werid

Histological of the midbrain of the grey breasted helmeted guinea fowl (*Numida meleagris galeata*) at post-hatch

Wanmi Nathaniel, Usendi Ifukibot Levi, Gosomji Innocent Jonah and Pindar David Bukar
Characterization of antimicrobial resistance in *Staphylococcus aureus* isolated from bovine mastitis in Central Ethiopia

Bezina Arega Emeru*, Yohannes Equar Messele, Desiye Tesfaye Tegegne, Shimels Tikuye Yalew, Shelema Kelbessa Bora, Mossisa Dire Babura, Mergie Taye Beyene and Gebremeskel Mamu Werid

Ethiopian Institute of Agricultural Research, National Agricultural Biotechnology Research Center, P. O. Box 249, Holetta, Ethiopia.

Received 30 March, 2019: Accepted 19 June, 2019

Staphylococcus aureus is commonly associated with mastitis in dairy herds with potential public health implications. Overall, 303 samples were collected from September 2015 to July 2016 to characterize the phenotypic and genotypic pattern of drug resistance in *S. aureus* isolated from cases of clinical and sub-clinical bovine mastitis in Central Ethiopia. Milk samples were tested by using California Mastitis Test and positive samples were subjected for bacterial culture, disc diffusion test and polymerase chain reaction (PCR) to detect the presence of antimicrobial resistance. Based on California mastitis test (CMT) result and clinical examination, the prevalence of mastitis was 70.6%. *S. aureus* was isolated from 36.9% of CMT positive samples. The phenotypic determination of antimicrobial resistance showed that the isolates were most resistant to ampicillin (80%) followed by trimethoprim-sulfamethoxazole (23.3%), tetracycline (15%), streptomycin (10%) and gentamycin (3.3%) and equally to both erythromycin and chloramphenicol (1.6%). Characterization of the antimicrobial resistance gene was done by using PCR. Most of the isolates (56%) contained *blaZ* gene followed by *ermB* (33%), *ermC* (13.3%) and each *ermA* and *msrA* appeared only in 2% of the isolates. There was no isolate harboring the methicillin resistance mecA gene. Thirty six percent of the isolates contained more than one antibiotic resistance genes. The highest multidrug resistance (MDR) gene combination was observed by *blaZ* *ermB* (31.25%) genes and the least frequently occurred were *blaZ* *ermA* and *msrA* *ermB* (3.12%) each. This study showed that consumption of raw milk could be considered as a critical source of antibiotic resistant *S. aureus*.

Key words: Bovine mastitis, *Staphylococcus aureus*, antimicrobial resistance, Ethiopia.

INTRODUCTION

Mastitis is one of the most important diseases in dairy significant economic losses to the dairy industry. *Staphylococcus aureus* causes one of the most common types of chronic and cows throughout the world and is responsible for subclinical mastitis in dairy animals.

The inappropriate use of antibiotics for medication and growth enhancers in farm animals contributes for emergence of antibiotic resistant organisms. It is more than two decades since the emergence of antimicrobial resistant in staphylococci (Lowy, 2003). Staphylococci are...
the main etiological agents of mastitis in dairy cattle and cows are the second largest reservoir of *S. aureus* next to human nares and up to 75 million of cows can be infected by this bacterium form the world cattle population (Sakwinska et al., 2011; Somayeh and Habib, 2014; Raney, 2009). The overall loss due to mastitis ranges from 31 to 749 kg in first lactation to losses between 117 and 860 kg in subsequent lactation (Hultgren and Svensson, 2009; Ostergaard and Grohn, 1999).

Although there is host range barrier among *S. aureus* lineage, some illustrates the potential hazard of animal origin *S. aureus* on human health which implies possible transmission of genotypes from one species to the other (Smith, 2015; Lowder et al., 2009). Despite the substantial economic impact and potential public health concern, the prevalence as well as the phenotypic and genotypic antibiotic resistance nature of *S. aureus* isolates are less studied in developing countries like Ethiopia. In these countries, scarce in veterinary services, shortage of variety of drugs and poor drug regulatory frameworks could lead to under dosage medication which may end up with development of antibiotic resistant organisms. On the other hand, low hygienic standards of housing and milking can disseminate mastitis causing pathogens including *S. aureus* among individual animals or farms (Marama et al., 2016).

In Ethiopia, prevalence rate ranging from 15.3 to 53.4% has been recorded from different parts of the country (Marama et al., 2016; Sori et al., 2011). However, there are few trends to detect antibiotic resistance genes and to correlate their association with the phenotypic resistance. Hence, this research intended to characterize phenotypic as well as genotypic antibiotic resistance of *S. aureus* isolated from bovine mastitis.

