About JMPR

The Journal of Medicinal Plants Research (JMPR) provides researchers, students and academicians an avenue to present their findings on the value of medicinal plants, indigenous medications, ethnobotany and ethnomedicine, herbal medicines and the cultivation of aromatic and medicinal plants.

The journal will consider for publication original research, reviews and meta-reviews, and short communication on areas covering nutraceuticals, drug discovery and development, pharmacopoeia, traditional medicine, monographs, and natural products research.

The Journal of Medicinal Plants Research is indexed in:

CAB Abstracts
CABI’s Global Health Database
Chemical Abstracts (CAS Source Index)
China National Knowledge Infrastructure (CNKI)
Google Scholar
Matrix of Information for The Analysis of Journals (MIAR)
ResearchGate

Open Access Policy

Open Access is a publication model that enables the dissemination of research articles to the global community without restriction through the internet. All articles published under open access can be accessed by anyone with internet connection.

The African Journals of Biotechnology is an Open Access journal. Abstracts and full texts of all articles published in this journal are freely accessible to everyone immediately after publication without any form of restriction.

Article License

All articles published by Journal of Medicinal Plants Research are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited. Citation should include the article DOI. The article license is displayed on the abstract page the following statement:

This article is published under the terms of the Creative Commons Attribution License 4.0 Please refer to https://creativecommons.org/licenses/by/4.0/legalcode for details about Creative Commons Attribution License 4.0
Article Copyright

When an article is published by in the Journal of Medicinal Plants Research, the author(s) of the article retain the copyright of article. Author(s) may republish the article as part of a book or other materials. When reusing a published article, author(s) should;

Cite the original source of the publication when reusing the article. i.e. cite that the article was originally published in the Journal of Medicinal Plants Research. Include the article DOI

Accept that the article remains published by the Journal of Medicinal Plants Research (except in occasion of a retraction of the article)

The article is licensed under the Creative Commons Attribution 4.0 International License.

A copyright statement is stated in the abstract page of each article. The following statement is an example of a copyright statement on an abstract page.

Copyright ©2016 Author(s) retains the copyright of this article.

Self-Archiving Policy

The Journal of Medicinal Plants Research is a RoMEO green journal. This permits authors to archive any version of their article they find most suitable, including the published version on their institutional repository and any other suitable website.

Please see http://www.sherpa.ac.uk/romeo/search.php?id=213&fIDnum=&mode=simple&la=en

Digital Archiving Policy

The Journal of Medicinal Plants Research is committed to the long-term preservation of its content. All articles published by the journal are preserved by Portico. In addition, the journal encourages authors to archive the published version of their articles on their institutional repositories and as well as other appropriate websites.

https://www.portico.org/publishers/ajournals/

Metadata Harvesting

The Journal of Medicinal Plants Research encourages metadata harvesting of all its content. The journal fully supports and implements the OAI version 2.0, which comes in a standard XML format. See [Harvesting Parameter](https://www.sherpa.ac.uk/romeo/search.php?id=213&fIDnum=&mode=simple&la=en)

Memberships and Standards
Academic Journals strongly supports the Open Access initiative. Abstracts and full texts of all articles published by Academic Journals are freely accessible to everyone immediately after publication.

All articles published by Academic Journals are licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.

Crossref is an association of scholarly publishers that developed Digital Object Identification (DOI) system for the unique identification published materials. Academic Journals is a member of Crossref and uses the DOI system. All articles published by Academic Journals are issued DOI.

Similarity Check powered by iThenticate is an initiative started by CrossRef to help its members actively engage in efforts to prevent scholarly and professional plagiarism. Academic Journals is a member of Similarity Check.

CrossRef Cited-by Linking (formerly Forward Linking) is a service that allows you to discover how your publications are being cited and to incorporate that information into your online publication platform. Academic Journals is a member of CrossRef Cited-by.

Academic Journals is a member of the International Digital Publishing Forum (IDPF). The IDPF is the global trade and standards organization dedicated to the development and promotion of electronic publishing and content consumption.

COUNTER (Counting Online Usage of Networked Electronic Resources) is an international initiative
serving librarians, publishers and intermediaries by setting standards that facilitate the recording and reporting of online usage statistics in a consistent, credible and compatible way. Academic Journals is a member of COUNTER.

