About AJFS

The African Journal of Food Science (AJFS) is a peer reviewed open access journal. The journal commenced publication in September 2007. The African Journal of Food Science welcomes for publication papers that investigate and review perspectives on food engineering, handling, processing, storage, preservation, contamination and packaging; sensory analysis. Other aspects covered include food safety, microbiology, nutraceuticals, chemistry, technology and nanotechnology in addition to quality and nutritional evaluation and genetic variation of food.

Indexing


Open Access Policy

Open Access is a publication model that enables the dissemination of research articles to the global community without restriction through the internet. All articles published under open access can be accessed by anyone with internet connection.

The African Journal of Food Science is an Open Access journal. Abstracts and full texts of all articles published in this journal are freely accessible to everyone immediately after publication without any form of restriction.
**Article License**

All articles published by African Journal of Food Science are licensed under the [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/). This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited. Citation should include the article DOI. The article license is displayed on the abstract page the following statement:

This article is published under the terms of the [Creative Commons Attribution License 4.0](https://creativecommons.org/licenses/by/4.0/legalcode). Please refer to [https://creativecommons.org/licenses/by/4.0/legalcode](https://creativecommons.org/licenses/by/4.0/legalcode) for details about Creative Commons Attribution License 4.0.

**Article Copyright**

When an article is published by in the African Journal of Food Science, the author(s) of the article retain the copyright of article. Author(s) may republish the article as part of a book or other materials. When reusing a published article, author(s) should; Cite the original source of the publication when reusing the article. i.e. cite that the article was originally published in the African Journal of Food Science. Include the article DOI Accept that the article remains published by the African Journal of Food Science (except in occasion of a retraction of the article). The article is licensed under the Creative Commons Attribution 4.0 International License.

A copyright statement is stated in the abstract page of each article. The following statement is an example of a copyright statement on an abstract page.

Copyright ©2016 Author(s) retains the copyright of this article.

**Self-Archiving Policy**

The African Journal of Food Science is a RoMEO green journal. This permits authors to archive any version of their article they find most suitable, including the published version on their institutional repository and any other suitable website.

Digital Archiving Policy

The African Journal of Food Science is committed to the long-term preservation of its content. All articles published by the journal are preserved by Portico. In addition, the journal encourages authors to archive the published version of their articles on their institutional repositories and as well as other appropriate websites.

https://www.portico.org/publishers/ajournals/

Metadata Harvesting

The African Journal of Food Science encourages metadata harvesting of all its content. The journal fully supports and implement the OAI version 2.0, which comes in a standard XML format. See Harvesting Parameter
Memberships and Standards

![Open Access](image)

Academic Journals strongly supports the Open Access initiative. Abstracts and full texts of all articles published by Academic Journals are freely accessible to everyone immediately after publication.

![Creative Commons](image)

All articles published by Academic Journals are licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.

![Crossref](image)

Crossref is an association of scholarly publishers that developed Digital Object Identification (DOI) system for the unique identification published materials. Academic Journals is a member of Crossref and uses the DOI system. All articles published by Academic Journals are issued DOI.

Similarity Check powered by iThenticate is an initiative started by CrossRef to help its members actively engage in efforts to prevent scholarly and professional plagiarism. Academic Journals is a member of Similarity Check.

CrossRef Cited-by Linking (formerly Forward Linking) is a service that allows you to discover how your publications are being cited and to incorporate that information into your online publication platform. Academic Journals is a member of CrossRef Cited-by.

![IDPF](image)

Academic Journals is a member of the International Digital Publishing Forum (IDPF). The IDPF is the global trade and standards organization dedicated to the development and promotion of electronic publishing and content consumption.
Contact

Editorial Office: ajfs@academicjournals.org

Help Desk: helpdesk@academicjournals.org

Website: http://www.academicjournals.org/journal/AJFS

Submit manuscript online http://ms.academicjournals.org

Academic Journals
73023 Victoria Island, Lagos, Nigeria
ICEA Building, 17th Floor,
Kenyatta Avenue, Nairobi, Kenya.
Editors

Dr. Thaddeus Chukwuemeka Ezeji
Ohio State University and
Ohio State Agricultural and Development Center (OARDC)
Department of Animal Sciences
USA.

Prof. Kofi E. Aidoo
Department of Biological and Biomedical Sciences
Glasgow Caledonian University
Glasgow
Scotland.

Dr. Barakat S.M. Mahmoud
Food Safety/Microbiology
Experimental Seafood Processing Laboratory
Costal Research and Extension Centre
Mississippi State University
USA.

Dr. Neela Badrie
Department of Food Production,
Faculty of Science and Agriculture,
University of the West Indies,
Trinidad and Tobago.

Dr. Hu Xiao-Qing
State Key Lab of Food Science and Technology,
Jiangnan University,
China.

Dr. Dominic Agyei
Department of Food Science/Te Tari Pütaiao Kai
University of Otago,
Dunedin,
New Zealand.

Dr. Fook Yee Chye
Faculty of Food Science and Nutrition,
Universiti Malaysia Sabah,
Malaysia.

Dr. Adel Shatta
Department of Food Technology,
Faculty of Agriculture,
Egypt.

Dr. Tendekayi Henry Gadaga
Department of Environmental Health Science
University of Swaziland
Swaziland.
Editorial Board Members

Dr. K. Pandima Devi
Department of Biotechnology
Alagappa University
Tamil Nadu
India.

Dr. Ashish Kumar Singh
Dairy Technology Division
National Dairy Research Institute,
Haryana,
India.

Prof. Rui Cruz
Department of Food Engineering
Institute of Engineering
University of Algarve, Faro
Portugal.

Dr. Nicole Roberta Giuggioli,
Department of Agricultural, Forest and Food Sciences (DISAFA)
University of Turin,
Italy.
# Table of Content

**Handling practices and microbiological quality of kayabo - salted sun-dried nileperch Lates niloticus from Lake Victoria, Tanzania**
Nuru E. Mwasulama, Jamal B. Kussaga and Bendantunguka P. M. Tiisekwa

81

**Quality and sensory properties of instant fried noodles made with soybean and carrot pomace flour**
Tiony Mercy Chepkosgei and Irene Orina

92

**Increasing gallic acid contents in green tea extracts using acid hydrolysis**
Hae-Soo Kim, Do Yeon Jeon, Ha-Nul Lee, Seong-Jin Hong, Seung-Hee Nam, Jeong Choi, Yong-Hee Kwon, Doo-Gyung Moon, and Young-Min Kim

100

**Assessment of phytochemical and mineral composition of unripe and ripe plantain (Musa paradisiaca) peels**
Sani Muhammad Uzairu and Muhammad Atiku Kano

107

**Inactivation of microbes by ozone in the food industry: A review**
Mohamed Ziyaina and Barbara Rasco

113

**Impact of instant controlled pressure drop (DIC) treatment on the technological quality of gluten-free bread based on rice-field bean formula using design of experiments**
Souad BOULEMAH, Leila BENATALLAH, Colette BESOMBES, Karim ALLAF and Mohammed Nasreddine ZIDOUNE

121
Handling practices and microbiological quality of *kayabo* - salted sun-dried Nile perch *Lates niloticus* from Lake Victoria, Tanzania

Nuru E. Mwasulama¹, Jamal B. Kussaga²* and Bendantunguka P. M. Tiisekwa²

¹Tanzania Bureau of Standards, P. O. Box 9524, Dar es Salaam, Tanzania.
²Department of Food Technology, Nutrition and Consumer Sciences, Sokoine University of Agriculture, P. O. Box 3006, Morogoro, Tanzania.

