About JMPR

The Journal of Medicinal Plants Research (JMPR) provides researchers, students and academicians an avenue to present their findings on the value of medicinal plants, indigenous medications, ethnobotany and ethnomedicine, herbal medicines and the cultivation of aromatic and medicinal plants.

The journal will consider for publication original research, reviews and meta-reviews, and short communication on areas covering nutraceuticals, drug discovery and development, pharmacopoeia, traditional medicine, monographs, and natural products research.

The Journal of Medicinal Plants Research is indexed in:
- CAB Abstracts
- CABI's Global Health Database
- Chemical Abstracts (CAS Source Index)
- China National Knowledge Infrastructure (CNKI)
- Google Scholar
- Matrix of Information for The Analysis of Journals (MIAR)
- ResearchGate

Open Access Policy

Open Access is a publication model that enables the dissemination of research articles to the global community without restriction through the internet. All articles published under open access can be accessed by anyone with internet connection.

The African Journals of Biotechnology is an Open Access journal. Abstracts and full texts of all articles published in this journal are freely accessible to everyone immediately after publication without any form of restriction.

Article License

All articles published by Journal of Medicinal Plants Research are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited. Citation should include the article DOI. The article license is displayed on the abstract page the following statement:

This article is published under the terms of the Creative Commons Attribution License 4.0 Please refer to https://creativecommons.org/licenses/by/4.0/legalcode for details about Creative Commons Attribution License 4.0
Article Copyright
When an article is published by in the Journal of Medicinal Plants Research, the author(s) of the article retain the copyright of article. Author(s) may republish the article as part of a book or other materials. When reusing a published article, author(s) should;

Cite the original source of the publication when reusing the article. i.e. cite that the article was originally published in the Journal of Medicinal Plants Research. Include the article DOI
Accept that the article remains published by the Journal of Medicinal Plants Research (except in occasion of a retraction of the article)
The article is licensed under the Creative Commons Attribution 4.0 International License.

A copyright statement is stated in the abstract page of each article. The following statement is an example of a copyright statement on an abstract page.
Copyright ©2016 Author(s) retains the copyright of this article.

Self-Archiving Policy
The Journal of Medicinal Plants Research is a RoMEO green journal. This permits authors to archive any version of their article they find most suitable, including the published version on their institutional repository and any other suitable website.
Please see http://www.sherpa.ac.uk/romeo/search.php?id=213&fIDnum=&mode=simple&la=en

Digital Archiving Policy
The Journal of Medicinal Plants Research is committed to the long-term preservation of its content. All articles published by the journal are preserved by Portico. In addition, the journal encourages authors to archive the published version of their articles on their institutional repositories and as well as other appropriate websites.
https://www.portico.org/publishers/ajournals/

Metadata Harvesting
The Journal of Medicinal Plants Research encourages metadata harvesting of all its content. The journal fully supports and implements the OAI version 2.0, which comes in a standard XML format. See Harvesting Parameter

Memberships and Standards
Academic Journals strongly supports the Open Access initiative. Abstracts and full texts of all articles published by Academic Journals are freely accessible to everyone immediately after publication.

All articles published by Academic Journals are licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.

Crossref is an association of scholarly publishers that developed Digital Object Identification (DOI) system for the unique identification published materials. Academic Journals is a member of Crossref and uses the DOI system. All articles published by Academic Journals are issued DOI.

Similarity Check powered by iThenticate is an initiative started by CrossRef to help its members actively engage in efforts to prevent scholarly and professional plagiarism. Academic Journals is a member of Similarity Check.

CrossRef Cited-by Linking (formerly Forward Linking) is a service that allows you to discover how your publications are being cited and to incorporate that information into your online publication platform. Academic Journals is a member of CrossRef Cited-by.

Academic Journals is a member of the International Digital Publishing Forum (IDPF). The IDPF is the global trade and standards organization dedicated to the development and promotion of electronic publishing and content consumption.

COUNTER (Counting Online Usage of Networked Electronic Resources) is an international initiative
serving librarians, publishers and intermediaries by setting standards that facilitate the recording and reporting of online usage statistics in a consistent, credible and compatible way. Academic Journals is a member of COUNTER

Portico is a digital preservation service provided by ITHAKA, a not-for-profit organization with a mission to help the academic community use digital technologies to preserve the scholarly record and to advance research and teaching in sustainable ways.

Academic Journals is committed to the long-term preservation of its content and uses Portico

Academic Journals provides an OAI-PMH (Open Archives Initiatives Protocol for Metadata Harvesting) interface for metadata harvesting.
Contact

Editorial Office: jmpr@academicjournals.org
Help Desk: helpdesk@academicjournals.org
Website: http://www.academicjournals.org/journal/JMPR
Submit manuscript online http://ms.academicjournals.org

Academic Journals
73023 Victoria Island, Lagos, Nigeria
ICEA Building, 17th Floor, Kenyatta Avenue, Nairobi, Kenya
Editor-in-chief

Prof. Akah Peter Achunike
Department of Pharmacology & Toxicology
University of Nigeria
Nsukka,
Nigeria.

Associate Editors

Dr. Luís Cláudio Nascimento da Silva
Post-graduation program of Microbial Biology.
CEUMA University
Rua Josué Montello, nº 1, Renascença II
São Luís - MA, CEP 65.075-120

Dr. Isiaka A. Ogunwande
Department of Chemistry
Lagos State University
Ojo,
Nigeria.

Dr. Bachir Raho Ghalem
Biology Department
University of Mascara
Algeria.

Dr. Pramod V Pattar
Department of Botany
Davangere University
Karnataka,
India.

Dr. Parichat Phumkhachorn
Department of Biological Science,
Faculty of Science,
Ubon Ratchathani University,
Ubon Ratchathani 34190,
Thailand.

Dr. Anthoney Swamy
Department of Chemistry
School of Science and Technology
University of Eastern Africa
Baraton,
Kenya.

Dr. Arvind K Tomer
Department of Chemistry
University of Phagwara
Punjab
India

Dr. Foluso Oluwagbemiga Osunsanmi
Department of Agricultural Science,
University of Zululand,
South Africa.
Associate Editors

Dr. Shikha Thakur
Department of Microbiology,
Sai Institute of Paramedical and Allied Sciences,
India.

Dr. Naira Pelógia
Institute of Basic Sciences,
Taubaté University,
Brazil

Dr. Ravichandran Veerasamy
Faculty of Pharmacy
AIMST University
Semeling,
Malaysia.

Dr. Bellamkonda Ramesh
Department of Food Technology,
Vikrama Simhapuri University,
India.
Table of Content

Systematic review: Medicinal use and scientific elucidation of the Piper genus for the treatment of symptoms and inflammatory diseases
Cícera Norma Fernandes Lima, Luciene Ferreira de Lima, Denise Bezerra Correia, Sara Tavares de Sousa Machado, Jéssica Pereira de Sousa, Enaide Soares Santos, Gyllyandeson de Araújo Delmondes, Irwin Rose Alencar de Menezes, Cícero Francisco Bezerra Felipe, Henrique Douglas Melo Coutinho and Marta Regina Kerntopf
62

In vitro antiplasmodial, cytotoxicity assay and partial chemical characterization of Kenyan Physalis peruviana L. (Solanaceae family) extracts
Peter Karanja Kamau, Zipporah Ng’ang’a, Francis M. Njeruh and John Thuita
73

Quantification of some phenolics acids and flavonoids in Cola nitida, Garcinia kola and Buchholzia coriacea using high performance liquid chromatography-diode array detection (HPLC-DAD)
Adamu A., Ingbian I. N. , Okhale S. E. and Egharevba H. O.
81
Systematic review: Medicinal use and scientific elucidation of the *Piper* genus for the treatment of symptoms and inflammatory diseases

Cícera Norma Fernandes Lima¹*, Luciene Ferreira de Lima¹, Denise Bezerra Correia¹, Sara Tavares de Sousa Machado¹, Jéssica Pereira de Sousa¹, Enaide Soares Santos¹, Gyllyandeson de Araujo Delmondes¹, Irwin Rose Alencar de Menezes¹, Cícero Francisco Bezerra Felipe², Henrique Douglas Melo Coutinho¹ and Marta Regina Kerntopf¹

¹Departamento de Química Biológica (DQB), Universidade Regional do Cariri (URCA), Crato, CE, Brazil.
²Departamento de Biologia Molecular (DBM), Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil.

Received 30 September, 2019; Accepted 21 November, 2019

The aim of this study was to conduct a systematic review that reported the medicinal use of the genus *Piper*, and pharmacological elucidations for the treatment of symptoms and processes of inflammation and inflammatory diseases. The systematic review was prepared in accordance with PRISMA guidelines. The databases used for this research were the Web of Science and Scopus, where associations with the terms were applied in both databases: "*Piper*" and "Ethnobotanical" and "*Piper*" and "Anti-inflammatory effect". Initially, the research identified 153 articles, of which 24 articles were selected for final analysis following the inclusion criteria. The results indicate that the medicinal use of species of the *Piper* genus entails mainly using of leaves, roots, and fruits, and decoct, maceration and powder for the treatment of inflammatory and respiratory diseases such as asthma and bronchitis. Regarding the evaluation of the anti-inflammatory effect of the genus, only seven species presented studies with their scientifically proven anti-inflammatory effect. Biases in the methodology applied in the studies were observed. In this systematic review, it was noticed that both studies addressed have gaps that can cause damage to future research and that pharmacological studies for inflammation with the use of the species themselves are still limited, with a more job for the isolated compounds of these plants.

Key words: *Piper*, medicinal, ethnobotanic, anti-inflammatory effect.

INTRODUCTION

Piper genus is the most representative of Piperaceae family, composed of about 1,000 species (Durant-Archipold et al., 2018), and has wide distribution on temperate regions from both hemispheres (tropical and sub-tropical). It is used for cooking, and has aromatic, ornamental and medicinal purposes (Reigada et al., 2007; Santos et al., 2012). In Brazil, it can be found from North to South, where 292 species occur, of which 44 are...
variety and 184 are endemic (Flora do Brasil, 2018).

Concerning the botanical aspects, these genus specimens appear as sub-shrubs, shrubs or trees, measuring from 1 to 5 meters; they are able to reach up to 10 meters in height. The stems are usually lignified, knotty and have many branches. Leaves have a long petiole and alternate with the stem. The limbo is simple, having its entire margin, with different shapes and sizes. The flowers are sessile, arranged in spikes opposite to leaves, varying in length and thickness, upright, sub-curved or curved; they are accompanied by thin or thick peduncles, of 2 to 5 stamens and 3 to 4 stigmas, filiform, curved, styled or sessile. The ovary is ovoid or sub-ovoid. Fruits are globose drupe with little thickened pericarp (Reitz, 2003; Guimarães and Giordano, 2004).