MATERIALS AND METHODS

Sample collection and preparation

A total of 303 lactating cows were screened for subclinical mastitis from September 2015 to July 2016 using California mastitis test (CMT). All the lactating cows were examined carefully and CMT screening procedures were done. Approximately, 2 ml of milk was taken from each teat into the four CMT paddle indentations. Then, equal amount of CMT reagent (COX, USA) was added and swirled gently for 15 s. The screening was done according to the procedure stated in Quinn et al. (1994). The CMT positive samples were kept in cold box and transported immediately to the National Agricultural Biotechnology Research Center Laboratory, Holetta, for further analysis.

Bacterial isolation and identification

Bacteria were cultured and identified from CMT positive milk samples. The collected samples from each quarter were streaked on blood agar base plates enriched with 7% ovine blood. The inoculums were then incubated aerobically at 37°C for 24 h. After primary culture, identification of *S. aureus* was done by using microscopic and biochemical methods (Quinn et al., 2011; OIE, 2012).

Antimicrobial sensitivity test

Antimicrobial resistance patterns were determined by Kirby-Bauer disc diffusion method on Mueller-Hinton agar (Sigma-Aldrich, USA) (Kirby et al., 1966). The bacteria were inoculated on the plate at a rate of 5×10⁶ Bacteria/ml after serial dilution determined by OD measurements according to CLSI recommendation. Antibiotic discs were placed and gently pressed by forceps on the bacterial culture spread on Mueller-Hinton agar (Sigma Aldrich, USA). The inhibition zone was measured after incubation of the plates at 37°C for 18 h under aerobic environment. The response of the isolates to each antimicrobial agent was evaluated by measuring the zone of inhibition categorized as sensitive, intermediate and resistant according to the standards recommended by CLSI (2007). The antimicrobials used in the experiment were ampicillin (10 μg), chloramphenicol (30 μg), gentamycin (10 μg), erythromycin (15 μg), tetracycline (30 μg), streptomycin (10 μg) and trimethoprim-sulfamethoxazole (1.25/23.75 μg).

Isolation of plasmid DNA

Plasmid DNA of the *Staphylococcus* isolates was performed by using Plasmid Midi Kit (QIAGEN). Single colony was taken from each isolate and inoculated into a separate 5 ml LB Broth and incubated over night at 37°C in an orbital shaker. Cells were harvested by centrifugation at speed of 6000 g for 15 min. The isolation procedures were performed according to the manufacturers’ protocol. The concentration and the purity of the extract were measured by using a Nano-drop ND-1000 spectrophotometer (Thermoscientific, Wilmington, DE). The integrity of the plasmid DNA was assessed after electrophoresis in 1% agarose gel after mixing with gel loading dye (Thermoscientific, USA).

PCR

The genes involved in antimicrobial resistance (*mecA*, *blaZ*, *ermA*, *ermB*, *ermC* and *msrA*) were detected by PCR using the primers and cycle conditions described by Murakami et al. (1991) and Sawant et al. (2009) (Table 1). A single colony was picked and inoculated in to 10 ml of nutrient broth (Sigma Aldrich, USA) and incubated overnight at 37°C in shaker incubator at speed of 100 rpm/min. Bacterial plasmid DNA was extracted using kit (Biobasic, USA) from well grown broth cultures. The PCR reaction was prepared by mixing, reaction buffer (500 Mm KCl, 17.5 mM MgCl₂, 100 mM Tris-HCl, 0.1% TritonX-100) (Himedia, India),10mMdNTPs, 10 pmol of each primer, 1 U Taq DNA polymerase(Himedia, India) and Nuclease free water which was added up to 25 μl. PCR products were electrophoresed in 1.5% agarose gel after mixing with gel loading dye (Thermoscientific, USA) (0.5 μg/mL) and observed under UV illumination.

*Corresponding author. E-mail: bezinaemeru@gmail.com.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
Table 1. Genes involved and their oligonucleotide primers for the polymerase chain reactions.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Oligonucleotide sequences</th>
<th>Reference</th>
</tr>
</thead>
</table>
| mecA | F- CTGGGAACGATGCTAATCTCAT
 | R- AAGGATTGCTATGCTTC | Murakami et al. (1991) | |
| blaZ | F- GCTTGACCTTTTTATCAGC | |
| | R- ATCGGATGAAAAGGACA | |
| ermA | R- CACGATACTACGTTTACCC | |
| | F- AAGGGCATTTAACGAGAAA | |
| ermB | R- CTGGTGATGCGGGAAGGTAAGG | Sawant et al. (2009) |
| | F- TGAAATCGGCTGAGAAAAG | |
| ermC | F- TGGTACTGCGAAAAACCACAT | |
| | R- AAAACGTACGACATGCTTCA | |

Table 2. Antimicrobial resistance rate (%) of S. aureus isolated from bovine mastitis.