Received 21 April, 2020; Accepted 24 November, 2020

This study assessed handling practices and microbiological contamination of salted sun-dried Nile Perch, *Lates niloticus*, commonly known as *Kayabo* in Tanzania. The processors of *Kayabo* were small-scale processors located at Kanyama and Mwaloni, Mwanza. Mixed methods (observations, face-to-face interviews, and microbiological sampling) were used to assess handling practices of processors and microbiological quality of *Kayabo*. Hierarchical cluster analysis on handling practices of *Kayabo* processors produced three distinct clusters of 15 (Cluster I), 10 (Cluster II), and 5 (Cluster III) processors. In general, the majority of processors had inadequate training on appropriate food handling, lack of hygienically designed facilities (building and cooling), poor sanitation, and the use of low-quality raw materials (rejects from industrial processing units). Assessment of microbiological quality of *Kayabo* indicated a significant (*P*<0.05) variation in Total Viable Counts, TVC (2.08 - 8.68 Log CFU/25 g), and *Staphylococcus aureus* (<1-5.49 log CFU/25 g) among the clusters. About 80% (12/15) and 42% (5/12) of the processors in ‘Cluster I’ exceeded the legal limits for TVC (5 Log CFU/25 g) and *S. aureus* (3 Log CFU/25 g), respectively. Strikingly, *Escherichia coli* and *Listeria monocytogenes* were below the quantification limits. Intervention measures for improvement on the raw materials, structure, and infrastructure, training, and adoption of good practices across the value chain are urgently needed to ensure the quality and safety of *Kayabo*.

**Key words:** Fish, salted sundried Nile perch, handling practices, microbiological quality, *Kayabo*, Lake Victoria.

INTRODUCTION

The Tanzanian fishery sector is among the leading (154.5 Million USD) exporting sectors in the country. It is the source of income and contributes to 1.3% of Gross Domestic Product, GDP (LVFO, 2009; URT, 2013; FAO, 2014). The sector employs more than 400,000 full-time artisanal fishermen and more than 4 million people in various fisheries-related activities (URT, 2013). About 30% of the total animal protein requirements in the country come from fish (URT, 2013). Lake Victoria contributes to 85% of the total export of fish and fish

*Corresponding author. E-mail: kussaga@sua.ac.tz.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
products (URT, 2013). Although the Lake has more than 290 fish species, only Nile perch (Lates niloticus), Tilapia (Oreochromis niloticus), and Sardines (Rastrineobola argentea) are of commercial importance (Abila, 2000; Akande and Diei-Ouadi, 2010; Kabahenda et al., 2009). The Nile perch is the only species from Lake Victoria industrially processed for the export market, whereas other species are processed solely for the domestic market (Kussaga et al., 2014; Medard et al., 2019).

Although fish processing companies for the export market enjoy strict control and monitoring of the food safety hazards, fish processing units for the domestic market like Kayabo processors are barely controlled (Kussaga et al., 2014; Baniga et al., 2019). Processors for the domestic market are small-scale with limited knowledge of proper fish handling and inadequately designed facilities to ensure the quality and safety of the products (Baniga et al., 2019). Processors use traditional processing techniques, particularly curing and sun-drying. When fish is salted and dried, it can have a shelf life of more than a year. Kayabo processing is mainly done by women and involves removal of guts, swim-bladder, and scales, before salting (Medard et al., 2019). Even though such traditional processing techniques are cheap and easy to operate, they expose the products to various food safety hazards.

Fish contains 70-84% water, 15-24% protein, 0.1-2.2% fat, and 1-2% minerals (Ghaly et al., 2010). Fish is an excellent dietary source of highly unsaturated fatty acid (UFA) and polyunsaturated fatty acid (PUFA), especially the omega-3 fatty acids, Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) (El-Sherif and Abd El-Ghafor, 2016). Unless properly preserved or processed, fish is a highly perishable product that could be rendered unfit for human consumption within 12 h of capture under tropical conditions (Ghaly et al., 2010). Immediately after a fish dies, several physiological and microbial processes occur (Davies, 2009; Jinadasa, 2014). The quality and safety of fish is affected by capture method, processing, and handling conditions along the chain (Quang, 2005; Amos, 2007; Akande and Diei-Ouadi, 2010). However, the fish processing value chain for the domestic market is not well regulated.

Although the raw materials for the domestic-market oriented fish processors are tilapia and sardines, the supply is not yet sufficient and of low quality (as there is no cooling and hygienic handling practiced by most of the artisanal fisheries). Consequently, the small-scale Kayabo processors purchase rejects (undersize or low quality fish and fish frames) from the export-market oriented fish processing companies (Kabahenda et al., 2009), which focus on Nile Perch processing. The use of low quality raw materials associated with inadequate handling and processing conditions could result in more food safety problems.

Various studies have been conducted to assess the quality and safety of fish and fish products for the export market (Kussaga et al., 2014, 2017; Baniga et al., 2019); however, there is very restricted information on the quality and safety of fish or fish products like Kayabo for the domestic market. The status of premises and buildings of Kayabo processors has never been evaluated, limiting the opportunities for improvement. Moreover, it is not yet known to what extent consumers of processed fish by the domestic market-oriented units are exposed to various food safety hazards. Therefore, the purpose of this study was to investigate the handling practices and microbiological quality of Kayabo along the product value chain. The information generated from this study will be beneficial to consumers, small-scale processors, researchers, food control/competent authorities, and policymakers to set strategies for improving fish processing and handling practices to reduce food safety risks along the fish value chain.

MATERIALS AND METHODS

Characteristics of Kayabo processors involved in the present study

The present study was conducted in two municipalities of Mwanza City, namely: Nyamagana and Ilemela, where Kanyama and Mwaloni processing sites are located, respectively. Thirty Kayabo processors, 18 being micro-scale (<10 employees) and 12 small-scale (10-49 employees) participated in this study. These processors produced whole salted sun-dried Nile perch (commonly known as Kayabo), salted sun-dried Nile perch heads (also known as Mapanki), salted sun-dried Nile perch trims (chips), and sun-dried Nile perch bones for fish meal production. Face-to-face interviews, observation, and sampling for microbiological assessments were carried out. However, Kayabo was the only product sampled and analysed for microbiological hazards as it was the main product processed.