Portico is a digital preservation service provided by ITHAKA, a not-for-profit organization with a mission to help the academic community use digital technologies to preserve the scholarly record and to advance research and teaching in sustainable ways.

Academic Journals is committed to the long-term preservation of its content and uses Portico.

Academic Journals provides an OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) interface for metadata harvesting.
Contact

Editorial Office: jmpr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JMPR
Submit manuscript online http://ms.academicjournals.org

Academic Journals
73023 Victoria Island, Lagos, Nigeria
ICEA Building, 17th Floor, Kenyatta Avenue, Nairobi, Kenya

Editor-in-chief
Prof. Akah Peter Achunike
Department of Pharmacology & Toxicology
University of Nigeria
Nsukka,
Associate Editors

Dr. Luís Cláudio Nascimento da Silva
Post-graduation program of Microbial Biology.
CEUMA University
Rua Josué Montello, nº 1, Renascença II
São Luís - MA, CEP 65.075-120

Dr. Isiaka A. Ogunwande
Department of Chemistry
Lagos State University
Ojo,
Nigeria.

Dr. Bachir Raho Ghalem
Biology Department
University of Mascara
Algeria.

Dr. Pramod V Pattar
Department of Botany
Davangere University
Karnataka,
India.

Dr. Parichat Phumkhachorn
Department of Biological Science,
Faculty of Science,
Ubon Ratchathani University,
Ubon Ratchathani 34190,
Thailand.

Dr. Anthoney Swamy
Department of Chemistry
School of Science and Technology
University of Eastern Africa
Baraton,
Kenya.

Dr. Arvind K Tomer
Department of Chemistry
University of Phagwara
Punjab
India

Dr. Foluso Oluwagbemiga Osunsanmi
Department of Agricultural Science,
University of Zululand,
South Africa.

Associate Editors

Dr. Shikha Thakur
Deptartment of Microbiology,
Sai Institute of Paramedical and Allied Sciences,
India.

Dr. Naira Pelógia
Institute of Basic Sciences,
Taubaté University,
Brazil
Dr. Ravichandran Veerasamy
Faculty of Pharmacy
AIMST University
Semeling,
Malaysia.

Dr. Bellamkonda Ramesh
Department of Food Technology,
Vikrama Simhapuri University,
India
Table of Content

DPPH radical scavenging activity of extracts from *Rhamnus prinoides*
Manoharan Karuppiah Pillai, Lehlohono lo Isaac Santi and Sibusisiwe Magama 329
DPPH radical scavenging activity of extracts from *Rhamnus prinoides*

Manoharan Karuppiah Pillai¹*, Lehlohonolo Isaac Santi¹ and Sibusisiwe Magama²

¹Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, Roma Campus, P. O. Roma 180, Kingdom of Lesotho, South Africa.
²Department of Biology, Faculty of Science and Technology, National University of Lesotho, Roma Campus, P. O. Roma 180, Kingdom of Lesotho, South Africa.

Received 24 May, 2019; Accepted 5 July, 2019

Hexane, chloroform, ethyl acetate and methanolic extracts from leaves and stem-bark of *Rhamnus prinoides* were evaluated for their antioxidant activity by DPPH radical scavenging assay. The leaves extracts showed scavenging activity ranging from 0.33±0.89 to 55.03±3.40 µg mL⁻¹ while the stem-bark extracts showed relatively strong scavenging activity ranging from 0.65±1.02 to 59.55±2.27 µg mL⁻¹. The IC₅₀ values of *R. prinoides* hexane leaves extract (RPHEL), *R. prinoides* chloroform leaves extract (RPCHLS), *R. prinoides* ethyl acetate leaves extract (RPEALS), *R. prinoides* methanolic leaves extract (RPMELS), *R. prinoides* hexane stem-bark extract (RPHESB), *R. prinoides* chloroform stem-bark extract (RPCHSB), *R. prinoides* ethyl acetate stem-bark extract (RPEASB) and *R. prinoides* methanolic stem-bark extract (RPMESB) were found to be >3000, >3000, >3000, 950.42, ~1500, 710.50, ~1000 and 902.78 µg mL⁻¹, respectively. The positive control ascorbic acid showed an IC₅₀ value of <200 µg mL⁻¹. From this study, we concluded that the extracts from *R. prinoides* showed promising antioxidant activity. *R. prinoides* finds therapeutic applications in the traditional medicine. Further research is required to commercialize products from this plant.