Ethnobotanical studies in the literature exhibit the genus *Piper* related to medicinal use in tea forms (decoction), infusion and aromatic baths (Blumenthal, 1998; Santhakumari et al., 2003; Wirottesangthong et al., 2008). It is mostly species used in traditional medicine for treating gastrointestinal diseases, hypertension, anti-hemorrhagic, diuretic, pain and inflammation (Gupta et al., 2015; Reigada et al., 2007; Roersch, 2010).

Species of this genus produce compounds with diverse biological and pharmacological properties, such as anxiolytic, analgesic, anti-inflammatory, vasodilatory, cytotoxic, immunomodulatory, antimicrobial, antifungal and promising antitumor activities (Bezerra et al., 2008; Rodrigues et al., 2009; Moraes et al., 2011; Raj et al., 2011). In this sense, phytochemistry contributes to verifying *Piper* genus biological activities cited in the ethnobotanical researches (Parra et al., 2011).

Phytochemical research brings about numerous scientific studies in many parts of the world, which has led to isolation of several bioactive compounds such as kavalacontes (Xuan et al., 2008; Whitton et al., 2003), aristolactams (Cardoso Júnior and Chaves, 2003; Chaves et al., 2006), phenylpropanoids (Chaves and Santos, 2002), lignoids (Chen et al., 2007; Bodiwala et al., 2007), chromones (Morandim et al., 2005), terpenes (Baldoqui et al., 2009; Péres et al., 2009), steroids (Parmar et al., 1997), prenylated benzoic acids (Lago et al., 2009; Chaves et al., 2010) and amides (Araújo-Júnior et al., 1997; Chaves et al., 2003; Srinivasan, 2007; Cotinguiba et al., 2009). These characterize the metabolites of this genus. The first isolated amide of the *Piper* genus was piperine (Lee et al., 1984).

The main biological activities attributed to isolated substances are antifungal, insecticidal, bactericidal, antitumor, trypanocidal, antiparasitic, antimicrobial, antiprotozoal, anti-inflammatory, antinoceptive and antioxidant (Pohlit et al., 2004; Nakamura et al., 2006; Deshwal, 2013; Zakaria et al., 2010; Agbor et al., 2012).

A striking feature of the genus is presence of rich oil content in its structures, especially in leaves and fruits (Albiero et al., 2005). It has essential oils with chemical constituents such as monoterpenes, sesquiterpenes, aryldiisopropylpropanoids, aldehydes, ketones, and long-chain alcohols. This shows its commercial and industrial potential, as well as use in traditional medicine (Correa et al., 2011).

Some studies of scientific reviews on species and isolates from *Piper* genus have already been published (Roersch, 2010; Gutierrez et al., 2013; Monzote et al., 2017, Durant-Archipold et al., 2018); however, there is no systematic review of the genus *Piper* focusing on inflammatory processes. Hence, this review aims to report the medicinal use of *Piper* genus, including pharmacological elucidation for the treatment of symptoms of inflammation and inflammatory diseases.

MATERIALS AND METHODS

Research strategy

The systematic review was performed according to PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). It consists of a 27 items checklist and a flow diagram that instructs articles search and selection in four steps: identification, selection, eligibility and inclusion - for authors to contribute to the quality and reliability of the review in question (Moher et al., 2009).

The study was guided by two questions. The first: “Which species of *Piper* genus are used empirically by population for symptoms of inflammation and inflammatory diseases treatment?”. The second: “Which species of the genus *Piper* have scientifically elucidated anti-inflammatory effects?”

The articles mentioned in the review were publications available from January 2003 to July 2017. For this research, the Web of Science and Scopus databases were used, where the following association of terms was applied in both bases: “*Piper*” and “Ethnobotanical”, “*Piper*” and Anti-inflammatory effect. The constancy of the terms aims to guarantee greater trustworthiness in search application forms and later comparison of the publication date.

The inclusion and exclusion criteria were applied to both consulted databases. Inclusion criteria: articles published in full text, in English language and that portray the subject by means of the above-mentioned terms. Exclusion criteria: duplicate articles, comparative, inconclusive, or dubious studies. After the use of research criteria, certification of selected productions was carried out, using a meta-synthesis type qualitative approach.

Studies selection

Two independent researchers (C.N.F.L. and L.F.L) made studies research and selection. The choice of articles was made by reading title and abstract, with the application of an evaluation formulary with eligibility criteria. Later, publications were evaluated by complete reading. This step is indispensable to ratify the inclusion criteria. Any divergences were agreed on between the two researchers.

Methodological quality analysis/studies’ bias risk

The studies were evaluated using SYRCLE’s RoB (Hooijmans et al., 2014) tool, for pre-clinical *in vivo* studies, with non-human animals. Related to ethnobotanical and pre-clinical studies *in vitro*
was not possible to carry out this analysis, once there is no validated tool for such finality. SYRCLE’s RoB tool was elaborated based on Cochrane Collaboration’s (Higgins and Green, 2011) criteria, being adapted to evaluate the methodological quality and bias risks of experimental studies with non-human animals. This tool is composed of 10 entries that are related to 6 bias types: selection bias, performance bias, detection bias, friction bias, bias notification and other bias (Hooijmans et al., 2014). Based on the aforementioned tool, the studies were classified as "low bias risk", "high bias risk" and "not clear bias risk".

Extraction and data analysis

Data were obtained by one of the researchers (C.N.F.L.) using a list of selection criteria, which were accurately verified by the second researcher (L.F.L.). Regarding the articles that deal with ethnomedical studies, the extracted items were information related to the species, the structure used, the form of use, traditional use, and the country. Regarding ethnopharmacological studies, the information obtained was: species, the structure used, type of extract/essential oil, type of test and effect, according to the literature. Grouping statistics (meta-analysis) were not possible due to methodological heterogeneity between studies.

RESULTS

In this systematic review, were found 153 articles in consulted databases. In the Scopus database, there were 113 articles and in Web of Science, 40 articles. After abstracts and titles screening were excluded 18 duplicated articles, remaining 135, and from full-text analysis, 111 texts were excluded. Finally, after inclusion and exclusion criteria application, 24 articles were selected for this study, in which 15 articles addressed ethnomedical studies that demonstrated Piper species use in traditional medicine for inflammation and 9 articles with pharmacological studies of the species demonstrating elucidation for this activity (Figure 1).

Medicinal use of Piper genus species

Studies have demonstrated Piper genus use in traditional medicine. Here we highlight some ethnomedical surveys that exhibit Piper species use for the treatment of
inflammatory diseases. These species are widely used as a medicinal plant mainly in countries like Indonesia and India, in which a greater number of works were observed. The medicinal genus use occurs by the usage of all parts of the plant; leaves, roots, and fruits were the most used; and the forms of predominant uses in the studies were decoction, maceration, and powder use. However, some studies did not report both. About traditional species used for the treatment of symptoms caused by inflammation, inflammatory processes and inflammatory diseases, the prevalence of the treatment of respiratory diseases such as asthma and bronchitis was evidenced. Other medicinal uses are for rheumatism and gout, diseases considered inflammatory, and for the treatment of inflammatory processes such as wound healing, skin allergies and gastrointestinal ulcers. The symptoms of inflammation are fever and cough (Table 1).

Scientific elucidation of anti-inflammatory activity of Piper genus species

Related to the evaluation of the anti-inflammatory effect of the Piper genus, this systematic review showed that many species that already have medical use by population have not yet had their effects scientifically validated. According to research, only seven species have worked with their scientifically proven anti-inflammatory effect. The most commonly used plant part was leaves, the extract being the most predominant preparation form. Only two works are related to essential oil use. Related to the pharmacological test type used to evaluate the anti-inflammatory activity, paw edema, and pleurisy models were the most used (Table 2).

Methodological quality/bias risk

In Figures 2 and 3, all pre-clinical studies with non-humans animals were evaluated and classified as low bias risk (100%) based on the questions, if the evaluator did not have previous knowledge of results, if identification of incomplete results was adequate, if studies were free of selective results and if they were free of other problems that would cause bias.

DISCUSSION

Since primitive civilizations, man has been intimately related to plants in order to grow his own food and medicine. The popular medicinal use of plants is an ancient art based on the accumulation of information passed through successive generations (Zardo et al., 2016). Thus, ethnobotanical knowledge provides the pharmacological and industrial applications. From popular wisdom about this type of plant that several research centers seek to prove the effectiveness of certain medicinal plants (Albuquerque, 2005).

In the present study, among the ethnobotanical studies reported for medicinal Piper genus use for inflammatory diseases, thirteen species were cited. In view of the analyzed studies, it can be seen that Piper species are used for different medicinal purposes and that often the vegetal part used, the form of use and medicinal application of a species can vary according to the cultural scene.

When comparing Tables 1 and 2 that demonstrate medicinal use and pharmacological elucidation, respectively, of this genus species, it can be verified that despite the report in the ethnobotanical studies few of these species had scientific elucidation confirmed in the area of the inflammation. The species that were scientifically elucidated and at the same time have reports of medicinal use by the population according to this systematic review were: Piper umbellatum, Piper nigrum and Piper sarmentosum.

People use P. umbellatum to treat fever and tissue cicatization (Akendengue et al., 2005; Silalahi et al., 2015). Iwamoto et al. (2015), in their study, evaluated the anti-inflammatory activity of dichloromethane extract, from leaves of this species, on paw edema and carrageenan-induced peritonitis models; they observed decreased inflammation, and leukocyte migration.

P. nigrum is traditionally used to treat sore throat, fever, asthma, and cough (Albuquerque et al., 2007; Silalahi et al., 2015; Sureshkumar et al., 2017; Suroowan and Mahomoodally, 2016). Tasleem et al. (2014) elucidated the anti-inflammatory effect of this species in carrageenan-induced paw edema models that exhibited a significant decrease in edema at different concentrations of hexane and ethanolic extracts. Ahmed et al. (2013) demonstrated that the methanolic extract of this species significantly improves the cholinergic and characteristic neurodegeneration-induced dysfunction of Alzheimer’s disease.

Ethnobotanical studies with P. sarmentosum reported the popular use for rheumatism and gout (Li et al., 2016) and its action for inflammation was elucidated by Lee et al. (2011) who demonstrated that the methanolic extract of this species reduced the production of nitric oxide (NO), which is one of the markers in one of the inflammation pathways (Gonçalves et al., 2000).