Assessment of hygienic practices

A structured questionnaire and observation checklist were used to assess processors’ knowledge of manufacturing and hygienic practices (transportation, processing conditions, packaging, and storage of raw materials and products). The questionnaire contained both open and closed-ended questions. The questions were on location and building/equipment layout, source of water, raw materials, sanitation, and personal hygiene, control by food control authorities, packaging, and demographic information of the respondents. The study assessed thirty Kayabo processing companies; the interviewees were either operators or owners.

Assessment of microbiological contamination

Selection of microbiological parameters

Five microbiological parameters including indicators of general process hygiene (Total Viable Counts, TVC), fecal hygiene (total coliforms and Escherichia coli), personnel hygiene (Staphylococcus aureus), and food safety (Listeria monocytogenes) were selected and analyzed (Jackson et al., 2009; Kussaga et al., 2017). Testing for TVC aimed at assessing the quality of raw materials, effectiveness of the handling procedures and hygiene conditions.
during processing, sanitary conditions of equipment and utensils, and time/temperature profile during storage and distribution. The natural habitat for *E. coli* is in the intestines of human and vertebrate animals (Berthe et al., 2013). Contamination of food with *E. coli* implies a risk that one or more enteric pathogens may have gained access to the food. Total coliforms indicate a higher probability that organisms of fecal origin are present and hence fecal contamination. The natural reservoirs for *S. aureus* are human skin, hair, and superficial mucous membranes (nose), the presence of large numbers indicates a possibility of enterotoxin production or fault in sanitary or production practices. The natural habitat of *L. monocytogenes* is in environments like soil, water, and fecal matter. Its presence in food is an indication of poor sanitation and animal control (FAO / CDR, 2013).

**Sample collection and analysis**

Systematic random sampling was used to take samples (whole *Kayabo*) from 30 processors. Each sample was inserted in a labelled sterile bag and then placed into a sterile cool box maintained at <5°C and transported in that condition to the accredited National Fish Quality Control Laboratory (NFQCL) for analysis. The samples that were not analysed on the same day of sampling were frozen at -18°C until analysed. Enumerations of TVC, total coliforms, *E. coli*, *S. aureus* were performed according to ISO 4833:2003 (ISO, 2003a), ISO 4831:2006 (ISO, 2006), ISO 7251: 2005 (ISO, 2005), ISO 6888 – 3: 2003 (ISO, 2003b), respectively. Detection of *L. monocytogenes* was as per ISO 11290-1:1996/Amd 1: 2004 (ISO, 2004) methods. The preparation of analytical reagents (diluents) and media was according to the manufacturers' instruction(s) and the specific test method requirements.

The preparation of analytical samples was in accordance with US-FDA Bacteriological Analytical Manual (2001). Weighing of 25 g *Kayabo* samples was by an analytical balance, Adventurer TM PRO OHAUS made in China. Then 225 ml buffered peptone water (BPW) was added to each sample and blended for 1 min to homogenize the mixture by using a stomacher (Seward STOMACHER R 3500 Lab System). Serial dilutions were aseptically prepared; 1 ml was taken from each dilution and plated on Plate count Agar (PCA, for TVC), Violet Red Bile Agar (VRBA for *E. coli*), and Baird Parker Agar (BPA, for *S. aureus*). The MPN was used for analysis of total coliforms. The incubation conditions were 30 ± 1°C for 72 ± 2 h for TVCs, 44 ± 1°C for 24 ± 2 h for *E. coli*, 37 ± 1°C for 48 ± 2 h for *S. aureus* and 37 ± 1°C for 48 ± 2 h for total coliforms. For the detection of *L. monocytogenes*; 225 ml of Half Fraser broth for the primary enrichment were added to 25 g of each *Kayabo* sample and the mixture blended by using the stomacher for 1 min. Then, the homogenate was incubated at 30 ± 1°C for 24 ± 2 h.

**Interpretation of microbiological results**

Tanzanian standards (TZS), East African Standards (EAS), and Codex Alimentarius Commission (CAC) standards were used to interpret the results. The criteria used to interpret microbiological results are indicated in Table 1.

**Statistical data analysis**

A hierarchical cluster analysis with the furthest neighbour method and squared Euclidean distance (using SPSS Version 16.0 for Windows, SPSS Inc., Chicago, IL, USA) was used to analyse the hygienic performance data. A non-parametric test (Kruskal Wallis Non-Parametric H test) was performed to determine the differences among the clusters on the handling practices. Analysis of microbiological data was by R statistical package (R Development Core Team Version 3.0, Vienna, Austria), whereby One-way ANOVA test was carried out to determine whether there are differences among the factors. Means were separated by Duncan Multiple Range Test (DMRT). The significance level was set at $P<0.05$.

**RESULTS AND DISCUSSION**

**Hygienic performance of *Kayabo* processors**

**Characteristics of *Kayabo* processors**

The hierarchical cluster analysis (average linkage) produced a dendrogram (Figure 1) showing three clusters. Cluster I had 15 processors from Kanyama, while cluster II composed of 10 processors and cluster III had 5 processors from Mwaloni. However, the processors (n=15) from Kanyama (Cluster I) were predominantly micro-scale, which were neither registered by the then Tanzania Food and Drugs Authority (TFDA), Municipal Council, nor by the Fisheries Department of the Ministry of Livestock and Fisheries (Table 2). The majority (20/30 = 66.67%) of *Kayabo* processors were women. These processors were micro- (36.67%) and small- (63.33%) scale with a weekly processing capacity of 1-4 tons. Previous studies found that domestic-oriented fish processing companies are mainly artisanal and of small-scale (Kussaga et al., 2013; Akintola and Fakoya, 2017) and dominated by women carrying out fish smoking, salting, and drying (Kweka et al., 2006; Akande and Diei-Ouadi, 2010). The current study revealed that all processors (100%) had primary level education; consequently, none of them had attended any training on food hygiene and processing (Table 2). This situation could lead to inadequate processing and handling of *Kayabo*. Likewise, other studies reported low levels of formal education among the fishers and processors (Omwega et al., 2006; Olale et al., 2010; Ibrahim et al., 2011; Akintola and Fakoya, 2017). It is, however, reported that trained personnel could use appropriate fish handling practices in value chain processes (Davies, 2009; Akande and Diei-Ouadi, 2010), which might reduce post-harvest losses and improve the quality of the products. All processors in clusters I and III had a weekly processing capacity of 1 ton, whereas those in Cluster II could process 4 tons per week (Table 2). Processors in Cluster I operated in unregistered premises with poorly designed facilities. They did operate at an informal level without any control/monitoring from the food safety control authorities or health officers. Similar studies in Nigeria reported inadequate contact of processors with the extension agents, which deny them access to improved processing techniques (Ibrahim et al., 2011). Products from such premises are often of low quality and unsafe due to possible contamination with food safety hazards (FAO/CDR, 2013).
Table 1. Microbiological criteria of fish and fishery products.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Parameter</th>
<th>Criteria (Maximum Limit)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Viable Count (TVC)</td>
<td>$1 \times 10^5$ CFU/g</td>
<td>TZS 118:2007-EAS 828:2016</td>
</tr>
<tr>
<td>2</td>
<td><em>E. coli</em></td>
<td>$1 \times 10^1$ MPN/g</td>
<td>TZS 731:2007-EAS 828:2016-CAC/RCP 52-2003</td>
</tr>
<tr>
<td>3</td>
<td>Total coliforms</td>
<td>$4 \times 10^2$ MPN/g</td>
<td>TZS 119:2002</td>
</tr>
<tr>
<td>4</td>
<td><em>S. aureus</em></td>
<td>$1 \times 10^3$ CFU/g</td>
<td>TZS 125:2002-EAS 828:2016</td>
</tr>
<tr>
<td>5</td>
<td><em>L. monocytogenes</em></td>
<td>Absent in 25g</td>
<td>CAC/RCP 52</td>
</tr>
</tbody>
</table>