Key words: Antioxidant, ascorbic acid, *Rhamnus prinoides*, radical scavenging assay, methanolic extract, chloroform extract, hexane extract, ethyl acetate extract.

INTRODUCTION

Rhamnus prinoides belongs to the Rhamnaceae family (Dale, 2000; Dlamini and Turner, 2002). *R. prinoides* is also known by other names such as African Dogwood, Glossy-leaf and mififi. *R. prinoides* is widely distributed in East and South African countries (Alemu et al., 2007; Abegaz et al., 1999) which include Ethiopia, Botswana, Eritrea, Lesotho, Namibia, South Africa, Swaziland, Uganda and Kenya (Ashine, 2015). *R. prinoides* grows up to 4.5-m height and found in evergreen forests, in the wild and along water streams. Although, *R. prinoides* is a slow growing plant in low rainfall areas, it can grow 1 m per annum in wet areas (Ferede et al., 2018). The leaves begin with pale green and turn to dark and shiny on maturation. The roundish red berries attract bees and
domestic fowl. *R. prinoides* casts a very deep shade such that it will not allow other plants to grow around it. *R. prinoides* flowers towards the end of the year and fruiting occurs at the beginning of the year. *R. prinoides* finds therapeutic applications in the traditional medicine. The decoction of roots has been used to treat pulmonary tuberculosis, pneumonia, bladder and kidney problems (Maliehe, 1997; Van Wyk and Moteetee, 2011). The bark has been used to induce vomiting. An extract of the root together with the bark of *Erythrina tomentosa* has been used to relief colic. The leaves have been applied as a liniment to simple sprains. *R. prinoides* has been used to provide a special aroma and flavor (Shale and Gashe, 1991; Abegaz et al., 1999). *R. prinoides* has also been used in the beer industry as a hopping agent. Geshoidin, a naphthalenic glycoside, present in the stem-bark is responsible for providing bitterness in alcoholic beverages (Nindi et al., 1999). The antioxidant activity of 97% ethanolic extracts from leaves of *R. prinoides* has been reported previously (Ashine, 2015). Methanolic and aqueous extracts from roots of *R. prinoides* have also evaluated for their DPPH radical scavenging activity (Kimondo et al., 2019). However, to the best of our knowledge, the scavenging activity of hexane, chloroform, ethyl acetate and methanolic extracts of the leaves and stem-bark of *R. prinoides* has not been reported previously, particularly the plant species gathered from the Kingdom of Lesotho. The aim of the present study was to evaluate the antioxidant activity of these extracts by DPPH radical scavenging assay and to determine their IC$_{50}$ values. The results obtained are communicated in this article.

MATERIALS AND METHODS

Plant materials

The leaves and stem-bark of *R. prinoides* were collected from the foothills of Popa and Popanyane Mountains at Mokholohong village, Roma, Maseru district, the Kingdom of Lesotho, Southern Africa in January 2019. A voucher specimen viz. Santi/RPLS/2019 for stem and Santi/RPSB/2019 for leaves were collected from the Kingdom of Lesotho, Roma Campus, Maseru district, Kingdom of Lesotho, Southern Africa.

Processing of materials

The leaves were allowed to air dry at room temperature for two weeks and then ground into powder using a commercial blender (Waring Blender, Blender 80119, Model HGB2WT93, 240V AC, 50-80 Hz, 3.6AMPS, Laboratory and Analytical Supplies). The chopped stem-barks were allowed to air dry at room temperature for two weeks and ground into powder using the blender.