Kim et al. (2017) by means of tests aimed the inflammation ways of nitric oxide (NO) and prostaglandins (PGE2) and the measurement of genes that trigger inflammatory processes; the methanolic extract of P. attenuatum exerted anti-inflammatory effects in in vitro tests with macrophage cells.

The other ten Piper species cited in Table 1 do not have a scientific elucidation approach to inflammation yet, according to databases used. The species are the following: P. betle, P. marginatum, P. acutifolium, P.
Table 1. Medicinal use of *Piper* species to treat symptoms of inflammation and inflammatory diseases.

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Parts use</th>
<th>Method of preparation</th>
<th>Medicinal use</th>
<th>Country</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Leaves, Liquid extract</td>
<td>Decoction and maceration</td>
<td>Ulcer</td>
<td>China</td>
<td>Li et al. (2016)</td>
</tr>
<tr>
<td></td>
<td>Leaves, Whole plant</td>
<td>Powder (taken orally)</td>
<td>Asthma</td>
<td>India</td>
<td>Savithramma et al. (2007)</td>
</tr>
<tr>
<td>Piper betle L.</td>
<td>Leaves</td>
<td>Decoction</td>
<td>Sore throat, Skin allergies</td>
<td>Indonesia</td>
<td>Sujaerwo et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>Leaves, Juice</td>
<td>Chewing, Maceration (Used over the chest)</td>
<td>Cough, Asthma, Respiratory disorders Bronchitis</td>
<td>Africa</td>
<td>Suroowan and Mahomoodally (2016)</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>Decoction, Powder</td>
<td>Asthma</td>
<td>China</td>
<td>Gbekley et al. (2017)</td>
</tr>
<tr>
<td>Piper hancei Maxim.</td>
<td>Roots</td>
<td>Decoction</td>
<td>Gastritis, osteitis</td>
<td>India</td>
<td>Li et al. (2016)</td>
</tr>
<tr>
<td>Piper longum L.</td>
<td>Immature fruits and roots</td>
<td>Powder of roots mixed with honey (taken orally)</td>
<td>Asthma</td>
<td>India</td>
<td>Savithramma et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>Powder (taken orally)</td>
<td>Cough</td>
<td>India</td>
<td>Sujaerwo et al. (2015)</td>
</tr>
<tr>
<td>Piper marginatum Jacq.</td>
<td>Roots, leaves, stem</td>
<td>NR</td>
<td>Asthma</td>
<td>Brazil</td>
<td>Albuquerque et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>Seeds</td>
<td>NR</td>
<td>Sore throat</td>
<td>Brazil</td>
<td>Albuquerque et al. (2007)</td>
</tr>
<tr>
<td>Piper nigrum L.</td>
<td>Seeds</td>
<td>NR</td>
<td>Febrifuge</td>
<td>Indonesia</td>
<td>Silalahi et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>Roots</td>
<td>Powder (taken orally)</td>
<td>Asthma</td>
<td>India</td>
<td>Sureshkumar et al. (2017)</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>Powder (taken orally)</td>
<td>Cough</td>
<td>Africa</td>
<td>Suroowan and Mahomoodally (2016)</td>
</tr>
<tr>
<td>Piper peltatum L.</td>
<td>NR</td>
<td>NR</td>
<td>Skin problems, processes "granos"</td>
<td>Guatemala</td>
<td>Hitziger et al. (2016)</td>
</tr>
<tr>
<td>Piper sarmentosum Roxb.</td>
<td>Leaves and roots</td>
<td>Decoction and maceration</td>
<td>Rheumatism, gout</td>
<td>China</td>
<td>Li et al. (2016)</td>
</tr>
<tr>
<td>Piper tuerckheimii C.DC.</td>
<td>NR</td>
<td>NR</td>
<td>Fever and woundhealing</td>
<td>Guatemala</td>
<td>Hitziger et al. (2016)</td>
</tr>
<tr>
<td></td>
<td>Leaves</td>
<td>NR</td>
<td>Inflammation, "loss of senses"</td>
<td>Guatemala</td>
<td>Michel et al. (2016)</td>
</tr>
<tr>
<td>Piper umbellatum L.</td>
<td>NR</td>
<td>Used on the skin</td>
<td>Febrifuge, Cicatrizant</td>
<td>Africa</td>
<td>Akendengue et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>Leaves</td>
<td>NR</td>
<td>Febrifuge</td>
<td>Indonesia</td>
<td>Silalahi et al. (2015)</td>
</tr>
</tbody>
</table>

NR, Not reported.

hacei, *P. tuerckheimii*, *P. peltatum*, *P. longum*, *P. cubebea* *P. guineense*. This shows the scarcity of studies that evaluate the anti-inflammatory activity of these species, but there are reports of genus
Table 2. Scientific elucidation of anti-inflammatory effect of species of the *Piper* genus.

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Parts use</th>
<th>Type of extract/oil</th>
<th>Type of test</th>
<th>Effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piper aleyreanum</td>
<td>Leaves</td>
<td>Essential oil</td>
<td>Pleurisy induced by carrageenan</td>
<td>The treatment with essential oil of P. aleyreanum reduced the main features of acute inflammation, including exudation and leukocyte number, mainly by a reduction in neutrophil differential cell count in the pleural cavity. Oil essential treatment (1-30 mg/kg, p.o.) caused a dose dependent reduction mainly in ethanol-induced gastric lesions, decreasing the ulcer area mainly at doses of 10 and 30 mg/kg, with a mean ID50 value of 1.7 (0.9–3.1) mg/kg and an inhibition of 8774% at 10 mg/kg. Similarly, the essential oil via i.p. (10 mg/kg) reduced by 44.87±12.8% gastric lesions induced by etanol.</td>
<td>Lima et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>Stem</td>
<td></td>
<td>Acute gastric lesions</td>
<td>The methanolic extract of P. attenuatum suppressed the Production of NO in macrophage stimulated with lipopolysaccharides, pam 3CSK4-and poly (I: C). The expression levels of mRNA and NO inducible synthetase (iNOS) and cyclooxygenase 2 (COX-2) were decreased. It reduced the translocation of p50 / NF-κB and AP-1, as well as the activity of its enzymes Src, Syk and TAK1. An immunoprecipitation analysis was turned to the binding between its substrates which were induced by Src, Syk and TAK1 overexpression were also reduced. The methanolic extract of P. attenuatum exerts anti-inflammatory effect by directing Src and Syk on the signaling path NF-κB and TAK1 on the signaling path AP-1.</td>
<td></td>
</tr>
<tr>
<td>Piper attenuatum</td>
<td>NR</td>
<td>Methanolic extract</td>
<td>NO and PGE2 Production Assay, Measurement of mRNA Expression Levels by Reverse- Transcriptase Polymerase Chain Reaction (RT-PCR).</td>
<td>The extract at the dose of 150 mg/kg decreases the TNF-α serum levels in Wistar rat with atherosclerosis by around 45.63%.</td>
<td>Kim et al. (2017)</td>
</tr>
<tr>
<td>Piper crocatum</td>
<td>Leaves</td>
<td>N-butanol</td>
<td>Decrease of TNF-α level and decrease of IL-6 levels pre and post-test</td>
<td>Inhibition of inflammatory mediators including TNF-α, IL-1, IL-6, and NO on LPS-induced macrophage cells.</td>
<td>Wahjuni et al. (2016)</td>
</tr>
<tr>
<td>P. nigrum L.</td>
<td>Leaves</td>
<td>Ethanolic extract</td>
<td>Pro-inflammatory activation of cells; Measurement of TNF-α, IL-β e IL-6; Concentration and inhibitory activity assay; Measurement of nitrite associated with NO concentration and inhibitory activity assay.</td>
<td>The hexane extract showed anti-inflammatory activity at a dose of 5 and 10 mg/kg compared to control, but less than the standard. The hexane extract exhibited maximum anti-inflammatory effect at a dose of 10 mg/kg after 60 min. The ethanol extract showed good anti-inflammatory activity at dose of 10 mg/kg as compared to control but less activity at all doses as compared to standard drug. The ethanol extract exhibited maximum activity at a dose of 10 mg/kg after 60 min.</td>
<td>Laksmitawati et al. (2017)</td>
</tr>
<tr>
<td></td>
<td>Fruits</td>
<td>Ethanol extract and hexane</td>
<td>Carrageenan-Induced paw edema</td>
<td>The treatment with methanolic extract of P. nigrum L., only dose of 187.5 mg / kg reduced the serum AchE activity in the brain by 22.9%. However, both doses tested (187.5 mg/kg and 93.75 mg/kg) presented significance in CRP levels (-28.41% to -25.90% of 187.5 mg/kg b.w./-27.16%, -23.12% 93.75 mg/kg b.w.), NF-κB (-37.86%, -17.52% of 187.5 mg/kg b.w./-36.22%, -16.92% 93.75 mg/kg b.w.) e MCP-1, (-40.8%, -19.47% of 187.5 mg/kg b.w./-35.57%, -17.27% 93.75 mg/kg b.w.). Thus, extract significantly improves the cholinergic dysfunction and neurodegeneration induced by AD inflammation.</td>
<td>Tasleem et al. (2014)</td>
</tr>
</tbody>
</table>
Table 2. Contd.