Figure 1. A dendrogram showing clusters by hierarchical cluster analysis on the relationship of *Kayabo* processors in Kanyama and Mwaloni according to their handling practices.

**Site and building layout**

Table 3 shows the site and building layout of *Kayabo* processors. It shows that all processors operated in inadequately designed premises without good drainage systems. Particularly, 'Cluster I' processors had an unfenced processing premise to control access of pests, animals, and unauthorized people. Animals were roaming...
Table 2. Characteristics of Kayabo processors (n=30).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Category</th>
<th>Frequency (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cluster I</td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>5 (33.3)*</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>10 (67.7)</td>
</tr>
<tr>
<td></td>
<td>Informal</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Primary</td>
<td>15 (100)</td>
</tr>
<tr>
<td></td>
<td>Secondary</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Education level</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Informal</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Primary</td>
<td>15 (100)</td>
</tr>
<tr>
<td></td>
<td>Secondary</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>&lt;10 (micro)</td>
<td>6 (40.0)</td>
</tr>
<tr>
<td>Number of employees</td>
<td>10-49 (small)</td>
<td>9 (60.0)</td>
</tr>
<tr>
<td></td>
<td>50-100 (medium)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Production volume</td>
<td>1 ton/week</td>
<td>15 (100)</td>
</tr>
<tr>
<td></td>
<td>2 tons/week</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>3 tons/week</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>4 tons/week</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Registration status</td>
<td>Not registered</td>
<td>15 (100)</td>
</tr>
<tr>
<td></td>
<td>Registered</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>In process</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

*numbers in brackets are percentages.

around the processing premise. Although processors in clusters II and III had fenced premises, there was no control of food vendors (including fruits and vegetables) into the site. Animals and fruits and vegetables could be vehicles of microbiological hazards that could subsequently cross-contaminate the premises and products.

Moreover, the majority of processors in cluster I (100%), cluster III (80%), and cluster II (30%) had buildings not constructed with permanent materials. The buildings were makeshifts; constructed with wooden materials and thatched with plastic sheets or dried grasses without ceilings. The roofs could leak during rains to spoil or contaminate the products. Unfortunately, all processors used inadequately designed equipment and had no cold storage facilities. However, all processors used potable water from the Municipal supply (Table 3). Lack of adequate knowledge on proper food handling accompanied by poor design and layout of the premises (no separation between dirty and clean processes) could lead to cross-contamination. Previous studies reported inadequate facilities and the use of traditional tools and practices for fish processing (Ibrahim et al., 2011; Akintola and Fakoya, 2017). Such ill-practices are linked to low quality and unsafe products.

Sanitation and personnel hygiene

Table 4 shows the sanitation of premises and equipment and personal hygiene. It revealed that personnel were not subjected to any medical examination as required by the Tanzanian food laws and regulations. Tanzanian food law requires that all food handlers check their health when employed and after every six months (TFDCA, 2003). In addition, it prohibits personnel suffering from a septic sore, diarrhoea, chronic cough or septic sore throat, typhoid, paratyphoid fever, any Salmonella infection, dysentery, or any staphylococcal infection to handle food (TFDCA, 2003).

Moreover, all processors had no hygienically designed toilets with hand-washing facilities. Although cluster I processors had toilets, there were pit latrines located several meters away from the processing building and without water supply. Besides, food handlers had never received any training on food processing and good hygienic (GHP) and manufacturing (GMP) practices. Eventually, none of the personnel had put on personal protective gears and uniforms to minimize (cross) contamination. Such unhygienic conditions could result in product contamination with both pathogenic and spoilage microorganisms. Previous studies also observed inadequate conditions by artisanal and small-scale fish processors (Ibrahim et al., 2011; Akintola and Fakoya, 2017). The majority of food-borne outbreaks occur as a result of the failure of the food preparation procedures to adhere to good hygienic practices (FAO/WHO, 2013). Fish is a perishable product that needs good hygienic practices along the value chain to control microbial contamination and spoilage (Okonkwo et al., 1993; Nguyen et al., 2007). Inadequate cleaning and sanitation of processing equipment like containers, knives, and
Table 3. Frequency distribution of Kayabo processors according to their site, building layout and sources of water.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Attribute</th>
<th>Category</th>
<th>Frequency (Percentage)</th>
<th>Frequency (Percentage)</th>
<th>Frequency (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cluster I</td>
<td>Cluster II</td>
<td>Cluster III</td>
<td>Cluster III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site/Location</td>
<td>Free from contamination</td>
<td>Yes 0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No 15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td>Site/Location</td>
<td>Sound water drainage</td>
<td>Yes 0 (0)</td>
<td>10 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No 15 (100)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td>Site/Location</td>
<td>Road accessibility</td>
<td>Yes 15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No 0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td>Site/Location</td>
<td>Adequate area / space</td>
<td>Yes 0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No 15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td>Site/Location</td>
<td>Permanent materials</td>
<td>Yes 0 (0)</td>
<td>7 (70.0)</td>
<td>1 (20.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No 15 (100)</td>
<td>3 (30.0)</td>
<td>4 (80.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td>Site/Location</td>
<td>Roofing</td>
<td>Yes 0 (0)</td>
<td>7 (70.0)</td>
<td>1 (20.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No 15 (100)</td>
<td>3 (30.0)</td>
<td>4 (80.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td>Building layout /Equipment design</td>
<td>Food grade equipment</td>
<td>Yes 0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No 15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td>Building layout /Equipment design</td>
<td>Cold storage</td>
<td>Yes 0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No 15 (100)</td>
<td>15 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 15 (100)</td>
<td>15 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td>Building layout /Equipment design</td>
<td>Cross contamination</td>
<td>Yes 15(100)</td>
<td>10(100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No 0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td>Water source</td>
<td>Municipal</td>
<td>Yes 15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No 0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
<td></td>
</tr>
</tbody>
</table>

contact surfaces is a potential source of bacterial contamination in fish processing operations (Reij and Aantrekker, 2004; FAO/WHO, 2009) and could result into spoilage.