<table>
<thead>
<tr>
<th>Antimicrobial disc</th>
<th>Sensitivity</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensitive (%)</td>
<td>Intermediate (%)</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>30 (54.5)</td>
<td>29 (43.9)</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>55 (91.6)</td>
<td>4 (6.6)</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>56 (93.3)</td>
<td>2 (3.3)</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>10 (16.6)</td>
<td>2 (3.3)</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>40 (66.6)</td>
<td>11 (18.3)</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>45 (75)</td>
<td>9 (15)</td>
</tr>
<tr>
<td>Trimethoprim sulfamethoxazole</td>
<td>37 (61.6)</td>
<td>9 (15)</td>
</tr>
</tbody>
</table>

RESULTS

Prevalence of S. aureus and its antimicrobial resistance pattern by using disk diffusion method

Out of the 303 lactating cows, 214 (70.6%) of them were found positive by CMT for either of the four quarters. Among these 214 samples, 187 (87.4%) were bacterial culture positive in which 79 (36.9%) of the culture was identified as S. aureus. Antimicrobial resistance test was conducted for 60 of the 79 isolates. Antimicrobial resistance pattern of the S. aureus isolates is shown in Table 2. The isolates were resistant to ampicillin (80%) followed by trimethoprim-sulfamethoxazole (23.3%), tetracycline (15%), streptomycin (10%), gentamycin (3.3%) and equally to both erythromycin and chloramphenicol with the least resistance (1.6%).

Determination of antimicrobial resistance genes

Among all 45 isolates tested for the presence of antibiotic resistance gene, only 14 (35%) were found free from any of the anti-microbial resistance gene (Table 3). Isolates containing antibiotic resistance genes were observed after electrophoresis of the PCR product (Figure 1).

Out of the 45 studied isolates, most of them (55%) contain blaZ gene followed by ermB (33%), ermC (13.3%) and each ermA and msrA were detected in only 2% of the isolates. No isolate was detected harboring either ermA or msrA solely. The gene mecA was no detected at all (Table 3).

Assessment of multi-drug resistance (MDR) genes

Approximately 36% of the isolates contained more than one antibiotic resistance genes. The highest MDR gene combination was observed by blaZ*ermB (22.2%) genes and the least frequently occurred combinations were blaZ*ermA and msrA*ermB (2.2%) each. Combination of blaZ*ermC accounts for 8.8%. The gene blaZ occurred in combination with all the erm genes (Table 4).

Among the 45 isolates in which the PCR test was
Table 3. Distribution of antimicrobial resistance genes among isolates (out of 45).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Solely appear (%)</th>
<th>In combination with other (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>blaZ</td>
<td>10 (22.2)</td>
<td>15 (33.3)</td>
<td>25 (55)</td>
</tr>
<tr>
<td>ermA</td>
<td>0 (0.0)</td>
<td>1 (2.2)</td>
<td>1 (2.2)</td>
</tr>
<tr>
<td>ermB</td>
<td>4 (4.8)</td>
<td>11 (24.4)</td>
<td>15 (33.3)</td>
</tr>
<tr>
<td>ermC</td>
<td>2 (2.4)</td>
<td>4 (8.8)</td>
<td>6 (13.3)</td>
</tr>
<tr>
<td>msrA</td>
<td>0 (0.0)</td>
<td>1 (2.2)</td>
<td>1 (2.2)</td>
</tr>
<tr>
<td>mecA</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
</tbody>
</table>

Figure 1. Agarose gel electrophoresis of representative isolates containing antibiotic resistance marker (1%). L. Ladder (100 bp - 1.5 kb DNA ladder, Bio Basic), 1. blaZ (517 bp), 2. ermA (486 bp), 3. ermB (423 bp), 4. msrA (1000 bp), 5. ermC (272 bp).

Table 4. Occurrence of multiple drug resistance genes among isolates (out of 45).

<table>
<thead>
<tr>
<th>MDR</th>
<th>Genes frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>blaZ*ermB</td>
<td>10 (22.2)</td>
</tr>
<tr>
<td>blaZ*ermC</td>
<td>4 (8.8)</td>
</tr>
<tr>
<td>blaZ*ermA</td>
<td>1 (2.2)</td>
</tr>
<tr>
<td>ermB*msrA</td>
<td>1 (2.2)</td>
</tr>
<tr>
<td>subtotal</td>
<td>16 (35.5)</td>
</tr>
</tbody>
</table>

performed, 16 (35.5%) of them showed resistance on the disc diffusion test containing the respective resistance gene. High association between ampicillin resistance and the presence of blaZ gene has been observed. Sixty-eight percent of the isolates harboring the blaZ gene were found resistant to ampicillin.