<table>
<thead>
<tr>
<th>Species</th>
<th>Part</th>
<th>Method</th>
<th>Model</th>
<th>Result</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piper sarmentosum Roxb.</td>
<td>Seeds</td>
<td>Methanolic extract</td>
<td>Experimental model of Alzheimer's disease induced by AICl</td>
<td>The methanolic extract of P. sarmentosum (100, 50 and 25 μg / mL) reduced the production of nitric oxide in 62.82 ± 1.53, 46.53 ± 1.15 and 26.83 ± 1.73 respectively.</td>
<td>Ahmed et al. (2013)</td>
</tr>
<tr>
<td>Piper umbellatum L.</td>
<td>Leaves</td>
<td>Dichloromethane extract</td>
<td>Paw edema and pleurisy induced by carrageenan</td>
<td>P. umbellatum SDE treatment significantly inhibited the first phase of inflammation, in an independent way, as well as indomethacin 10 mg/kg. SDE was able to inhibit inflammation up to 4.5 hours, period coincident with prostaglandin release, which could suggest an action on prostaglandins production. In the second phase, all SDE doses inhibited inflammation at 48 hours while 400 mg/kg dose also inhibited the second inflammatory peak (72 h). This result suggests an effect on neutrophil mobilization, quite similar to the corticosteroids effects that efficiently inhibit the cellular phase of inflammation. In the carrageenan-induced peritonitis model, leukocytes migration in the negative control group was 14160±1705 cells/mL and cell migration was inhibited both by dexamethasone (50.5%, 5 mg/kg) and by P. umbellatum SDE (52.0%, 200 mg/kg).</td>
<td>Lee et al. (2011)</td>
</tr>
<tr>
<td>Piper vicosanum C.D.C.</td>
<td>Leaves</td>
<td>Essential oil</td>
<td>Paw edema and pleurisy induced by carrageenan</td>
<td>The groups treated with oil essential of Piper vicosanum (OPV) doses of 100 and 300 mg/kg showed a significant decrease in edema at the four hours of observation. The inhibitions were 78±2% and 75±3% after 2 h and 80±2% and 86±3% after 4 h, respectively. Additionally, the oral administration of OPV significantly inhibited the leukocyte migration at all doses tested (100 and 300 mg/kg), with inhibitions of 70±3% and 85±2%, respectively, and higher inhibition at a dose of 300 mg/kg.</td>
<td>Brait et al. (2016)</td>
</tr>
</tbody>
</table>

NR, Not reported.

use for inflammation treatment (Moreira et al., 1998; Felipe et al., 2006). In relation to the species *P. vicosanum*, *P. aleyreanum* and *P. crocatum* the opposite occurred; these have scientific elucidation and, nevertheless, were not found articles demonstrating the traditional use through ethnomedecinal studies in the databases of Web of Science and Scopus.

Brait et al. (2015) studied *P. vicosanum* through models of paw edema and pleurisy induced by carrageenan; they obtained significant results for the edema reduction and for leukocyte migration in pleurisy. Also, *P. aleyreanum*, its anti-inflammatory effect also was evaluated by the carrageenan-induced pleurisy model and the acute gastric lesion test. Both tests were performed by Lima et al. (2012) and they obtained significant results regarding inflammatory processes reduction.

The studies cited above report the traditional use of this species, *P. aleyreanum*, as immunomodulatory, analgesic and antidepressant (Brait et al., 2015); people use it empirically in a more general way for bronchitis, intestinal pain, skin irritations and inflammation treatment (Lima et al., 2012).

Wahjuni et al. (2016) and Laksmitawati et al. (2017) performed tests with *P. crocatum*. Both evidenced the reduction of serum levels of TNF-α, IL-1, IL-6, and NO in Wistar rats and in LPS-induced macrophage cells, respectively. In these articles, authors do not describe empirical medicinal use; only bioactive components were present in these plants, correlating with its anti-inflammatory activity.

During the research were found several works that investigate the pharmacological activity of isolated compounds from the *Piper* genus for inflammation. Sheikh et al. (1993) isolated triterpenes and β-sitosterol from *P. betle* to plaquetary aggregation study and anti-inflammatory effect; the last one were used the model of paw edema induced by carrageenan to evaluate its potential.

In the species *P. nigrum* and *P. longum* the
Figure 2. Methodological quality summary for preclinical trials: review of authors judgments about each methodological quality item for each study included: **P1**, Was the allocation sequence adequately generated and applied?; **P2**, Were the groups similar at baseline or were they adjusted for confounders in the analysis?; **P3**, Was the allocation to the different groups adequately concealed during?; **P4**, Were the animals randomly housed during the experiment?; **P5**, Were the caregivers and/or investigators blinded from knowledge which intervention each animal received during the experiment?; **P6**, Were animals selected at random for outcome assessment?; **P7**, Was the outcome assessor blinded?; **P8**, Were incomplete outcome data adequately addressed?; **P9**, Are reports of the study free of selective outcome reporting?; **P10**, Was the study apparently free of other problems that could result in high risk of bias?.

![Quality Assessment Table](image)

Figure 3. Methodological quality of included studies. Green bars indicate the proportion of articles that present low bias risk; red bars indicate the proportion of studies with high bias risk and yellow bars indicate the proportion of studies with unclear bias risk.

Major component is piperine that has biological activities: anti-inflammatory, antioxidant, analgesic, healing, antifungal, antibacterial and facilitates blood circulation activity (Bae et al., 2011; Carnevallia and Araújo, 2015). Liang et al. (2016) evaluated piperine for pyroptosis in murine macrophages using pyroptosis assay. Cruz et al. (2013) studied its application in convulsion by checking deaths number and survivors through pilocarpine-induced seizure tests by the GABAergic system in an animal model. Kim et al. (2012) verified piperine inhibitory action on COX-1 with the COX-2 induction test by 13-acetate 12-myristate-frobol (PMA).
In Web of Science database were found five articles using isolated piperine compound and one with the compound allylpyrocatechol (APC) extracted from P. betle species. This component was evaluated by induced production of NO and PGE\textsubscript{2} of lipopolysaccharide (LPS) in murine macrophages cells to verify their anti-inflammatory capacity (Sarkar et al., 2008).

The remaining articles, using piperine, investigate: The apoptosis in neuronal cells and the anti-inflammatory activity in Parkinson's disease induced by 6-OHDA (Shrivistava et al., 2013), the neuro-inflammation on BV\textsubscript{2} microglia induced by inflammatory responses to LPS (Wang-Sheng et al., 2017), the ulcerative colitis by determining TLR4 receptor cholesterol in the pathway of cellular inflammation (Gupt et al., 2015) and the acute pancreatitis induced by cerulein by activation inhibition of mitogenic protein kinase (Bae et al., 2011).

Besides these works, other components such as: N-isobutylamine, (E) -ß-caryophyllene (BCP) and other alkaloids were used, respectively, for anti-inflammatory effect of edema in formation in acute analgesia, in a murine model of nephropathy to verify anti-inflammatory properties and in neuroinflammatory processes in Parkinson's disease in the dopaminergic neuronal system (Reynoso-Moreno et al., 2017; Horváth et al., 2012; He et al., 2016).

Other works that approach isolated compounds, were by De León et al. (2002) who studied P. fimbriulatum through its furofuran lignan (+)-diayangambin isolated component in vivo assays such as carrageenan-induced paw edema to verify its immunomodulatory and anti-inflammatory efficacy, and by Chion et al. (2003) which used piperlactam S isolated from P. kadsura for chemotaxis treatment by means of chemotactic migration, adhesion, measurement of phagocytic activity and cytokine production assays.

The analysis of the quality of methodology and the risk of bias of the studies inserted in a systematic review is of fundamental importance (Hooijmans et al., 2014). This is because this evaluation demonstrates that the research developed was well planned and carried out efficiently and that the results presented were interpreted correctly and comprehensible (Festing and Altman, 2002). In the articles addressed in this review, biases in the methodology were observed in preclinical studies with non-human animals, mainly in the allocation and blinding of the groups. This data require some special attention since studies that present a risk of methodological bias do not guarantee reliable results.

Conclusion

Studies covered in this systematic review prove that the Piper genus includes species with bioactive activities, with great potential for inflammatory disease treatment.

In traditional medicine, ethnobotanical studies showed that leaves, roots, and fruits were most used parts under decoction, maceration and powder form for inflammatory diseases of respiratory tract treatment, such as asthma, bronchitis, and cough. Already in the studies that scientifically validated Piper genus anti-inflammatory activity, only seven species presented works with their anti-inflammatory effect scientifically proven.

This review also showed that several ethnobotanical studies still present gaps in relation to detailed information regarding the plant part used and how they are used, as well as other data. The lack of such reports may lead to a loss for future pharmacological research. Thus, it is considered that interviews of this size should be very explanatory, aiming to collect as much information as possible about plant use in traditional medicine.

In the ethnopharmacological studies (in vivo or in vitro), there was also lack of information, mainly in relation to the plant part used to obtain the extract, implying that the lack of this data may be a reflection of the scarcity of ethnobotanical studies well structured. Another factor to be observed is that the pharmacological studies for inflammation with species use itself are still limited, with a larger number of works for isolated compounds from these plants. The research also did not present any study that reported genus use for clinical trials. In view of this, it can be seen that research with the Piper genus as a therapeutic agent in modern medicine is still very scarce, related to anti-inflammatory activity.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

kinesia. Biological and Biophysical Communications Research 410:382-388.

Festing MF, Altman DG (2002). Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR Journal. 43:244-258.

Full Length Research Paper

In vitro antiplasmodial, cytotoxicity assay and partial chemical characterization of Kenyan Physalis peruviana L. (Solanaceae family) extracts

Peter Karanja Kamau¹*, Zipporah Ng’ang’a¹, Francis M. Njeruh² and John Thuita³

¹Department of Medical Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya.
²Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, P.O. Box 29053-00100, Nairobi, Kenya.
³Institute of Biotechnology research (Cancer division), Kenya Agricultural and Livestock Research Organization (KALRO), P.O. Box 362-00902, Kikuyu, Kenya.

Received 9 November, 2019; Accepted 2 January, 2020

Malaria is a protozoan infection of Public health concern with several new cases yearly reported. Control of malaria infections is constrained due to the toxicity of currently available drugs and the emergence of resistant malaria strains. The current study was designed to assess the antiplasmodial activity, cytotoxicity and to partially characterize Kenyan Physalis peruviana extracts in order to determine their utility as a possible source of a new antimalarial drug. Antiplasmodial activity of P. peruviana extracts was evaluated in vitro using Plasmodium falciparum D6 chloroquine-sensitive, and W2 chloroquine-resistant by semi-automated microdilution technique. Cytotoxicity assay was determined using Vero cells; while partial characterization determined using Fourier transformer infrared spectrophotometer (FTIR) and Gas chromatography-mass spectrophotometer (GC-MS). The antiplasmodial activity (IC₅₀) of P. peruviana extracts against chloroquine-sensitive (D6) P. falciparum strain ranged from 14.719±0.744 to >100 ug/ml. For W2, strain antiplasmodial activity ranged from 8.303±1.062 to >100 ug/ml. All the FTIR and GC-MS analysis of P. peruviana leave extract revealed the presence of biologically active components. There is a need for further studies using purified extracts as a means of coming up with possible novel antiplasmodial drugs. P. peruviana extracts were not toxic to Vero cells.

Key words: Antiplasmodial, cytotoxicity, Vero cells, Physalis peruviana extracts.