Source of raw materials, processing and packaging of final products

The majority of Kayabo processors (80% in cluster II, 67% in Cluster I, and 60% in Cluster III) obtained their raw materials (Lates niloticus) as rejects from large fishprocessing factories, for the export market (Table 5). While raw materials and products are properly handled in such factories, rejects are not hygienically handled or chilled. Although perishable raw materials like fish would require chill storage (between -1 and 4°C) to minimize the growth of micro-organisms and spoilage (Berkel et al., 2004; Ghaly et al., 2010), none of the processors had cold storage facilities. This could result in the proliferation of microorganisms and toxins formation. However, washing of Nile perch prior to processing was done by all
processors and fish curing was done by using iodized salt. Rough food contact surfaces of drying racks (often made of wooden materials) are difficult to clean and sanitize; they are harbourage areas of pests, pathogenic and spoilage micro-organisms.

Generally, *Kayabo* was packaged in bulk (25-30 kg). Bulky packaging was carried out with non-food grade materials such as re-used, non-cleaned, and sanitized polyethylene bags. The packaging was carried out in a very unhygienic and rudimentary condition. After filling the polythene bags by hand, the products were compressed by using bare feet. These ill-practices could expose the products to various microbiological hazards (FAO/WHO, 2009; FAO/CDR, 2013). To ensure the quality and safety of *Kayabo*, proper, and hygienic packaging practices are the pre-requisites (FAO/WHO, 2009).

### Assessment of microbiological contamination

The TVC were quantified in all clusters with levels of contamination ranging from 2.08 - 8.68 Log CFU/25 g (Table 6). While cluster I had 48% (12/15) of the processors exceeding the maximum allowable limit (5 Log CFU/25 g) for TVC; none of the processors from cluster II and cluster III exceeded the legal limit. This current study reported high TVC than a study in salted sun-dried Nile perch products which observed 2.9 - 4.5 log CFU/g (Baniga et al., 2019). *Staphylococcus aureus* counts ranging from <1 to 5.49 Log CFU/25 g were quantified from 47% (14/30) of processors; however, majority (12/14) were from Cluster I (Table 6). About 42% (5/12) of processors from Cluster I exceeded the allowable limit (3 Log CFU/25 g) for *S. aureus*. Although total coliforms were occasionally quantified in Cluster I (2/15 processors) and Cluster II (1/10 processors), they were within the legal limits. Unexpectedly, pathogens were either below the quantification (<1 Log CFU/25 g for *Escherichia coli*) or not detected (Absent, P/25 g for *L. monocytogenes*) throughout the study.

The counts beyond the acceptable limits for TVC (5.14 - 8.68 Log CFU/25 g) and *S. aureus* (3.08 - 5.49 Log CFU/25 g) of the analysed samples from the majority of

### Table 4. Frequency distribution of processors according to sanitation and personnel hygiene practices.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Category</th>
<th>Frequency (percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cluster I</td>
</tr>
<tr>
<td>Medical examination</td>
<td>Yes</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>15 (100)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15 (100)</td>
</tr>
<tr>
<td>Toilets</td>
<td>Yes</td>
<td>15 (100)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15 (100)</td>
</tr>
<tr>
<td>Personal hygiene facilities</td>
<td>Yes</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>15 (100)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15 (100)</td>
</tr>
<tr>
<td>Toilet adequacy</td>
<td>Yes</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>15 (100)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15 (100)</td>
</tr>
<tr>
<td>Toilet water supply</td>
<td>Yes</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>15 (100)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15 (100)</td>
</tr>
<tr>
<td>Protective gears</td>
<td>Yes</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>15 (100)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15 (100)</td>
</tr>
<tr>
<td>Training on hygiene</td>
<td>Yes</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>15 (100)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15 (100)</td>
</tr>
<tr>
<td>Pre and post processing cleaning</td>
<td>Yes</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>15 (100)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15 (100)</td>
</tr>
</tbody>
</table>
Table 5. Frequency distribution (and percentages) of processors according to the source of raw materials, processing and packaging methods.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Category</th>
<th>Cluster I</th>
<th>Cluster II</th>
<th>Cluster III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw materials (Nile perch)</td>
<td>Specified sources</td>
<td>Rejects from fish factories</td>
<td>10 (66.7)</td>
<td>8 (80.0)</td>
</tr>
<tr>
<td></td>
<td>Artisanal fishermen</td>
<td>2 (13.3)</td>
<td>1 (10.0)</td>
<td>2 (40.0)</td>
</tr>
<tr>
<td></td>
<td>Rejects from landing sites</td>
<td>3 (20.0)</td>
<td>1 (10.0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td><strong>Total</strong></td>
<td><strong>15 (100)</strong></td>
<td><strong>10 (100)</strong></td>
<td><strong>5 (100)</strong></td>
</tr>
<tr>
<td>Cold storage from the source</td>
<td>Yes</td>
<td>0 (0)</td>
<td>8 (80.0)</td>
<td>4 (80.0)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>15 (100)</td>
<td>2 (20.0)</td>
<td>1 (20.0)</td>
</tr>
<tr>
<td></td>
<td><strong>Total</strong></td>
<td><strong>15 (100)</strong></td>
<td><strong>10 (100)</strong></td>
<td><strong>5 (100)</strong></td>
</tr>
<tr>
<td>On site cold storage</td>
<td>Yes</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
</tr>
<tr>
<td></td>
<td><strong>Total</strong></td>
<td><strong>15 (100)</strong></td>
<td><strong>10 (100)</strong></td>
<td><strong>5 (100)</strong></td>
</tr>
<tr>
<td>Raw fish washing prior to processing</td>
<td>Yes</td>
<td>15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td><strong>Total</strong></td>
<td><strong>15 (100)</strong></td>
<td><strong>10 (100)</strong></td>
<td><strong>5 (100)</strong></td>
</tr>
<tr>
<td>Type of salt used</td>
<td>Iodated</td>
<td>15(100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
</tr>
<tr>
<td></td>
<td>Rocky</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td><strong>Total</strong></td>
<td><strong>15 (100)</strong></td>
<td><strong>10 (100)</strong></td>
<td><strong>5 (100)</strong></td>
</tr>
<tr>
<td>Processing</td>
<td>Food grade Equipment</td>
<td>In place</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Not in place</td>
<td>15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
</tr>
<tr>
<td></td>
<td><strong>Total</strong></td>
<td><strong>15 (100)</strong></td>
<td><strong>10 (100)</strong></td>
<td><strong>5 (100)</strong></td>
</tr>
<tr>
<td>Product packaging</td>
<td>Yes</td>
<td>10 (66.7)</td>
<td>7 (70.0)</td>
<td>4 (80)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>5 (33.3)</td>
<td>3 (30.0)</td>
<td>1 (20)</td>
</tr>
<tr>
<td></td>
<td><strong>Total</strong></td>
<td><strong>15 (100)</strong></td>
<td><strong>10 (100)</strong></td>
<td><strong>5 (100)</strong></td>
</tr>
<tr>
<td>Type of packaging</td>
<td>Food grade</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Non-food grade</td>
<td>15 (100)</td>
<td>15 (100)</td>
<td>5 (100)</td>
</tr>
<tr>
<td></td>
<td><strong>Total</strong></td>
<td><strong>15 (100)</strong></td>
<td><strong>10 (100)</strong></td>
<td><strong>5 (100)</strong></td>
</tr>
<tr>
<td>Labeling</td>
<td>Yes</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>15 (100)</td>
<td>10 (100)</td>
<td>5 (100)</td>
</tr>
<tr>
<td></td>
<td><strong>Total</strong></td>
<td><strong>15 (100)</strong></td>
<td><strong>10 (100)</strong></td>
<td><strong>5 (100)</strong></td>
</tr>
</tbody>
</table>