DISCUSSION

S. aureus causes one of the most common types of chronic mastitis in dairy animals worldwide. In this study, the prevalence of bovine mastitis was found in 70.6%. This prevalence of mastitis is comparable with previous
reports from Ethiopia who reported a prevalence rate of 71.0 and 75.2% in dairy farms located at Holetta and Jimma towns, respectively (Sori et al., 2011; Mekibib et al., 2009). But, higher result was found in Holetta, Bahirdar and Gondar towns of Ethiopia (Marama et al., 2016; Bitew et al., 2010; Moges et al., 2011). The difference on the prevalence of mastitis among the studies could be due to difference in management system, milking practices, productivity, breed of the animals and location (Marama et al., 2016; Sori et al., 2011).

The prevalence of S. aureus was found at 36.9% which is higher than the finding of Marama et al. (2016) and lower than Sori et al. (2011). In Kenya, equivalent prevalence rate (30.6%) of S. aureus was reported by Shitandi and Sternesjo (2004). However, prevalence rate of 25.5, 23.3 and 10% was reported from China, Iran and Finland, respectively (Wang et al., 2008; Bahraminia et al., 2017; Pitkalla et al., 2004). The reason for the variability may be due to lactation stage of the cow, age of the cow and milking method (Kivaria et al., 2007; Ergun et al., 2009). In this study, 85% of the S. aureus isolates showed resistance to at least one antimicrobial drug. This is similar with the previous finding from Jimma and central Ethiopia with overall antibiotic resistance rates of 92 and 97.5%, respectively (Sori et al., 2011; Virdis et al., 2010). However, in Brazil relatively higher susceptibility to antimicrobials (49.1%) was reported by Rabello et al. (2005). This variation might occur due to difference in milking practice, purpose of use of the antibiotics and inappropriate therapeutic treatment by nonprofessionals.

Considerable resistance to beta-lactam antibiotic by S. aureus appears with serious threat to the world (Lowy, 2003). In the current study, higher resistance to ampicillin (80%) was observed. This is comparable with the previous reports from Gondar (81.5%) and Italy (88%) (Moges et al., 2011; Franca et al., 2012), but higher than other reports from Hawassa (67.9%) (Teshome et al., 2016). However, Daka et al. (2016) reported lower resistance rate (7.7%) from Hawassa, Ethiopia.

Tetracycline and its derivatives are the most extensively used antibiotics in Ethiopia for treatment of animal diseases. So that, certain level of resistance to this drug was expected. The present finding on resistance against tetracycline was 15% which is nearly half of the figure observed at Gondar and Holetta with the resistance rate of 29.6 and 33.3%, respectively (Smith, 2015; Wang et al., 2008). The most effective drugs in this experiment were gentamycin followed by erythromycin and chloramphenicol. These drugs are not first choice for treatment of mastitis in most part of the country hence the chance to develop resistance by S. aureus will be minimum. In contrast, there are evidences of erythromycin resistance development in some parts of the country (Moges et al., 2011; Franca et al., 2012).

Multiple drug resistance is the ability of an organism to resist and grow against two or more antimicrobials. In this study, the isolates had shown inverse relation between the multi-drug resistance nature and the number of antimicrobials applied. This observation match with the finding of Sori et al. (2011) who demonstrate MDR pattern of 25, 10.45 and 7% for two, three and four types of drugs, respectively. However, it differs from Teshome et al. (2016) who record MDR of 34.8% of the isolates for three and 8.7% for two antimicrobials. The difference observed in the pattern of MDR could be explained by group of drugs with similar chemical structure and mechanism of action may exhibit cross-resistance by the bacteria despite the number of drugs involved (Pechere, 2001).

The two main mechanisms of macrolide resistance are drug-efflux membrane pumps and modification of the drug target site in the ribosome. The third mechanism of resistance is drug inactivation (Bailey et al., 2008; Ojo et al., 2006; Jensen et al., 1999; Lina et al., 1999). It has been known that, isolates harbor erm genes (erythromycin resistance rRNA methylase) code for the protein called methyl transferase which induces N6 -dimethylation of an adenine residue of 23S rRNA. This process produces conformational changes in the phosphate site of the rRNA and prevents the macrolide binding at the peptidyl transferase center, hence the protein production will proceed and the bacteria will survive (Kot et al., 2012; Westh et al., 1995). Expression of the three related factors; ermA, ermB, and ermC, are responsible to make the bacteria resistance to macrolides and other related antibiotic groups (Ojo et al., 2006; Westh et al., 1995).

In the present work, among the three erythromycin resistance determinants, ermB (33.3%) resistance gene was the most frequently identified followed by ermC (13.3%) and ermA (2.2%). Bahraminia et al. (2017) reported similar pattern of erm genes distribution while studying bovine mastitis caused by S. aureus. A work done to determine types of S. aureus linages affecting human showed that ermA as the most frequently found resistance gene (Bahraminia et al., 2017; Westh et al., 1995) although there are some findings supporting higher prevalence of ermC among the three determinants (Ross et al., 1990). Lina et al. (1999) correlate the distribution of erm genes with methicillin resistance and susceptibility in coagulase positive or negative staphylococci species.