INTRODUCTION

Malaria is one of the most severe life-threatening protozoan diseases typically characterized by fever, paroxysm and flu-like symptoms recurring within 48 to 72 h cycles (Njokah et al., 2016). Plasmodium falciparum is by far the most virulent species of parasites that affect humans. In the 2017 World Health Organization (WHO) report on malaria, 216 million episodes of malaria and 445,000 deaths were reported, with 90% of cases and

*Corresponding author. E-mail: pkaranja@jkuat.ac.ke.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
91% of deaths affecting the WHO African region (Kweyamba et al., 2019). Eradication of malaria has become a serious challenge due to the emergence of *P. falciparum* species resistant to the most potent recently developed antimalarial drugs, such as artemisinin-based combinations (WHO, 2007). As a result, there are limited options for the management of patients infected with such resistant parasites, a situation that necessitates renewed efforts to identify new chemical compounds with antimalarial activity.

Physalis peruviana L. belongs to the Solanaceae family. Botanically, *P. peruviana* can be classified as belonging to the Plantae Kingdom, the order solanales, the family Solanaceae, subfamily of solanoideae, tribe of physaleae, subtribe of physalisini and the species of *Physalis peruviana* (Sharma et al., 2015). The *P. peruviana* grown in Kenya is thought to have probable origin from tropical South America (Maundu et al., 1999) and is well adapted to Kenyan local environmental conditions. It is commonly found growing in the wild in Kenyan forests and in infertile soils where its fruits are collected and eaten. In Kenya, *P. peruviana* was reported to be used in herbal medicine against asthma (Njoroge and Bussmann, 2006), while in the Kagera region northwestern Tanzania, the fruit juice of *P. peruviana* was used as a cure for malaria (Moshi et al., 2012).

In the current study, the antimalarial activity and cytotoxicity of *P. peruviana* extracts were investigated. In addition, partial characterization of *P. peruviana* L. extracts was carried out with the aim of identifying the active compounds in the crude extracts with the highest anti-plasmodial activity.

MATERIALS AND METHODS

Study site, collection of *P. peruviana* and authentication

The *P. peruviana* plant materials were collected in February 2013 from Nyeri County [0°25’0” South, 36°57’0” East] located in the Central part of Kenya. Nyeri is 162 Km North of Nairobi. This area is known to have good reserves of *P. peruviana* L. The whole plant materials were collected in 2013 and identified by National Museums of Kenya Botanists and a Voucher specimen number EAH001PK deposited at the National Museums of Kenya Herbarium, Nairobi. Various parts; fruits, leaves, stem, and roots were separated, dried under shade and pulverized in a hammer mill fitted with a sieve of 0.5mm pores.

Antiplasmodial and cytotoxicity studies were carried out at the Centre for Biotechnology Research and Development (CBRD) Malaria Laboratory, Kenya Medical Research Institute (KEMRI) Headquarters, Nairobi, Kenya. Partial characterization of dichloromethane *P. peruviana* leaves extract was carried out at Jomo Kenyatta University of Agriculture and Technology chemistry laboratory, Nairobi, Kenya.

Preparation of *P. peruviana* aqueous, methanolic, and dichloromethane extracts

Preparation of *P. peruviana* extracts was carried out using methods described by Ubulom et al. (2011). Potions of pulverized plant parts were soaked separately in distilled water, methanol and dichloromethane, for 72 h with stirring at regular intervals. The extracts were repeatedly filtered using a sterile Whatman No. 1 filter paper (Jaca and Kambizi, 2011). The aqueous filtrates were freeze-dried, while the methanol and dichloromethane extracts were concentrated under vacuum at 40°C in a Buchi rotary evaporator.

The percentage yield was determined using the method used by Ogila (2010) as follows:

\[\text{Percentage yield} = \frac{\text{Weight of extract}}{\text{Weight of ground material}} \times 100 \]

For identification purposes the extracts were assigned codes as follows; APPL = aqueous extracts of *P. peruviana* leaf; APPS = aqueous extracts of *P. peruviana* stem; APPF = aqueous extracts of *P. peruviana* fruit, APPR = aqueous extracts of *P. peruviana* root; MPPL = methanolic extracts of *Physalis peruviana* L leaves (MPPL), MPPS = methanolic extracts of *Physalis peruviana* L stem (MPPS), MPFP = methanolic extracts of *Physalis peruviana* L fruit (MPPF), MPFR = methanolic extracts of *Physalis peruviana* L root (MPFR), DPPPL = dichloromethane extracts of *P. peruviana* leaf; DPPPS = dichloromethane extracts of *P. peruviana* stem; DPPPF = dichloromethane extracts of *P. peruviana* fruit; DPPFR = dichloromethane extracts of *P. peruviana* root. All the extracts were kept desiccated at 4°C until use.

In vitro antiplasmodial bioassay

P. peruviana extracts were assayed using an automated microdilution technique to determine 50% growth inhibition of cultured parasites (Chulay et al., 1983; Desjardins et al., 1979).

Two different clones of *P. falciparum* were used in this study. The chloroquine-sensitive Sierra Leone 1 (D6) and chloroquine-resistant Indochina 1 (W2) strains were grown in a continuous culture supplemented with mixed gas (92% nitrogen, 5% carbon dioxide and 3% oxygen), 10% human serum and 6% hematocrit of O+ red blood cells and 5-fluocytosine. Once cultures reached the optimum growth; growth rate ≥ 3.0% and parasitemia of > 3 % with at least an 80% ring developmental stage present, parasite solution was transferred to a 96 well microtiter plate with wells pre-coated with the test sample. The test samples were serially diluted across the plate to provide a range of concentrations used to accurately determine IC50 values. Plates were incubated in a gas chamber for 48 h after which 3H-hypoxanthine was added and parasites allowed to grow for a maximum of 18 h. Cells were processed with a 96 well plate harvester (MicroBoto) onto filter mat paper (Wallac) and washed to eliminate unincorporated isotope. Filters were measured for *P. peruviana* antiplasmodial activity in a micro-titer plate scintillation counter (Wallac). Data from the counter was processed using the Oracle database program to determine IC50 values.

Cytotoxicity assays

The cellular cytotoxicity assay was used to test the cytotoxicity effects of individual extracts as was described by Wabwoba (2010) with slight modification. Briefly, Vero cells were seeded in minimum essential medium (MEM) (ATTC® 30-200™) supplemented with 10% Fetal bovine serum, 100 IU/ml penicillin and 100 µg/ml streptomycin in 25 ml cell culture flasks and incubated for 24 h at 37°C in 5% CO2 humidified atmosphere.

The Vero cells were harvested by trypsinization and pooled in 50 ml vials from which 100 µl suspensions at a concentration of 1 x 10⁵ cells was added into 2 wells of rows A-H of a 96-well flat bottomed microtiter plate. A 100 µl of each *P. peruviana* extract was added and the plates incubated at 37°C in 5% CO2 atmosphere. Cells without extracts and medium alone served as the controls. A 100 µl
of the cell suspension was discarded from each well followed with an addition of 10 µl of 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-
diphenyltetrazolium bromide (MTT) (Roche, Indianapolis USA). After 4 h of incubation, the medium together with MTT was aspirated off from the wells, 100 µl of Dimethylsulphoxide added and plates shaken for 5 min. The absorbance was measured for each well at 562 nm using a microtiter plate reader (Wang et al., 2006).

Partial characterization of dichloromethane P. peruviana leaves extract by Fourier Transform infrared spectrophotometer (FTIR) and gas chromatography-mass spectrophotometry (GC-MS)

Fourier Transform Infrared Spectrophotometer (FTIR)

About 0.02 g of dried DPPL extract was reconstituted in dichloromethane and a drop of the extract mounted on NaCl plates for the FTIR analysis. The analysis was carried out using a Shimadzu 8400 FTIR with the scan ranging from 400 - 4000 cm⁻¹. The scanning was made through the IR region and the P. peruviana dichloromethane leaves extract functional groups determined according to the method described by Maobe and Nyarango (2013).

Gas chromatography-mass spectrometry analysis of dichloromethane leaves extract

Initially, 0.05 g of a homogenized DPPL extract was dissolved in 5 ml of dichloromethane in a centrifuge tube. The mixture was vortexed for 10 s and sonicated for 10 min. The mixture was centrifuged at 15000 g for 5 min. The supernatant was filtered before analysis in the GC-MS. Samples were analyzed using an Agilent 7890 Gas Chromatograph coupled to an Agilent 5975 Mass Spectrometer. The column used was the HP 5 MS capillary column: 30 m; 0.25 mm ID; 0.25 µm film thickness. The oven temperature program was initially set at 35°C and held for 3 min. It was then raised to 285°C at a rate of 10°C/ min. The oven was maintained at this temperature for 23 minutes. The total run time was 50 minutes. Mass spectrometry was done in full scan mode from 40 – 500 m/z with a solvent delay time of 3.5 minutes. Carrier gas was He (99.999%) at a flow rate of 1 ml/minute. One µl of the sample was injected using a split/splitless injector. The injector temperature was set at 200°C and the interface temperature was set at 280°C according to the method described by Wamalwa et al., (2015).

Statistical analysis

An independent t-test was performed on inhibition (IC₅₀ in µg/ml) of P. peruviana extracts to both chloroquine-sensitive Sierra Leone 1 (D6) and chloroquine-resistant Indochina 1 (W2) strains. The level of significance was fixed at P < 0.05.

Ethical considerations

Permission to carry out the study was granted by the Kenya Medical Research Institute Ethical and Scientific Steering Committees (reference numbers KEMRI/RES/7/3/1 and ESACIPAC/SSC/101472 respectively).

RESULTS

Percentage yields of various P. peruviana extracts

The percentage yields for aqueous, methanolic, and dichloromethane P. peruviana extracts ranged from 0.5 to 10.0% (Table 1). P. peruviana aqueous leaves extract had the highest percentage yield, while the lowest percentage yield was recorded in the aqueous fruit extract.

Antiplasmodial assay of P. peruviana extracts

Most of the P. peruviana extracts exhibited various antiplasmodial activities. According to Rasoanaivo et al. (1992), antimalarial activity of plants is described as very active: IC₅₀ <5 µg/ml, active: IC₅₀ greater than 5 µg/ml but less than 50 µg/ml, weakly active: IC₅₀ value greater than 50 µg/ml but less than 100 µg/ml and inactive: IC₅₀ > 100 µg/ml. In this analysis, APPF and MPPF were the only ones found to be inactive (Table 2). An independent t-test

Table 1. Percentage yields of aqueous, methanolic and dichloromethane P. peruviana extracts.