Processors in Cluster I are due to the observed unhygienic handling conditions of raw materials and finished products, poor sanitation and personal hygiene, use of non-food grade equipment (wooden materials as drying racks which are difficult to clean and sanitize hence harbouring microorganisms) and inadequate packaging conditions. According to Norman (1999) and Kussaga et al. (2017), possible causes of food contamination by enteric microorganisms (such as, Enterobacteriaceae and E. coli) are inadequate procedures of handling, packaging, storage, sanitation, and personal hygiene.

Despite the observed poor hygienic conditions, all Kayabo samples tested for total coliforms, E. coli and L. monocytogenes complied with the legal limits. This could be due to the effect of salt (Sodium chloride) on water activity (aw) as well as moisture content of Kayabo, which inhibits the growth and proliferation of pathogenic microorganisms. A similar study by Wijnker et al. (2006) on antimicrobial properties of salt (NaCl) in fish, fishery...
products, and natural sheep casings at different water activity levels found that microbiological (E. coli, Salmonella typhimurium, L. monocytogenes, S. aureus and E. coli O157: H7) activities stopped when water activity of 0.89 was reached. The inhibitory effects of sucrose and sodium chloride on S. aureus are primarily related to lower water activity (Dave and Ghaly, 2011). Sodium chloride has more inhibitory effects than glycerol in inhibiting the growth of spoilage microorganisms. Salting decreases water activity and has an inhibitory effect on pathogenic bacteria (Teklemariam et al., 2015).

The TVC variation was significantly different (P<0.05) among the clusters. Although coliforms and S. aureus were observed in all companies among the clusters, the variations were not significantly different. Post Hoc (Bonferroni) test indicated that a significant difference (P<0.05) in TVC between Clusters I and II and Clusters I and III (Table 7). As compared with other clusters, 'cluster I' had significantly high contamination with TVC (6.17 Log CFU/25 g) and S. aureus (3.38 Log CFU/25 g). The level of TVC and S. aureus was beyond the respective legal limits. Microbiological assessment results correspond with the prevailing conditions as cluster I had an unfenced processing site to control pests, animals, and

Table 6. Level of microbiological contamination of Kayabo from all processors.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Processor</th>
<th>TVC Log (CFU/25 g)</th>
<th>S. aureus Log (CFU/25 g)</th>
<th>Total coliforms Log (MPN/25 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>K01</td>
<td>8.68</td>
<td>2.61</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>K02</td>
<td>5.41</td>
<td>3.26</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>K03</td>
<td>4.11</td>
<td>3.08</td>
<td>0.60b</td>
</tr>
<tr>
<td></td>
<td>K04</td>
<td>6.20</td>
<td>3.43</td>
<td>1.36a</td>
</tr>
<tr>
<td></td>
<td>K05</td>
<td>5.14</td>
<td>2.36</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>K06</td>
<td>6.78</td>
<td>3.18</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>K07</td>
<td>7.40</td>
<td>4.07</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>K08</td>
<td>5.20</td>
<td>2.56</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>K09</td>
<td>7.86</td>
<td>5.08</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>K10</td>
<td>7.61</td>
<td>5.49</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>K11</td>
<td>7.40</td>
<td>4.28</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>K12</td>
<td>5.48</td>
<td>5.48</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>K13</td>
<td>4.90</td>
<td>2.36</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>K14</td>
<td>4.54</td>
<td>2.36</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>K15</td>
<td>5.94</td>
<td>2.86</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>M01</td>
<td>3.65</td>
<td>2.65</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>M02</td>
<td>2.85</td>
<td>2.85</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>M03</td>
<td>3.20</td>
<td>2.85</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>M04</td>
<td>3.51</td>
<td>2.65</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>M05</td>
<td>4.82</td>
<td>2.65</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>M06</td>
<td>3.81</td>
<td>2.65</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>M07</td>
<td>2.11</td>
<td>2.65</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>M08</td>
<td>2.11</td>
<td>2.85</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>M09</td>
<td>2.34</td>
<td>2.85</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>M10</td>
<td>2.11</td>
<td>2.85</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>M11</td>
<td>2.11</td>
<td>2.85</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>M12</td>
<td>2.11</td>
<td>2.85</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>M13</td>
<td>2.11</td>
<td>2.85</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>M14</td>
<td>3.26</td>
<td>2.85</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>M15</td>
<td>2.18</td>
<td>2.85</td>
<td>**</td>
</tr>
<tr>
<td>MAL</td>
<td></td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>


*Microbial count < 1.0 x 10^1 log (CFU/g), **Microbial count <0.3 x 10^1 log (MPN/g)
Table 7. Mean values of TVC, total coliforms and *S. aureus* from cluster I, II and III.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cluster I</th>
<th>Cluster II</th>
<th>Cluster III</th>
</tr>
</thead>
<tbody>
<tr>
<td>TVC</td>
<td>6.17&lt;sup&gt;a&lt;/sup&gt;</td>
<td>3.18&lt;sup&gt;b&lt;/sup&gt;</td>
<td>3.26&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td><em>S. aureus</em></td>
<td>3.38&lt;sup&gt;a&lt;/sup&gt;</td>
<td>2.65&lt;sup&gt;a&lt;/sup&gt;</td>
<td>2.36&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Total coliforms</td>
<td>0.98&lt;sup&gt;a&lt;/sup&gt;</td>
<td>0.60&lt;sup&gt;a&lt;/sup&gt;</td>
<td>0.00&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

Means with different superscripts in the same row are significant different at P<0.05.

unauthorized people, as well as animals, could access the premises.