The ermA gene found more common in methicillin resistant S. aureus stains (57.6%) compared to the sensitive ones (5.6%) (Westh et al., 1995). The contribution of each of the erm determinants (ermA, ermB and ermC) towards phenotypic macrolide resistance is essential. Westh et al. (1995) determined that ermA and ermC are responsible for erythromycin resistance in more than 98% of S. aureus strains. In another report ermC was the dominant erm gene in S. aureus and was responsible for erythromycin resistance in 72% of the strains in the years 1983 to 1988 (Duran et al., 2012).

In the current study, despite the high prevalence of ermB gene, we have observed only a single erythromycin
resistance isolate (1.6%). This finding agrees with Westh et al. (1995) which reported that *ermB* is less responsible for phenotypic macrolide resistance. However, we have identified a single isolate harboring this gene together with *erm* genes (2.2%). The present finding showed similar results of previous works by Lina et al. (1999) and Ross et al. (1990) which identify prevalence of 3.3 and 3.6%, respectively for similar combination.

Staphylococcal resistance to penicillin is attained by the gene *blaZ* (β-lactamase). It encodes for extracellular enzyme β-lactamase which hydrolyze the β-lactam ring rendering the β-lactam inactive (Lowy, 2003). In the present study, the gene was widely spread among the isolates (80%) which are in line with the report by Duran et al. (2012). According to Lowy (2003), more than 90% of staphylococcal isolates produce penicillinase (β-lactamase enzyme). This indicates the wide distribution of the resistance gene globally through spread of resistance strains. Although *blaZ* is the primary key player for penicillin resistance among staphylococcus isolates, it is not the sole factor. In this study, not all isolates which show penicillin resistance by disk diffusion test harbor *blaZ* gene. This finding agrees with previous studies by Yang et al. (2015) and Gao et al. (2012) who identified staphylococcus and streptococcus isolates that showed resistance to penicillin but not carrying *blaZ* gene. Point mutation rather than gene acquisition could be another factor for only phenotypic resistance. Biofilm production and multi-drug efflux development are also other possible protection mechanism of the bacteria (Katayama et al., 2005; Wielders et al., 2002).

In this study, no isolate containing meca gene was found. Similarly, another study mentioned that meca is rarely found in many *Staphylococcus* isolates originated from animal infections (Ross et al., 1990). The limited distribution of *Staphylococcus* chromosomal cassette mec (SCCmec) which carries meca gene by nature may be considered for its rare occurrence.

The occurrence of *S. aureus* resistance to antimicrobial agents is growing in alarming rate. So, the community should be aware by responsible bodies about the risk of consuming raw dairy products. The veterinary service delivery should be improved in order to avoid subjective treatment of animals by non-professionals. Besides, further studies should be conducted to obtain full figure of phenotypic as well as genotypic antimicrobial resistance pattern.

ABBREVIATIONS

CMT, California mastitis test; OD, optical density; PCR, polymerase chain reaction; MDR, multiple drug resistance.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENT

The Ethiopian Institute of Agricultural Research covers all the financial expenses in relation to this research

REFERENCES

Lowy FD (2003). Antimicrobial resistance: the example of

Histological of the midbrain of the grey breasted helmeted guinea fowl (Numida meleagris galeata) at post-hatch

Wanmi Nathaniel1, Usendi Ifukibot Levi2, Gosomji Innocent Jonah3 and Pindar David Bukar4

1Department of Veterinary Anatomy, College of Veterinary Medicine, UAM, Makurdi, Benue State, Nigeria.
2Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Jos, Plateau State, Nigeria.
3Department of Veterinary Anatomy, Faculty of Veterinary Medicine, UNIABUJA, Nigeria.
4Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University Zaria, Kaduna State, Nigeria.

Received 6 June, 2017; Accepted 15 September, 2017

The study was carried out to investigate the development of the midbrain in the grey breasted helmeted guinea fowl, Numida meleagris galeata, at post-hatch. Domestication of this species of bird is in an increase, but scanty documentation on the development of midbrain (mesencephalon) and how it relates to the neurobiology of this bird is lacking. In our findings, there was a steady increase in the midbrain mean weights found to be 0.0418 ± 0.0081 and 0.2236 ± 0.0224 g on the first day and day 61 post-hatch, respectively. Morphological and cellular development shows the midbrain to develop immediately after hatch at day one. This indicates that auditory-visual activities are fully functional in the wild grey breasted helmeted guinea fowl and capable of independent survival immediately after hatching.

Key words: Morpho-histogenesis, midbrain, guinea fowl.