<table>
<thead>
<tr>
<th>Plant extract</th>
<th>Amount of ground part in (g)</th>
<th>The yield of extract (g)</th>
<th>The yield of the extract (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPL</td>
<td>100</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>APPS</td>
<td>100</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>APPF</td>
<td>120</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>APPR</td>
<td>100</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>MPPL</td>
<td>40</td>
<td>3.4</td>
<td>8.5</td>
</tr>
<tr>
<td>MPPS</td>
<td>100</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>MPPF</td>
<td>40</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>MPPR</td>
<td>100</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>DPPL</td>
<td>40</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>DPPS</td>
<td>40</td>
<td>1.34</td>
<td>3.4</td>
</tr>
<tr>
<td>DPPF</td>
<td>120</td>
<td>0.83</td>
<td>0.7</td>
</tr>
<tr>
<td>DPPR</td>
<td>120</td>
<td>4.3</td>
<td>3.6</td>
</tr>
</tbody>
</table>
Table 2. Physalis peruviana aqueous, methanolic and dichloromethane extracts antiplasmodial activity (IC$_{50}$).

<table>
<thead>
<tr>
<th>Extract</th>
<th>D6 IC$_{50}$ (µg/ml)</th>
<th>W2 IC$_{50}$ (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPL</td>
<td>39.984±3.797</td>
<td>29.522±15.752</td>
</tr>
<tr>
<td>APPS</td>
<td>48.664±2.535</td>
<td>40.594±1.194</td>
</tr>
<tr>
<td>APPF</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>APPR</td>
<td>58.93±0.899</td>
<td>61.33±5.388</td>
</tr>
<tr>
<td>MPPL</td>
<td>36.479±1.519</td>
<td>20.85±6.044</td>
</tr>
<tr>
<td>MPPS</td>
<td>28.417±0.417</td>
<td>39.67±0.998</td>
</tr>
<tr>
<td>MPPF</td>
<td>>100 µg/ml</td>
<td>>100 µg/ml</td>
</tr>
<tr>
<td>MPPR</td>
<td>46.40±4.267</td>
<td>58.07±9.85</td>
</tr>
<tr>
<td>DPPL</td>
<td>14.71±0.744</td>
<td>8.30±1.062</td>
</tr>
<tr>
<td>DPPS</td>
<td>29.50±0.213</td>
<td>16.75±6.09</td>
</tr>
<tr>
<td>DPPF</td>
<td>66.75±1.098</td>
<td>32.94±1.828</td>
</tr>
<tr>
<td>DPPR</td>
<td>62.34±0.845</td>
<td>22.80±9.97</td>
</tr>
<tr>
<td>Chloroquine (ng/ml)</td>
<td>12.67±0.03</td>
<td>127.66±1.96</td>
</tr>
</tbody>
</table>

The IC$_{50}$ values are represented as mean±SEM P.peruviana aqueous, methanol, dichloromethane extracts, and Chloroquine control drug against W2 and D6 Plasmodium falciparum strains.

Figure 1. Cytotoxicity effects of aqueous, methanolic and dichloromethane P. peruviana extracts using Vero cells.

was performed to test the inhibition activity of the plant extracts against chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum isolates. The inhibition activity of the extracts against D6 and W2 IC$_{50}$ (µg/ml), t (22) = 0.016; P = 0.988, was not statistically different (P > 0.05).

Cytotoxicity effects of P. peruviana extracts

All the P. peruviana extracts were less toxic to Vero cells (higher IC$_{50}$ values) as compared to the control, 20% DMSO (Figure 1).

Partial characterization of dichloromethane P. peruviana leaves extract FTIR and GC-MS

Fourier Transform Infrared Spectrophotometer (FTIR) analysis

The spectrum obtained indicated an intense absorbance
at 3398 cm$^{-1}$ attributed to O-H stretch vibrations in alcohol (Nithyadevi and Sivakumar, 2015). Polyphenols present in the plant extract is attributable to this absorbance value. The sharp shoulder peaks at 2923.9 and 2854.5 cm$^{-1}$ are characteristic of C-H stretch in alkanes (Maobe and Nyarango, 2013). The small absorbance peak at 1733.9 cm$^{-1}$ is attributed to the carbonyl C=O stretch in carboxylic acids, while the carbonyl stretch in ketones could be responsible for the absorbance peak at 1653.8 cm$^{-1}$. The absorbance peak at 1565.1 cm$^{-1}$ due to N-H bending and peaks at 1130.2 and 1069.5 cm$^{-1}$ attributed to C-N stretch vibrations in aliphatic amines could indicate the presence of alkaloids in the sample (Figure 2).

Gas chromatography-mass spectrometry analysis of P. peruviana dichloromethane leaves extract

Gas chromatography-mass spectrometry analysis of P. peruviana dichloromethane leaf extracts revealed 8 phytochemicals with molecular weight ranges of 256 to 436 daltons. These phytochemicals included: Hexahydrofarnesyl acetone, n- Hexadecanoic acid, phytol, linoleic acid, ethyl iso-allocholate, vitamin E, campesterol and stigmasterol (Table 3).

The 8 Phytochemicals in Table 3 are also presented in the form of total ion current (TIC) (Figure 3).

DISCUSSION

The objective of the current study was to evaluate the antiplasmodial activity and safety of aqueous, methanolic and dichloromethane P. peruviana extracts, and also to partially characterize the extract exhibiting the highest antiplasmodial activity.

The yield of aqueous, methanol and dichloromethane P. peruviana L. extracts ranged from 0.5 - 10, 0.8 - 8.5 and 0.7 - 3.6% respectively. These results were comparable to those of other researchers who reported that the more polar solvents yielded greater quantities of extracts (Gaba et al., 2019; Abubakar, 2010).

From this study 22 (91.7%) out of the 24 P. peruviana extracts exhibited antiplasmodial activity against the two laboratory P. falciparum clones, chloroquine-sensitive D6 (Sierra Leone) and chloroquine-resistant W2 (Indochina). The mean IC$_{50}$ (µg/ml) for the antiplasmodial activity for P. peruviana extracts against the D6 clone ranged from 14.719±0.744 to > 100 µg/ml, while the mean IC$_{50}$ of P. peruviana extracts ranged from 8.303±1.062 to > 100 µg/ml. The DPPS extract exhibited the highest activity for both clones while the weakest antiplasmodial activity was from APPF and MPPF both at > 100 µg/ml. According to Rasaonaivo (1992), the classification of antiplasmodial activity on crude plant extracts, APPF and MPPF could, therefore, be classified as inactive. These results are in agreement with a study carried out by Mosh (2012) in the Kagera region, northwestern Tanzania which found that
Table 3. Phytochemicals of *P. peruviana* dichloromethane leaves extract by GC-MS analysis.

<table>
<thead>
<tr>
<th>Peak number in the sample TIC</th>
<th>Retention time (min)</th>
<th>Compound name</th>
<th>Molecular weight (Daltons)</th>
<th>Reported Activity</th>
<th>References/ literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>22.635</td>
<td>Hexahydrofarnesyl acetone</td>
<td>268</td>
<td>Biologically active</td>
<td>Nikkhah et al. (2017)</td>
</tr>
<tr>
<td>3</td>
<td>24.180</td>
<td>n-Hexadecanoic acid</td>
<td>256</td>
<td>Antioxidant, anticancer</td>
<td>Nikkhah et al. (2017)</td>
</tr>
<tr>
<td>5</td>
<td>25.905</td>
<td>Linolenic acid</td>
<td>278</td>
<td>Cytotoxic, antitrypanosomal</td>
<td>Nikkhah et al. (2017)</td>
</tr>
<tr>
<td>6</td>
<td>27.518</td>
<td>Ethyl iso-allocholate</td>
<td>436</td>
<td>Antifungal</td>
<td>Mohan et al. (2012)</td>
</tr>
<tr>
<td>7</td>
<td>35.289</td>
<td>Vitamin E</td>
<td>430</td>
<td>Antioxidant</td>
<td>Malathi et al. (2016)</td>
</tr>
<tr>
<td>8</td>
<td>37.126</td>
<td>Campesterol</td>
<td>400</td>
<td>Anti-CDV</td>
<td>Choe and Min (2009)</td>
</tr>
<tr>
<td>9</td>
<td>37.776</td>
<td>Stigmasterol</td>
<td>412</td>
<td>Anti-ostearthritic</td>
<td>Genser et al. (2012)</td>
</tr>
</tbody>
</table>

Figure 3. Total Ion Current (TIC) for *P. peruviana* leaves dichloromethane extract.

P. peruviana was being used to treat malaria as herbal medicine. The results are comparable to an *in vitro* study carried out by N’guessan et al. (2010) on *P. angulata* a similar species to *P. Physalis* that exhibited antiplasmodial falciparum activity of IC$_{50}$ (µg/ml) of 7.9±0.3. These results are quite close to antiplasmodial activity exhibited by dichloromethane *Physalis peruviana* L extracts in the current study.

It was necessary to determine the safety profile of plant extracts due to the complexity and natural biological variations emanating from them (Cowan, 1999). Cytotoxicity effects of *P. peruviana* extracts using Vero cells revealed that all extracts were less toxic compared to the control. However, according to the US National Cancer Institute (NCI), *P. peruviana* extracts tested were not within the toxic group of IC$_{50} < 20$ µg/ml in the preliminary assay (Nathyadevi and Sivakumar, 2015).

The FTIR is an invaluable tool for the characterization
and identification of phytochemicals or functional groups present in an unknown mixture of plant extract (Maobe and Nyarango, 2013). The spectrum obtained indicated the presence of O-H stretching for alcohols, Polyphenols, C-H stretch for alkanes, the carbonyl C=O stretch for carboxylic acids, and the carbonyl stretching for ketones. N-H bending and peaks at 1130.2 cm⁻¹ and 1069.5 cm⁻¹ attributed to C-N stretch vibrations in aliphatic amines could indicate the presence of alkaloids in the sample. The presence of these functional groups could be attributed to the medicinal properties as was revealed from a previous study (Maobe and Nyarango, 2013).

Gas chromatography-mass spectrometry revealed the presence of some compounds with biological activities such as Hexahydrofarnesyl acetone, n-Hexadecanoic acid, Phytol, Linolenic acid, Ethyl iso-allocolcholate, vitamin E, campesterol and stigmasterol. Linoleic acid, Phytol and Ethyl isoallocolcholate have been associated with antimicrobial activities (Nibret and Wink, 2010; Mohan et al., 2012; Malathi et al., 2016), which could have been attributed to the antiplasmodial activity of *P. peruviana* extracts. In a study carried out by Kamau et al. (2017), *P. peruviana* extracts were found to contain biologically active compounds such as tannins, saponins, steroids, flavonoids, and alkaloids. Alkaloids have been associated with the antiplasmodial activity (Wright and Philipson, 1990).