Preparation of plant extracts

The powdered leaves (300.043 g) of *R. prinoides* were extracted with methanol under cold conditions for 3 days. The solution was filtered using a filter paper (Boeco, Germany). The solvent was removed by vacuo and the same procedure was repeated once again. Finally, the plant material was extracted with hot methanol. 40.1858 g of combined methanol extract was obtained after removal of solvent. The same extraction procedure was followed to get hexane (3.2274 g), chloroform (10.6285 g) and ethyl acetate (11.4763 g) extracts from 300.254, 300.131 and 299.921 g of powdered leaves, respectively. The powdered stem-bark (299.530 g) of *R. prinoides* was extracted first with methanol at room temperature for 3 days followed by a reflux condition for 6 h. 32.2047 g of combined crude methanol extract was obtained after removal of solvent. The same extraction procedures were followed to get hexane (2.5895 g), chloroform (5.4327 g) and ethyl acetate (8.1493 g) extracts from 300.014, 300.157, and 300.422 g of powdered stem-bark, respectively.

Chemicals and solvents used

Ascorbic acid, DPPH, hexane (AR grade, 99.5%), chloroform (AR grade, 99.5%), ethyl acetate (AR grade, 99.5%) and methanol (AR grade, 99.5%) were all purchased from Sigma-Aldrich.

Antioxidant activity

The antioxidant activity of the extracts was carried out using 1,1-diphenyl-2-picrylhydrazyl (DPPH) as described in literature (Kim et al., 2002). Briefly, stock solution of the methanolic extract was prepared at a concentration of 3.0 mg of extract in 1 mL of 50% methanol (v/v). Serial dilutions were made from this stock solution to obtain solutions with concentrations of 3000, 2000, 1500, 1000, 800, 500 and 200 μg mL$^{-1}$. Solutions without extract concentration served as negative control. A solution of 3.94 mg of DPPH in 100 mL of methanol served as oxidant which was prepared just before use and stored in dark to minimize degradation. 0.1 mL sample of plant extract solution was mixed with 1.0 mL of 0.1 mM DPPH solution and 0.45 mL of 50 mM Tris-HCL buffer (pH 7.40). Similarly, stock solutions of hexane, chloroform and ethyl acetate extracts were prepared at a concentration of 3.0 mg of extract in 1 mL of 50% methanol (v/v). Further dilutions were made from these stock solutions to obtain solutions with concentrations of 3000, 2000, 1500, 1000, 800, 500, 200 and 0 μg mL$^{-1}$. 0.1 mL each of extract was mixed separately with 1.0 mL of 0.1 mM DPPH solution and 0.45 mL of 50 mM Tris-HCL buffer (pH 7.40). A stock solution of ascorbic acid (0.3 g) in 50% methanol (v/v) was prepared and serial dilutions were made as previously and served as positive control. 0.1 mL was mixed with 1.0 mL of 0.1 mM DPPH solution and 0.45 mL of 50 mM Tris-HCL buffer (pH 7.40). The mixtures were incubated for 30 min and their optical density was measured at 517 nm. Percentage inhibition of DPPH free radical was calculated using the equation:

$$\text{DPPH Scavenged} (%) = \left(\frac{A_{\text{cont}} - A_{\text{test}}}{A_{\text{cont}}}\right) \times 100$$

where A_{test} = Absorbance in the presence of extract or positive control and A_{cont} = Absorbance of negative control.

The IC$_{50}$ value is defined as the concentration (in μg mL$^{-1}$) of extract that inhibits the formation of DPPH radical by 50% (Moyo et al., 2013; Ndhlala et al., 2013). A lower value of IC$_{50}$ represents higher antioxidant activity. The IC$_{50}$ values were calculated from graphs by plotting extract concentrations vs. percentage inhibition of DPPH radical using Microsoft Excel. Each experiment was carried out in triplicate and the averages of the three values were used to calculate IC$_{50}$ values. Standard deviation was calculated for each concentration from the three values of the experiment.
RESULTS AND DISCUSSION