INTRODUCTION

The helmeted guinea fowl (Numida meleagris galeata) is a native to Africa and belongs to the Phylum, Chordata; Subphylum, Vertebrata; Class, Aves; Order, Galliformes; and Family, Numidae. It is widely distributed in the Guinea Savannah vegetation zone of Nigeria and estimated at 44 million in captivity (Ayeni, 1980).

Developmentally, in avian, the central nervous system develops from the neural plate, an epithelial sheet that arises from the dorsal ectoderm of the developing embryo (Hallonet et al., 1990). After neural tube closure, series of vesicles can be clearly distinguished morphologically at the anterior end indicating an anterior-posterior axis development (Joyner, 2002). The most anterior end of the neural tube gives rise to the prosencephalon (forebrain) consisting of the telencephalon and diencephalon. The middle part of

*Corresponding author. E-mail: nathanielwanmi2014@gmail.com.
the brain is the mesencephalon, often referred to as the midbrain, while the most posterior region from the brain is the rhombencephalon, which further differentiates into metencephalon (cerebellum and pons) and myelencephalon (medulla oblongata and spinal cord) (Hallonet et al., 1993). The mesencephalon (midbrain) also comprises of the optic lobe, which is the visual roof, often named optic tectum, in non-mammalian species and superior colliculus in mammalian species (Northcutt, 2002).

Audition is of critical importance to a wide range of behaviours in birds, such as prey capture, individual and species recognition, vocal learning and mate selection. As a result of the range of behaviours that rely upon acoustic cues, studies of avian audition have revealed marked species differences in hearing range and the ability to localize sounds and discriminate pitch, intensity and temporal differences (Agawala et al., 2001). From this and other evidence, it is clear that several groups have evolved unique auditory specializations: localization of prey using only acoustic cues, vocal learning and echolocation in birds. Given that birds share many behavioural and neural similarities (Mogensen and Divac, 1993) with mammals, it is certain that such correlations also exist in bird midbrain.

Several research has been done to study the development of the avian brain, which includes; a pre-hatch study of the structural organization of grey breastled helmeted guinea fowl (Wanmi et al., 2016), the immunoreactivity of glial cells (Maximina et al., 1998), glial cells in the central nervous system (CNS) of healthy Passeriformes birds (Peer, 2012) and the development of chicken cerebellar cortex (Serdar and Emrah, 2010). Despite these studies, there exists a dearth of information on the histomorphogenesis of the grey breastled helmeted guinea fowl in Nigeria.

In this investigation, an attempt will be made to find out the variations in the developmental anatomy of the midbrain in the grey breastled helmeted guinea fowl with regard to their developmental gross structure histogenesis, which may be helpful in the understanding of the neurobiology of this species of bird despite increase awareness on its domestication.

MATERIALS AND METHODS

Experimental design

A total of eighty four fertilized guinea fowl eggs purchased from the National Veterinary Research Institute (NVRI) Vom, Jos, Plateau State, Nigeria and other local breeders within Jos and its environs were used for this study. The eggs were transported to a hatchery, still in Jos and incubated using their standard incubation guide. During incubation, the eggs were turned regularly (minimum of three times) each day for the first 24 days according to method modified by Moreki et al. (2012).

These eggs were allowed to hatch into young ones referred to as keets and were removed from the incubator and kept in a standard laboratory cage.

Extraction of embryo

This was done at pre-hatch using a scalpel blade and clean transparent dish. The blunt side of the scalpel blade was used, with the egg held on the palm, and a gentle tap was made on the egg until a crack was formed. Then, the crack was gently widened manually and the embryo collected in a white dish as modified by Salami (2009).

Extraction of brain

At pre-hatch, because the entire skull is soft and pliable, scalpel blade and rat tooth forceps were used for extraction of the brain. At post-hatch, the keets were euthanized using Nembutal at 40 mg/body weight. Thereafter, decapitation was made and the heads fixed in 10% neutral buffered formalin for 3 to 5 days. After proper fixation, a dissection was made at the angle of the beak up to the level of the occipital bone. The upper portion of the dissected area is pulled off gradually using the rat tooth forceps until the entire brain was exposed. The cranial nerves were severed to ease the lifting of the brain from the cranium. Extracted brain samples were fixed in Bouin’s solution for routine staining.

Separation of the midbrain

The cerebellum is located on the dorsal portion of the brain stem with three peduncles: the restiform body connected to the medulla, the brachium pontis that connects cerebellum to the Pons and the brachium, lastly the conjunctivum that connects cerebellum to the midbrain. These peduncles were severed using a scalpel blade to expose the entire brainstem.