Conclusions

*Kayabo* processing is dominated by women, often without the knowledge of proper food handling and operating in very unhygienic conditions. The raw materials are of inadequate quality, lack of food-grade processing equipment, and poor packaging and storage conditions. Although the processors receive inadequate handled raw materials (as rejects) from fish processing companies accompanied by poor processing and storage conditions, some processors had products with less microbiological contamination. This could be attributed to the use of the curing process, which inhibits growth and possibly kill micro-organisms. If these processors are trained on best handling practices and receive quality raw materials, they could process products of good microbial quality. Moreover, fish companies for the domestic market did not receive the same level of control as for the export. Therefore, similar level of control in the domestic oriented companies is highly recommended.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENT

The authors are thankful to the Tanzania Food and Drugs Authority (TFDA) for sponsoring this study.

REFERENCES

Quality and sensory properties of instant fried noodles made with soybean and carrot pomace flour

Tiony Mercy Chepkosgei and Irene Orina*

Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, 62000-0200, Nairobi, Kenya.

Received 8 September, 2020; Accepted 16 February, 2021

Wheat flour commonly used in making noodles is rich in starch but poor in protein and fiber. Wheat flour substituted with soybean and carrot pomace flours were used to produce instant fried noodles. Soybean is high in protein while carrot pomace is rich in dietary fiber. The aim of this study was to evaluate the effect of substituting wheat flour with soybean and carrot pomace flour on the physicochemical, cooking and sensory properties of instant fried noodles. Four flour blends in ratios of 100:0, 80:15:5, 70:20:10, 60:25:15 wheat, soybean and carrot pomace flour respectively were prepared. The results indicated a significant difference (P<0.05) in protein and crude fiber content of the noodles made from the flour blends. The cooking loss and water absorption increased with increase in the amount of substituted soybean and carrot pomace flour. There was no significant difference in the tensile strength among noodles. However, breaking length of the noodles decreased with increase in replacement of soybean and carrot pomace flour. The noodles decreased in brightness with increased carrot pomace substitution. Noodles made from 80% wheat flour, 15% soybean flour and 5% carrot pomace were the most preferred by the sensory panelist. Incorporation of soybean flour and carrot pomace flour improved the nutritional quality and sensory attributes of the instant fried noodles.

Key words: Instant fried noodles, carrot pomace flour, soybean flour.

INTRODUCTION

Consumption of noodles has increased worldwide because of their convenience, palatability, shelf stability and affordability. Noodles are pasta products mainly made from flour, water, salt. The properties of the flour, type of salt and the manufacturing process leads to a wide array of noodles types (Fu, 2008; Gulia et al., 2014). Noodles are mainly made by a process of mixing raw materials, dough sheeting, compounding, sheeting / rolling and cutting. Noodle strands coming out of cutting rolls are further processed to produce different types of noodles (Fu, 2008; Gulia et al., 2014; Adejuwon et al., 2020). Two types of noodles are generally known, white salted noodles made from flour, sodium chloride and water, and yellow alkaline noodles made from flour, alkaline salts (sodium tripolyphosphate and sodium carbonate) and water (Asenstorfer et al., 2006; Siah and Quail, 2018).

Wheat flour used in making noodles is rich in starch but
low in protein (essential amino acids especially lysine), dietary fiber and vitamins which are lost during wheat flour refinement (Dewettinck et al., 2008). Previous studies have tried solving this problem by substituting wheat flour with various foods rich in protein and fiber. These includes substituting wheat flour with potato flour (Kang et al., 2017), soy flour (Rani et al., 2019), seeweed flour (Kumoro et al., 2016), lentil (Rathod and Annapure, 2017), ground linseed (Zhu and Li, 2019), apple pomace (Xu et al., 2020), carrot puree (Prerana and Anupama, 2020), finger millet (Hymavathi et al., 2019) and oyster mushrooms (Arora et al., 2018). Limited studies have incorporated soybean flour together with carrot pomace in the noodles. Soybean flour provides extra protein while carrot pomace provides fiber and beta carotene to the wheat flour noodles.

Soybeans are excellent sources of protein (35-40%), rich in calcium, iron, phosphorous and vitamins (Udachan et al., 2018). Noodles made mainly from wheat flour are rich in carbohydrates but are deficient in terms of protein quality and amino acid (Udachan et al., 2018). Incorporation of soybean flour seeks to improve the protein quality of noodles. Several studies have successfully incorporated soy flour in noodles (Pakhare et al., 2016; Jalgaonkar et al., 2018; Huh et al., 2019; Rani et al., 2019, 2020; Violalita et al., 2020). Pakhare et al. (2016) reported a significant increase in protein content of noodles supplemented with defatted soy bean flour. Cooking loss and cooking time of the noodles also increased significantly.

Carrot has gained increased attention over the years due to its richness in antioxidants and beta carotene (provitamin A) (Sharma et al., 2012). Carrot pomace is the by-product of carrot juice extraction unit. During carrot juice production, 30-50% of the carrot remains as pomace, and up to 50% of the carotenol is lost with the pomace (Sharma et al., 2012). The pomace is mainly disposed as feed or manure, however, it contains a good residual amount of all the vitamins, minerals and dietary fiber (Surbhi et al., 2018). Incorporation of carrot pomace in food will decrease its environmental load problem. Various attempts have been made at utilizing carrot pomace in foods such as cookies (Ahmad et al., 2016; Sahni and Shere, 2017), cake (Majzoobi et al., 2016; Semwal et al., 2016), sausage (Yadav et al., 2018) and pasta (Jalgaonkar et al., 2018).

The aim of this study was to evaluate the effect of incorporating different proportions of soybean flour and carrot pomace flour on nutritional composition, physical properties and sensory characteristics of instant fried noodles.

MATERIALS AND METHODS

Wheat and soybean flour

Commercial wheat flour was obtained from a local supermarket, defatted soy flour was obtained from Soy Africa Company, Kenya.

Preparation of carrot pomace flour

Fresh carrots were purchased from a local market in Juja, Kenya. Pomace flour was obtained according to a method described by Gull et al. (2015). The carrots were washed in running tap water to remove extraneous material followed by juice extraction. Carrot pomace was collected, spread on aluminum foils and oven dried at 60°C for 4 h. The dried pomace was ground and packed in air tight container for further use.