Table 1 summarizes the DPPH radical scavenging activity of hexane, chloroform, ethyl acetate and methanolic extracts of the leaves and stem-bark of *R. prinoides*. *R. prinoides* hexane leaves extract (RPHELS) showed 3.33±0.89, 3.80±2.60, 8.61±1.39, 10.12±0.84, 13.39±2.94, 20.10±3.23 and 34.56±6.51% of scavenging activity at concentrations 200, 500, 800, 1000, 1500, 2000 and 3000 µg mL⁻¹, respectively. The positive control, ascorbic acid, showed 53.01±3.98, 53.46±0.14, 53.51±0.77, 53.82±0.54, 54.12±1.64, 54.34±0.92 and 56.45±4.5% of scavenging activity at concentrations 200, 500, 800, 1000, 1500, 2000 and 3000 µg mL⁻¹, respectively. These results revealed that RPHELS showed very weak radical scavenging activity relative to positive control at all concentrations. *R. prinoides* chloroform leaves extracts (RPCHLS) showed 23.01±3.44, 27.15±5.18, 30.35±1.02, 31.38±0.11, 47.37±4.14, 49.38±4.15 and 49.49±3.17% of scavenging activity at concentrations 200, 500, 800, 1000, 1500, 2000 and 3000 µg mL⁻¹, respectively. This result showed that RPCHLS has lower activity than positive control at all concentrations. *R. prinoides* ethyl acetate leaves extract (RPEALS) showed 17.71±1.02, 17.96±0.82, 19.48±1.50, 28.51±0.62, 36.05±6.26, 38.94±5.75 and 42.33±5.88% of scavenging activity at 200, 500, 800, 1000, 1500, 2000 and 3000 µg mL⁻¹, respectively. This result revealed that RPEALS exhibited weak activity at low concentrations relative to positive control. However, at high concentrations of 3000 µg/mL, it showed higher scavenging activity of 42.33±5.88%. *R. prinoides* methanolic leaves extract (RPMELS) showed 21.01±3.80, 33.74±1.42, 41.50±2.73, 50.93±5.27, 52.93±2.88, 54.34±2.70 and 55.03±3.40% of scavenging activity at concentrations 200, 500, 800, 1000, 1500, 2000 and 3000 µg mL⁻¹, respectively. This result revealed that RPMELS exhibited weak activity at low concentrations relative to positive control. However, RPMELS has comparable activity as that of positive control at high concentrations.

R. prinoides hexane stem-bark extract (RPHESB) showed 12.39±3.19, 18.83±1.04, 30.47±0.82, 42.15±4.06, 50.24±1.50, 51.52±2.47 and 52.15±1.06% of scavenging activity at concentrations 200, 500, 800, 1000, 1500, 2000 and 3000 µg mL⁻¹, respectively. This result revealed that RPHESB exhibited weak activity at low concentrations relative to positive control. However, at higher concentrations such as 1500, 2000 and 3000 µg/mL, RPHESB exhibited comparable activity as that of positive control. *R. prinoides* chloroform stem-bark extract (RPCHSB) showed 42.37±5.65, 43.30±2.98, 52.23±2.46, 53.64±4.42, 54.06±1.41, 54.41±2.17 and 55.22±2.48% of scavenging activity at concentrations 200, 500, 800, 1000, 1500, 2000 and 3000 µg mL⁻¹, respectively. Thus, RPCHSB exhibited comparable activity as that of positive control at all concentrations except at concentrations of 200 and 500 µg mL⁻¹. RPCHSB showed 42.37±5.65 and 43.30±2.98% of scavenging at concentrations 200 and 500 µg/mL, respectively, while the positive control showed 53.01±3.98 and 53.46±0.14% of scavenging activity at concentrations 200 and 500 µg mL⁻¹, respectively. *R. prinoides* ethyl acetate stem-bark extract (RPEASB) showed 3.65±1.02, 40.04±1.50, 47.09±4.36, 50.31±7.80, 51.61±2.27, 54.23±1.83 and 57.43±3.28% of scavenging activity at concentrations 200, 500, 800, 1000, 1500, 2000 and 3000 µg mL⁻¹, respectively. This result revealed that RPMESB exhibited weak activity at low concentrations relative to positive control. However, at high concentrations such as 2000 and 3000 µg/mL, it showed higher scavenging activity of 56.19±3.58 and 59.55±2.27%, respectively. Among the extracts (RPHELS, RPCHLS, RPEALS, RPMELS, RPHESB, RPCHSB, RPEASB and RPMESB) from *R. prinoides*, RPMESB showed the highest scavenging activity (Table 1). For comparison and clarity, the percentage of scavenging activity of these extracts at various concentrations are shown in Figures 1 and 2. The IC₅₀ values of hexane, chloroform, ethyl acetate and methanolic extracts of the leaves and stem-bark of *R. prinoides* are shown in Table 2. RPHELS, RPCHLS, RPEALS, RPMELS, RPCHSB, RPEASB and RPMESB exhibited IC₅₀ values of >3000, >3000, >3000, 950.42, ~1500, 710.50~1000 and 902.78 µg mL⁻¹, respectively. RPCHSB is the most potent with IC₅₀ of 710.50 µg mL⁻¹. The positive control ascorbic acid showed an IC₅₀ value of <200 µg mL⁻¹.