The midbrain or mesencephalon is located just caudal to the level of chiasma opticum rostrally and at the level of ponto-mesencephalic region caudally. After the midbrain removal, the anterior portions left are the diencephalon and the cerebrum. At the boundary between the diencephalon and cerebrum, an incision was made revealing the cerebral hemispheres held together by the corpus callosum. Each hemisphere was freed by a transverse incision into the longitudinal fissure. These landmarks were cut across using the scalpel blade to extract the midbrain.

Gross anatomy and morphometry

Seventy seven brain samples were used for morphometric study in which seven brain samples were used per day. The following days were used for sacrificing the keets: day 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, and 61. Two brain samples were used for gross study. The weights of the midbrain were taken using a digital electronic balance; (Model JJ1000, Maximum 1000 g, d=0.01 g, e=10d, No. 211011011098, Made in China and analytical weighing balance, Adventure QHAUS Corporation Item No; AR3130, Maximum Capacity= 310 g Readability= 0.001 g). Photographs of the dorsal and ventral aspects were taken using a cannon digital camera (4x optical zoom lens 5.0 to 20.0 mm, 15.1 mega pixels Apple, Cannon) and a digital handheld microscope, (Magnification 1000x, 5x zoom, 3D stand high speed DSP).

Histological techniques

Six brain samples were used for Hematoxylin and Eosin (H and
E) technique; fixed brain samples were washed using tap water and dehydrated through ascending grades of alcohol (70, 80, 90, 95, 100%), within intervals of 3 h each, cleared in xylene for 2 h and embedded in liquid paraffin at 50°C according to standard Procedures as described by Kiernan (1990) were used. Serial transverse sections of 5 µl were made using Jung rotary microtome (Model 42339, Berlin, Germany). Sections were mounted on glass slides and allowed to dry, deparaffinized, stained, hydrated and cover-slipped using diphynylpthalate propylene xylene (DPX) as mountant (Humanson, 1972). Sections were stained with H and E stains for routine general study, and cresyl violet fast (CVF) stain for nuclei identification. Photomicrographs of sections were taken using a USB digital eyepiece (Amscope DCM 500, Resolution: 14 Mega pixels, made in China) attached to a light microscope (OLYMPUS XSZ107BN, Hamburg, Germany), viewed and captured on the laptop screen at different magnifications (x40, x100, x250 x400 and x560).

Data analysis

Morphometric data on the midbrain was analyzed using Statistical Package for Social Science (SPSS) version 17.0. In the analysis, the descriptive statistics was expressed as mean ± standard error of the Mean.

RESULTS

Morphometry

The mean weight of the midbrain of the helmeted guinea fowl at days 1, 43 and 61 post-hatch were; 0.0418 ± 0.0081, 0.1448 ± 0.0556 and 0.2236 ± 0.0224 g, respectively (Table 1).

Table 1. Mean weights of the guinea fowl midbrain at days 1 to 61 post-hatch period (in gram), (n=7).

<table>
<thead>
<tr>
<th>Days</th>
<th>Min. wt/g</th>
<th>Max. wt/g</th>
<th>Mean ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0144</td>
<td>0.0703</td>
<td>0.0418 ± 0.0081</td>
</tr>
<tr>
<td>7</td>
<td>0.0248</td>
<td>0.0768</td>
<td>0.0480 ± 0.0064</td>
</tr>
<tr>
<td>13</td>
<td>0.0290</td>
<td>0.0862</td>
<td>0.0576 ± 0.0019</td>
</tr>
<tr>
<td>19</td>
<td>0.0410</td>
<td>0.0914</td>
<td>0.0649 ± 0.0072</td>
</tr>
<tr>
<td>25</td>
<td>0.0519</td>
<td>0.1081</td>
<td>0.0802 ± 0.0067</td>
</tr>
<tr>
<td>31</td>
<td>0.0676</td>
<td>0.1037</td>
<td>0.0882 ± 0.0014</td>
</tr>
<tr>
<td>37</td>
<td>0.0687</td>
<td>0.1301</td>
<td>0.0995 ± 0.0023</td>
</tr>
<tr>
<td>43</td>
<td>0.0791</td>
<td>0.2324</td>
<td>0.1448 ± 0.0556</td>
</tr>
<tr>
<td>49</td>
<td>0.0918</td>
<td>0.2368</td>
<td>0.1531 ± 0.0499</td>
</tr>
<tr>
<td>55</td>
<td>0.1081</td>
<td>0.2512</td>
<td>0.1932 ± 0.0480</td>
</tr>
<tr>
<td>61</td>
<td>0.1989</td>
<td>0.2602</td>
<td>0.2236 ± 0.0224</td>
</tr>
</tbody>
</table>

n, number of birds used per day; Min, minimum; Max, Maximum; Wt, Weight, g; SEM, standard error of Mean.