Conclusion

Aqueous, methanolic and dichloromethane *P. peruviana* leaves, stem, fruits, and roots extract exhibit antiparasitic activity against *P. falciparum*. The ability of 92% of *P. peruviana* extracts to kill chloroquine-resistant *Plasmodium* (W2) strains is of importance where chloroquine-resistant malaria is in existence. The investigations demonstrated the effectiveness and safety of using herbal treatment of malarial by *P. peruviana* by the rural indigenous communities. Partial characterization of *P. peruviana* extracts by FTIR and GC-MS revealed the antiparasitic and antibacterial potential of crude leaf extracts of *P. peruviana*. The study recommends the use of purified extracts and elucidation of actual compounds against *P. falciparum* activity.

ACKNOWLEDGMENTS

The authors acknowledge Mr. Muturi J. Njokah of the Center for Biotechnology Research and Development (CBRD) Malaria Laboratory, Kenya Medical Research Institute (KEMRI) in Nairobi Kenya, for his technical assistance. The AFRICA-ai-JAPAN PROJECT at Jomo Kenyatta University of Agriculture and Technology for financial grant reference (JKU/ADM/10) is acknowledged with thanks.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Quantification of some phenolics acids and flavonoids in *Cola nitida*, *Garcinia kola* and *Buchholzia coriacea* using high performance liquid chromatography- diode array detection (HPLC-DAD)

Adamu A.¹, Ingbian I. N.², Okhale S. E.¹ and Egharevba H. O.¹

¹Department of Medicinal Plant Research and Traditional Medicine, National Institute for Pharmaceutical Research and Development, Abuja, Nigeria.

²Department of Chemistry, Benue State University, Makurdi, Benue State, Nigeria.

Kola seeds are highly valued in most African communities due to their medicinal benefits and socio-cultural application during ceremonies. Apart from their neuro-stimulatory effect, the other health benefits such as antioxidant activities which are closely associated with the level of phenolic constituents have also been widely reported. The main purpose of this study is to determine the quantity of quercetin, caffeic acid, gallic acid, ferulic acid, rutin and chlorogenic acid in *Cola nitida*, *Garcinia kola* and *Buchholzia coriacea* using HPLC-DAD. Ethanolic extracts of the selected kola plants was obtained by cold maceration and analysed by HPLC-DAD in accordance with standard methods. The regression coefficient (r^2) from the calibration curve for caffeic acid = 0.999, chlorogenic acid = 0.998, gallic acid = 0.999, ferulic acid = 0.998, quercetin = 0.996 and rutin = 0.997. The repeatability gave % RSD of 0.6, 1.63, 0.44, 1.55, 3.65 and 4.67 for caffeic acid, chlorogenic acid, gallic acid, ferulic acid, quercetin and rutin respectively. The quantity of these compounds in *C. nitida* was caffeic acid (101.24 mg/g), chlorogenic acid (36.35 mg/g), gallic acid (16.99 mg/g), ferulic acid (1.47 mg/g) while quercetin and rutin were not detected. In *Garcinia kola*, caffeic acid was (0.84 mg/g), gallic acid (1.02 mg/g), ferulic acid (21.83 mg/g), quercetin (53.24 mg/g), rutin (0.49 mg/g) and chlorogenic acid was not detected. *B. coriacea* had caffeic acid (1.03 mg/g), chlorogenic acid (0.33 mg/g), gallic acid (0.33 mg/g) while ferulic acid, quercetin and rutin were not detected. Using this analytical method, the quantities of some phenolics and flavonoids compounds were determined, and the most abundant compound in the three species of kola was caffeic acid in *C. nitida* and quercetin in *Garcinia kola*. This study also showed that *C. nitida* contains high amounts of phenolics compounds as compare to the other species of kola seeds investigated in the study.

Key word: Phenolic acids, flavonoids, high-performance liquid chromatography- diode-array detector (HPLC-DAD), *Cola nitida*, *Garcinia cola*, *Buchholzia coriacea*.
Kola nut generate a strong sense of euphoria and well-being, enhances alertness and physical energy, its elevate mood, increase tactile sensitivity, restrain appetite and hunger; it is also use as aphrodisiac. Kola nut is used to treat whooping cough and asthma because the caffeine present in it acts as a bronchodilator expanding the bronchial air passage (Odebunmi et al., 2009).

Garcinia cola (bitter kola) also called wonder nut belongs to the family Clusiaceae/Guttiferae. It grows mostly in coastal rain forest in south Western and south Eastern part of Nigeria. Bitter kola also contains caffeine and theobromine. It is also an aphrodisiac. It is believed that bitter kola cleans the digestive system, without side effect; hence, it is use in the treatment of abdominal problems (Odebunmi et al., 2009). Bitter kola contains flavonoids and other phenolics compounds. It is used as an anti-inflammatory agent; it also serves as raw material in pharmaceutical industries (Mazi et al., 2013).

Buchholzia coriacea (wonderful kola) was named after R.W Buchholz who first collected the plant in Cameroon in the late 19th century. The seeds of the plant earn it a common name “wonderful kola” because of its wide usage in traditional medicine. It is an evergreen, small to medium-sized tree growing up to 20 m tall (Erhiehie et al., 2015). It belongs to the family capparaceae juss. It grows mostly in Cameroon, Ivory Coast and other part of the world. Wonderful kola has numerous medicinal benefits and each part of the plant is use for treatment of ailments and diseases such as ulcer, hypertension, diabetes, malaria, cough to mention but a few (Owonikoko et al., 2015).

Seeds of kola nut (*Cola nitida*), bitter kola (*Garcinia cola*) and wonderful kola (*B. coriacea*) are well appreciated in Africa, for their socio-cultural, nutritive and medicinal values. However, these three species of kola has numerous pharmacological activities such as antioxidant, anti-cancer, anti-diabetic, anti-inflammatory, anti-hypertensive, anti-viral, cardiovascular activity, antimicrobial just to mention a few (Zailani et al., 2016; Buba et al., 2016; Izah et al., 2018). And the numerous health benefits of these plants is due to the amount of important chemical compounds found in them such as phenolic acids, flavonoids and others (Duru et al., 2012; Ibrahim and Fagbohun, 2014). Some of these phenolic acids include caffeic acid, chlorogenic acid, gallic acid, ferulic acid, and the flavonoids are Quercetin and Rutin. In a previous study, (Nyamien et al., 2017) reported that cola nitida (kola nut), contain caffeic acid, chlorogenic acid and others compounds, while quercetin and other compounds were reported in *G. kola* (*Bitter kola*) (Buba et al., 2016). However, there is paucity of data on the presence of these phenolics in *B. coriacea* (wonderful kola), secondly the amount of these compounds present in each of this kola are not documented. This study is design to quantify quercetin, caffeic acid, gallic acid, ferulic acid, rutin and chlorogenic acid in *C. nitida, G. kola* and *B. coriacea* to determine the amount of these compounds presents in each of the species and to compare the quantity of the compounds among the species using a high-performance liquid chromatography (HPLC).

EXPERIMENTAL

Sample collection, identification and preparation

The seeds of *C. nitida, G. kola* and *B. Coriacea* were purchased from Karmo market in Abuja, Federal capital territory, Nigeria. The seeds were identified and authenticated in the Herbarium unit, department of Medicinal Plant Research and Traditional Medicine, National Institute for Pharmaceutical Research and Development (NIPRD) Abuja, Nigeria. The nuts were sliced into pieces to enhance drying. The sliced pieces were air dried for two weeks and crushed into powder using mortar and pestle.

Preparation of extract solutions

The dried powder seeds of *C. nitida* (26.0895 g), *G. kola* (25.3748 g) and *B. coriacea* (24.0872 g) were macerated with 100 mL of absolute ethanol each for the period of 48 hours. The sample solutions were filtered through Whatmann No. 1 filter paper. After which filtrate was transferred into a clean beaker and allow to evaporate to dry at room temperature. 0.2 g of the dried extracts was accurately weighed, transferred in to a volumetric flask and made up with 10 mL absolute ethanol. The final solution was passed through a 0.45 µm membrane filter prior to use. An aliquot of 10 µl of each sample solution was injected into the HPLC system for analysis.

Preparation of standard solutions

Reference compounds of quercetin, caffeic acid, gallic acid, ferulic acid, rutin and chlorogenic acid were all purchased from Sigma-Aldrich Germany. Suitable amount of the six reference compounds were accurately weighed, then dissolved in ethanol. The mixed stock solution contained 500 µg/ml of caffeic acid, 250 µg/ml of chlorogenic acid, 250 µg/ml of gallic acid, 250 µg/ml of quercetin, 500 µg/ml of rutin and 550 µg/ml of ferulic acid. After filtered, the reference substance solution was directly injected into the HPLC.

Apparatus and chromatographic conditions

The HPLC analysis was carried out on a Shimadzu HPLC system comprising Ultra-Fast LC-20AB prominence equipped with SIL-20AC autosampler; DGU-20A3 degasser; SPDM20A UV-diode array detector (UV-DAD); column oven CTO-20AC, system controller CBM-20Alite and Windows LC solution software.

*Corresponding author. E-mail: adamualiyu246@gmail.com, Tel: +2348076978343.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
Table 1. The calibration curve.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Linear equation</th>
<th>Correlation coefficient (R^2)</th>
<th>Linear range (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffeic acid</td>
<td>$Y = 11103x-15442$</td>
<td>0.999</td>
<td>25-500</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>$Y = 5586.5x+196030$</td>
<td>0.998</td>
<td>7.812-250</td>
</tr>
<tr>
<td>Gallic acid</td>
<td>$Y = 9248.1x+39417$</td>
<td>0.999</td>
<td>10-250</td>
</tr>
<tr>
<td>Ferulic acid</td>
<td>$Y = 6301x+29944$</td>
<td>0.998</td>
<td>10-550</td>
</tr>
<tr>
<td>Quercetin</td>
<td>$Y = 12819x+37596$</td>
<td>0.996</td>
<td>60-250</td>
</tr>
<tr>
<td>Rutin</td>
<td>$Y = 7892x+67898$</td>
<td>0.997</td>
<td>3-500</td>
</tr>
</tbody>
</table>

Table 2. Precision and reproducibility.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Precision n=6</th>
<th>Repeatability n=6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (µg/ml)</td>
<td>%RSD</td>
</tr>
<tr>
<td>Caffeic acid</td>
<td>500</td>
<td>0.64</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>500</td>
<td>1.63</td>
</tr>
<tr>
<td>Gallic acid</td>
<td>500</td>
<td>0.44</td>
</tr>
<tr>
<td>Ferulic acid</td>
<td>275</td>
<td>1.55</td>
</tr>
<tr>
<td>Quercetin</td>
<td>500</td>
<td>6.65</td>
</tr>
<tr>
<td>Rutin</td>
<td>500</td>
<td>4.67</td>
</tr>
</tbody>
</table>

(Shimadzu Corporation, Kyoto Japan); column, VP-ODS 5µm and dimensions (150 × 4.6 mm). A binary gradient elution system composed of 0.1% formic acid in acetonitrile as solvent A and 0.1% formic acid in HPLC grade water as solvent B. (Adamu et al., 2018). The gradient elution is as follows: 0-10 min, 18-20% A; 10–25 min, 20-30% A; 25-45 min, 30-70% A; 45-46 min, 70-80% A; 46–50 min, 80% A. The mobile phase flow rate was 0.8 ml/min, and column temperature was maintained at 40 °C. The DAD detector was set at 254 nm.