The DPPH radical scavenging activity of 97% ethanolic extract from leaves of *R. prinoides* has previously been reported and its maximum radical scavenging was found to be 81.148% at a concentration of 24 mg mL⁻¹ (Ashine, 2015) and the IC₅₀ value was determined to be 5.2 mg mL⁻¹. The positive control, ascorbic acid, showed 93.77% scavenging activity with an IC₅₀ value of 0.24 mg mL⁻¹ in the same assay (Ashine, 2015). Therefore, when compared with the present study on the hexane, chloroform, ethyl acetate and methanolic extracts from leaves of *R. prinoides*, this 97% ethanolic extract from leaves of *R. prinoides* showed higher radical scavenging activity and lower IC₅₀ value. This 97% ethanol might have more extractive power of active constituents than...
the solvents used in the present study. Additionally, the collection of plant materials at different geographic locations will also play a vital role in determining the active constituents of extracts. Methanolic and aqueous roots extracts from *R. prinoides* have also been screened for their DPPH radical scavenging activity. Their IC$_{50}$

Figure 1. Percentage of radical scavenging of leaves extracts and ascorbic acid at various concentrations. RPHELS: *R. prinoides* hexane leaves extract; RPCHLS: *R. prinoides* chloroform leaves extract; RPEALS: *R. prinoides* ethyl acetate leaves extract; RPMELS: *R. prinoides* methanolic leaves extract; Ascorbic acid in 50% methanol served as positive control.

Figure 2. Percentage of radical scavenging of stem-bark extracts and ascorbic acid at various concentrations. RPHESB: *R. prinoides* hexane stem-bark extract; RPCHSB: *R. prinoides* chloroform stem-bark extract; RPEASB: *R. prinoides* ethyl acetate stem-bark extract; RPMESB: *R. prinoides* methanolic stem-bark extract; Ascorbic acid in 50% methanol served as positive control.
Table 1. Percentage of radical scavenging activity of extracts from *R. prinoides* at various concentrations.

<table>
<thead>
<tr>
<th>Extract</th>
<th>Concentrations (µg mL⁻¹)</th>
<th>Percentage of inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>RPHELS</td>
<td>03.33±0.89</td>
<td>03.80±0.26</td>
</tr>
<tr>
<td>RPCHLS</td>
<td>23.01±3.44</td>
<td>27.15±5.18</td>
</tr>
<tr>
<td>RPEALS</td>
<td>17.71±1.02</td>
<td>17.96±0.82</td>
</tr>
<tr>
<td>RPMELS</td>
<td>21.01±3.80</td>
<td>33.74±1.42</td>
</tr>
<tr>
<td>RPHESB</td>
<td>12.39±3.19</td>
<td>18.93±1.04</td>
</tr>
<tr>
<td>RPCHSB</td>
<td>42.37±5.65</td>
<td>43.30±2.98</td>
</tr>
<tr>
<td>RPEASB</td>
<td>03.65±1.02</td>
<td>40.04±1.50</td>
</tr>
<tr>
<td>RPMESB</td>
<td>30.09±5.26</td>
<td>41.69±2.27</td>
</tr>
<tr>
<td>Asc. acid</td>
<td>53.01±3.98</td>
<td>53.46±0.14</td>
</tr>
</tbody>
</table>

RPHELS: *R. prinoides* hexane leaves extract; RPCHLS: *R. prinoides* chloroform leaves extract; RPEALS: *R. prinoides* ethyl acetate leaves extract; RPMELS: *R. prinoides* methanolic leaves extract; RPHESB: *R. prinoides* hexane stem-bark extract; RPCHSB: *R. prinoides* chloroform stem-bark extract; RPEASB: *R. prinoides* ethyl acetate stem-bark extract; RPMESB: *R. prinoides* methanolic stem-bark extract; Asc. Acid = Ascorbic acid in 50 % methanol served as positive control. All experiments were conducted in triplicate (n=3) and reported as the mean of three values together with standard deviation, ±SD.