Gross features

Grossly, the entire brain was fully developed at day one post-hatch. Ventrally, the olfactory bulb, optic tract and optic chiasm were well developed. The cerebellum projected upward and forward. The optic lobes were separated from and located below the cerebrum; attached to the lateral body of the cerebellum and had a flattened dorsal view which broadened ventrally. The midbrain was found to be made up of two ovals like bulge, the optic lobe and midbrain flanked on both sides by optic lobes (Plate 1).

Histological features

At four weeks of post hatch, different forms of nuclei were prominent with centrally located nucleoli in most of the large neurones (Plate 2). Mesencephalic ventricle, with different forms of neurons, possessing nucleoli and devoid of processes was evident when stained with cresyl violet fast (Plate 3). At week eight, nerve processes (dendrites and axon hillock) of large neurones were prominent. Large pyramidal neurones were seen to have dense cytoplasmic inclusions (Plate 4). Throughout with the use of cresyl violet fast stain, most of the neurones pick up dark stained cytoplasmic bodies.

DISCUSSION

From this present study, the mean weight of the midbrain increased with increase in days. This agrees with the statement that brain weights increase as the
body weights increase, but the mean weight of the brain is lower than that of the body and that Galliformes had the lowest values which were not constant and could vary in birds of the same body weight (Xu et al., 2010). This increase in the weight of the midbrain signifies development is taking place, graphically seen with the chart increasing steadily.

The midbrain appeared like a stalk that is flanked by optic lobe laterally, cranially by optic chiasm. The midbrain in birds and reptiles is one of the regions that form an integral part of the acoustic-mediated behaviours that receives input from the two parallel auditory pathways and as such play a role in the integration of auditory information and is homologous to both the mammalian inferior colliculus (Carr and Code, 2000).

The optic lobe was large, well developed and located below the cerebrum with the cerebellum projected upward and forward. This indicated that the optic lobe of the helmeted guinea fowl was well developed and this

Figure 1. Mean weights of the guinea fowl midbrain at days 1 to 61 post-hatch (in gram).

Plate 1. Brain of guinea fowl at day one post-hatch; B, Wulst JH, Interhemispheric fissure; CH, cerebral hemisphere; E, transverse fissure; OP, Optic lobe; N, Notch; CB, cerebellum; SP, spinal cord; 1, Vallecula; OB, olfactory bulb; CR, cerebrum; OP, optic lobe; OC, optic chiasm; OT, Optic tract; MB, midbrain; P, Pons; CA, cerebellar auricle; M, medulla oblongata. Magnification X500.
Plate 2. Neurones of midbrain of the helmeted guinea fowl keets at week 4 post-hatch. A, Large neurons; arrowhead, Neuroglia; arrow, pyramidal neurons. A, CFV; B, H&E, magnifications: A, X400; B, X200.

Plate 3. Neuronal components of the midbrain of the helmeted guinea at week 6 post-hatch. 1, Ventricle; P, pyramidal neurons; F, fusiform neurons. Magnifications: A, X140; B, X200.

was similar to the reports of Martin et al. (2007) in the emu and pigeon and Iwaniuk (2003) in parrots. The kiwi and barn owl have relatively small optic lobes (Wylie et al., 2006). The position of the optic lobe depends on the extension of the caudotemporal part of the cerebral hemisphere and the position in the parrot, kiwi and corvids were ventral (Iwaniuk, 2003), lateral and below the cerebral hemispheres in the diurnal raptor species, respectively (Shermean, 2013). The midbrain contains neuropil darker stained granule cells (small and large) similar to the observation of Ghatar (1992) in the developing brain of young rats.

These dark stained granules in developing brain may be due to the large proliferation of chromat in the brain (Karten and Hodes, 1967) in which different forms of neurones with prominent and centrally located nucleoli occurred at a later stage. The midbrain act as a relay station for part of the extrapyramidal system, in which lesion of the neurones in the chicken has led to transient tremor, ataxia and ipsilateral oculomotor disturbances (Mackenna and Callander, 1997).

Conclusion

Grossly and histologically, major features were fully formed on day one post-hatch. This signifies that, the keet of wild helmeted guinea fowl has a better developed sense of hearing immediately after hatching. Large neurones of the midbrain are capable of controlling gaits in this bird.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGMENT

All technical staff of NVRI Vom, Plateau state and those of the Department of Veterinary Anatomy, Ahmadu Bello University, Zaria, Kaduna state, Nigeria are acknowledged.

REFERENCES

Related Journals:

Clinical Reviews and Opinions

Journal of Medicinal Plant Research

African Journal of Pharmacy and Pharmacology

Journal of Dentistry and Oral Hygiene

Journal of Parasitology and Vector Biology

Journal of Pharmacognosy and Phytotherapy

Journal of Medical Laboratory and Diagnosis

Journal of Diabetes and Endocrinology

Medical Practice and Reviews

www.academicjournals.org