Validation of HPLC method

The HPLC method was validated in terms of linearity and precision according to ICH guidelines (ICH Topic Q2, 1996). The calibration curve was constructed by running several mixed standards of different concentrations in triplicate. The correlation coefficient was determined using a linear regression model. The precisions and reproducibility of HPLC peak are measurements of quercetin, caffeic acid, gallic acid, ferulic acid, rutin and chlorogenic acid were calculated as the relative standard deviations (RSDs) of six repeated runs and six replicate runs.

RESULTS AND DISCUSSION

UPLC method validation of quantitative analysis

Linearity and detection limit

The linearity for six phenolics was established by plotting the peak area (Y) versus concentration (x) of each which was expressed by the equation given in Table 1. The linearity of all the calibration curves showed good linear regression coefficients between ($r^2 = 0.996-0.999$) within test ranges.

Precision and reproducibility

Method precision and reproducibility were evaluated by the analysis of six injections of the same sample solution and injection of six replicates of the same sample, respectively. The percentage relative standard deviations (%RSDs) of peak area (PA) of characteristic peaks in the precision test were found in the range of 0.44-6.65%, whereas in the reproducibility test the RSDs of PA were also between 0.77 and 3.77%, respectively. All results indicated that the method of HPLC fingerprint analysis was valid and satisfactory.

As shown in Table 2, the precisions and reproducibility based on peak area and retention time measurements of six components were found to be satisfactory for all the target phenolics. All these illustrated that UPLC-DAD method was precise, and sensitive enough for simultaneous quantitative determination of quercetin, caffeic acid, gallic acid, ferulic acid, rutin and chlorogenic acid. The entity and content of bioactive components of medicinal plants are always highly variable. Considering the variety of the components in the seeds of kola nut (C. nitida), bitter kola (G. cola) and wonderful kola (B. coriacea) and in order to give the most chemical information of these plants, HPLC provide a suitable technique which can perform both qualitative and quantitative analysis of the bioactive compounds in these
The HPLC profile of all the components in the seeds of kola nut (C. nitida), bitter kola (G. cola) and wonderful kola (B. coriacea) was established. Bioactive compounds which are previously reported to show good antioxidant properties including: quercetin, caffeic acid, gallic acid, ferulic acid, rutin and chlorogenic acid were quantified in each of the samples.

To provide information of the bioactive compounds in these kolas and for best separation in the chromatograms, the mobile phase and its flow rate, conditions for elution, column temperature and detection wavelength were investigated in this study. Variation in the ratio of water to acetonitrile in the mobile phase provided improvement in separation. In a previous study, Xu et al. (2009), observed that acetonitrile/water mobile phase system achieved better resolutions for phenolic acids. In addition the retention behavior of phenolic acids on the reversed-phase HPLC column was significantly affected by the pH of the mobile phase. So the addition of 0.1% formic acid into mobile phases helped to achieve a good baseline and satisfactory resolution of the phenolics. The detection wavelength was set at 254 nm because most of the characteristic components have satisfactory sensitivity at this UV wavelength. The HPLC conditions developed in this study produced insight into the fingerprint pattern of the different kolas. The chromatographic peaks were identified by comparing their retention time and UV spectrum with that of each reference compound, which was eluted in parallel with a series of mobile phases.

Quantitative analysis of the six phenolics in the samples

Quercetin, caffeic acid, gallic acid, ferulic acid, rutin and chlorogenic acid are known phytochemical constituents proven to be good natural antioxidants. It could be seen from Figures 1 to 3 that the investigated phenolics and other compounds in these kolas were separated using the developed UPLC-DAD method. A total of 7, 12 and 15 characteristic peaks were identified in the HPLC profile of C. nitida, G. cola and B. coriacea respectively. Six of the characteristic peaks were assigned by comparing the UV spectra and their retention time with those of the reference compounds. In C. nitida peak 1, 4, 6, and 7 were identified as gallic acid, chlorogenic acid, caffeic acid and ferulic acid. Peaks 1, 5, 7, 8 and 10 were identified as gallic acid, caffeic acid, rutin, ferulic acid and quercetin in G. cola and for B. coriacea chromatogram (Figure 3) peak 2, 4, 5, 7 and 9 were identified as gallic acid, chlorogenic acid, caffeic acid, rutin and ferulic acid respectively.

The quantitative analysis data (Table 3) showed that the quantity of these compounds in C. nitida is caffeic acid (101.24 mg/g), chlorogenic acid (36.35 mg/g), gallic
acid (16.99 mg/g) ferulic acid (1.47 mg/g) while quercetin and rutin were not detected. In G. *kola* caffeic acid is (0.84 mg/g), gallic acid (1.02 mg/g), ferulic acid (21.83 mg/g), quercetin (53.24 mg/g), rutin (0.49 mg/g) and chlorogenic acid was not detected. *B. coriacea* has caffeic acid (1.03 mg/g), chlorogenic acid (0.33 mg/g), gallic acid (1.07 mg/g) while ferulic acid, quercetin and rutin were not detected.

Table 3 also showed that the most abundant compound in the three species of kolas is caffeic acid in *C. nitida* follow by quercetin in *G. kola*. Chlorogenic acid was equally as abundant as caffeic acid in *C. nitida* but very minute in *B. coriacea* and absent in *G. kola*. This shows that the levels of these compounds present in individual samples varied considerably and the concentration of each compound in different samples was significantly different. Although *C. nitida* is the most widely and regularly consumed, because of its varied socio-cultural
importance. This study has also shown that *C. nitida* contains high amounts of phenolics compounds as compare to the other species of kola seeds investigated in the study.

The seeds of these kolas have received great interest due to their social significance and pharmacological properties. Phenolic compounds in synergy with the other compounds investigated in this study are responsible for their health benefits. Studies have shown that caffeic acid possesses anti-inflammatory, anti-mutagenic, anti-bacterial and anti-carcinogenic properties (Genaro-Mattos et al., 2015). Chlorogenic acid is an ester of caffeic acid having antioxidant properties which are propose to play a crucial role in protecting food, cell and many organs from oxidative degenerative. It has been discovered from research that diet that contain CGA compounds plays a vital role in preventing various diseases and ailments associated with oxidative stress such as cancer, cardiovascular, aging, diabetes, neurodegenerative diseases, anti-bacterial and anti-inflammatory activities (Ayelign and Sabally, 2013). Gallic acid has been proved to have potential preventive and therapeutic effects in many diseases, where the oxidative stress has been implicated including cardiovascular diseases, cancer, neurogenerative disorders and in aging.

Gallic acid has been reported to possess good pharmacological activities and could be exploited lead compound for new drug development (Nayeem et al., 2016). Ferulic acid is an antioxidant found in many staple foods, such as fruits, vegetables, cereals, coffee and in many other plants, exhibiting a wide range of pharmacological activities such as antioxidant, neuroprotective, anticancer, anti-diabetic, cardio-protective, anti-inflammatory and other activities (Gohil et al., 2012). Quercetin is present in most plants and is known for its biological activities such as antioxidant, anti-viral, anticancer, antimicrobial, and anti-inflammatory and others (Maalik et al., 2014). Rutin is a flavonol, richly found in plants, such as passion flower, buckwheat, tea, and apple. It has demonstrated a number of pharmacological activities which includes: antioxidant, vaso-protective, anti carcinogenic, neuroprotective and cardio protective (Ganeshupurkar and Saluje, 2017). The result from the study suggests that *C. nitida* with high phenolic acid contents could exhibit a better antioxidant activity than *G. kola* and *B. coriacea*.

Conclusion

HPLC method shows peaks with reasonable heights and fair resolutions were assigned as “characteristic peaks” for identification of these kolas. Using this analytical method, some phenolics and flavonoids compounds were quantified. It can be concluded from the results that all the three species of kola contain phenolics compounds but only *Garcinia kola* contain the two flavonoids compounds (quercetin and rutin) investigated in this study. The most abundant compound in the three species of kola is caffeic acid in *C. nitida* follow by quercetin in *G. kola*. *C. nitida* is the most widely and regularly consumed, because of its varied socio-cultural importance. This study has also shown that it contains high amounts of phenolics compounds compared to the other two species of kola investigated in the study. The method described offers a good quantitative analytical approach to phenolic acids determination in plant extracts.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

Ibrahim TA, Fagbohun ED (2014). Phytochemical and Nutritive Qualities

Table 3. The compounds in the three kola species (mg/ml).

<table>
<thead>
<tr>
<th>Compound</th>
<th>C. nitida</th>
<th>G. kola</th>
<th>B. coriacea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffeic acid</td>
<td>101.24</td>
<td>0.84</td>
<td>1.03</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>101.24</td>
<td>ND</td>
<td>0.33</td>
</tr>
<tr>
<td>Gallic acid</td>
<td>16.99</td>
<td>1.02</td>
<td>1.07</td>
</tr>
<tr>
<td>Ferulic acid</td>
<td>1.47</td>
<td>21.83</td>
<td>ND</td>
</tr>
<tr>
<td>Quercetin</td>
<td>ND</td>
<td>53.24</td>
<td>ND</td>
</tr>
<tr>
<td>Rutin</td>
<td>ND</td>
<td>0.49</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND = not detected.

Related Journals:

Clinical Reviews and Opinions

Journal of Medicinal Plant Research

African Journal of Pharmacy and Pharmacology

Journal of Dentistry and Oral Hygiene

Journal of Parasitology and Vector Biology

Journal of Pharmacognosy and Phytotherapy

Journal of Medical Laboratory and Diagnosis

Journal of Diabetes and Endocrinology

Medical Practice and Reviews

www.academicjournals.org