Table 2. The IC₅₀ values of various extracts of *R. prinoides* by DPPH radical scavenging assay.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Extract</th>
<th>IC₅₀ (µg mL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RPHELS</td>
<td>>3000</td>
</tr>
<tr>
<td>2</td>
<td>RPCHLS</td>
<td>>3000</td>
</tr>
<tr>
<td>3</td>
<td>RPEALS</td>
<td>>3000</td>
</tr>
<tr>
<td>4</td>
<td>RPMELS</td>
<td>950.23</td>
</tr>
<tr>
<td>5</td>
<td>RPHESB</td>
<td>~1500</td>
</tr>
<tr>
<td>6</td>
<td>RPCHSB</td>
<td>710.50</td>
</tr>
<tr>
<td>7</td>
<td>RPEASB</td>
<td>~1000</td>
</tr>
<tr>
<td>8</td>
<td>RPMESB</td>
<td>902.78</td>
</tr>
<tr>
<td>9</td>
<td>Asc. acid</td>
<td><200</td>
</tr>
</tbody>
</table>

RPHELS: *R. prinoides* hexane leaves extract; RPCHLS: *R. prinoides* chloroform leaves extract; RPEALS: *R. prinoides* ethyl acetate leaves extract; RPMELS: *R. prinoides* methanolic leaves extract; RPHESB: *R. prinoides* hexane stem-bark extract; RPCHSB: *R. prinoides* chloroform stem-bark extract; RPEASB: *R. prinoides* ethyl acetate stem-bark extract; RPMESB: *R. prinoides* methanolic stem-bark extract; Asc. Acid = Ascorbic acid in 50 % methanol served as positive control. All experiments were conducted in triplicate (n=3) and reported as the mean of three values together with standard deviation, ±SD.

values were found to be 377.27 and ~250 µg mL⁻¹, respectively (Kimondo et al., 2019). The positive control, ascorbic acid, showed an IC₅₀ value 50.32 µg mL⁻¹ in the same assay (Kimondo et al., 2019). Additionally, the kinetics of acetylcholinesterase (AChE) inhibitory activity of aqueous extract from *R. prinoides* has previously been reported (Catherine and Edward, 2009). The IC₅₀ value for *R. prinoides* was found to be 0.201 mg mL⁻¹. The AChE inhibitory activity of *R. prinoides* was found to be higher than that of some Portuguese and Danish medicinal plants (Ferreira et al., 2006; Adersen et al., 2006). Biologically important secondary metabolites such as emodin, physcion, prinoidin, rhamnazin, gesodin and many other emodin-derived compounds have been reported from *R. prinoides* (Van Staden and Drewes, 1994; Abegaz and Kebete, 1995). Alkaloids, flavonoids, terpenoids, anthraquinones, saponins, polyphenols, etc., classes of compounds have also been reported from various extracts of *R. prinoides* (Molla et al., 2016).

Conclusion

DPPH radical scavenging activity of hexane, chloroform, ethyl acetate and methanolic extracts from leaves and stem-bark of *R. prinoides* collected from the Kingdom of
Lesotho have been evaluated. The leaves extracts showed scavenging activity ranging from 0.33±0.89 to 55.03±3.40 µg mL⁻¹ while the stem-bark extracts showed relatively strong scavenging activity ranging from 0.65±1.02 to 59.55±2.27 µg mL⁻¹. The IC₅₀ values of these extracts were also determined and were found to be in the range of 710.50 to >3000 µg mL⁻¹. R. prinoides finds therapeutic applications in the traditional medicine and showed promising antioxidant activity. Therefore, further studies will be useful to commercialize products from this plant.

CONFLICT OF INTERESTS

The authors declared no conflict of interests.

ACKNOWLEDGEMENTS

The authors acknowledge the National University of Lesotho for its overall support.

REFERENCES