Formulation of composite flour

Wheat flour, soybean flour and carrot pomace flour were mixed at different proportions as shown in Table 1.

Noodle production

The noodles were processed at Jomo Kenyatta University of Agriculture and Technology (JKUAT) Nissin Foods Limited. Recipe for making noodles was provided by JKUAT Nissin Foods. One kilogram of each flour blend (as shown in Table 1) were mixed separately with water (360 ml/kg), table salt (16 g/kg), sodium bicarbonate (2 g/kg) and sodium tri polyphosphate (2 g/kg) in a rotary mixer. A thick sheet of dough formed which was allowed to rest for 20 min in a plastic bag. The dough was then passed through extension rollers to reduce thickness. The thin sheet of dough produced was passed through a shredder. The shredded dough was then cut at 10 cm spacing, steamed for 20 min and deep fried at 140°C in palm oil for 30 s. The instant fried noodles were then cooled at room temperature and packed in airtight bags.

Chemical analysis

Proximate analysis

Proximate analysis of instant fried noodles prepared from the different flour blends were determined using standard methods of AOAC (2010). Proximate analysis was done in triplicate to obtain a mean value for each nutrient.

Total carotenoid content

This was determined using AOAC (2010) method. About 2 g of each sample was weighed, transferred into a mortar and a 10 ml of acetone added. A pinch of acid washed sand was added and the sample was thoroughly ground using pestle until it produced no more color. The acetone extract was transferred into a 25 ml volumetric flask and topped up with acetone. The extract was transferred into a separating column and 25 ml of petroleum ether was added. The separating column was shaken vigorously then allowed to stand. The mixture separated into two, and acetone which is at the bottom was released from the column. Distilled water was added to wash off the acetone, this was done severally to completely wash off the acetone. After extraction, the total carotenoid content was determined using UV-Vis spectrophotometer (PD 3000UV APEL Co.) at 450 nm. Beta carotene standard curve was used to calculate the total carotenoid content. Results were presented as mg/100 g.

Mineral content analysis

Mineral content (calcium (Ca), magnesium (Mg), zinc (Zn) and phosphorous (P)) of the noodles were determined using atomic
absorption spectroscopy (AAS) (model 210 VPG) according to AOAC (2010) method. Absorbance was recorded and standard curves of each individual element were plotted. Results were expressed as mg/100 g sample.

**Carbohydrate content**

The difference method was used to determine carbohydrate content of the noodles as follows:

% Carbohydrate=100(−% moisture content+ % crude fibre+ % ash content + % fat content + % protein).

**Physical measurements**

**Cooking time**

This was determined by noticing the time of disappearance of the core of the noodle strand during cooking (every 30 s) by squeezing the noodles between two transparent glasses slides (Prerana and Anupama, 2020).

**Cooking loss**

This is the amount of solid substance lost into the cooking water and was determined according to the method described by Rittithiruangdej et al. (2011). Ten grams of the sample noodles was placed in 300 ml of boiling distilled water in a 500 ml beaker and cooked to optimum time. The cooking water was collected (thoroughly agitation the total cooking water before sampling) after draining the noodles. The cooking water was placed in aluminum vessel then placed in an oven at 105°C and evaporated to dryness. The residue was weighed and reported as percentage of the uncooked noodles.

Cooking loss = \( \frac{\text{Weight of remaining solid content after oven drying}}{\text{Weight of fresh noodles}} \times 100 \)

**Water absorption**

Three grams of the sample noodles were boiled in 200 ml of water until completely cooked (when center of the noodles becoming transparent). The cooked noodles were washed with distilled water then drained for 5 min and weighed immediately. Water absorption was reported as percent increase in the weight of cooked noodles compared to the uncooked noodles weight (Takahashi et al., 2005).

\[
\text{Water absorption} = \left( \frac{\text{Weight of cooked noodles} - \text{Weight of uncooked noodles}}{\text{Weight of uncooked noodles}} \right) \times 100
\]

### RESULTS AND DISCUSSION

**Proximate analysis**

Chemical composition of instant fried noodles with supplemented soybean flour and carrot pomace flour are shown in Table 2. Moisture content of the noodles decreased with increased supplementation with the control having the highest moisture content of 4.861%.

**Table 1. Quantity of wheat, soybean and carrot pomace flour blends prepared.**

<table>
<thead>
<tr>
<th>Flour blends</th>
<th>Wheat flour (%)</th>
<th>Soybean flour (%)</th>
<th>Carrot pomace (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sample A</td>
<td>80</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Sample B</td>
<td>70</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Sample C</td>
<td>60</td>
<td>25</td>
<td>15</td>
</tr>
</tbody>
</table>
Moisture content of the noodle strands to evaporate (Gulia et al., 2014; Adejuwon et al., 2020). Moisture content is critical in controlling microbial growth and hence determining the shelf life of the noodles. Carbohydrate content of the noodles decreased with substitution of wheat flour. Sample C with 25% soybean flour and 15% carrot pomace flour had the lowest carbohydrate content of 71.911%. Ash content increased with replacement of wheat flour, noodles containing 60% wheat flour (Sample C) had the highest ash content (2.403%) while the control had the lowest (0.592%). Ash content gives an indication of the availability of minerals in a given food sample. The increase in ash content is attributed to the added soybean and carrot pomace flour.

The percentage protein content of the instant noodles ranged from 8.314 to 16.46%. Sample C had the highest protein content while the control had the lowest. This is attributed to the increase in the proportion of soybean flour added which is rich in protein (Medic et al., 2014). This increase in protein is in agreement with previous studies (Collins and Pangloli, 1997; Adegunwa et al., 2012; Omeire et al., 2014; Rani et al., 2019).

There was a decrease in fat content with substitution of wheat flour, Sample C had the lowest content and was significantly different from other samples. The decrease could be due to increase in the proportion of soy flour (defatted) in the flour blend. Collins and Pangloli (1997) reported a decrease in fat content of noodles with addition of defatted soybean flour, however, other studies observed an increment in fat content (Adegunwa et al., 2012; Omeire et al., 2014). The increase in the amount of carrot pomace substituted could have also led to decrease in the amount of oil absorbed by the noodles. In a previous study, preharvest-dropped apple powder (PDAP) appeared to be very effective in lowering oil absorption of instant fried noodles (Kim et al., 2020). Since carotenoids are affected by heat (Rodriguez-Amaya and Kimura, 2004), this analysis was done immediately after production of the noodles. There was a significant difference in total carotenoids content of the noodles prepared from the flour blends, with Sample C having the highest amount.

Mineral concentration

Carrots are good sources of calcium and phosphorous (Surbhi et al., 2018) while soybeans are a good source of magnesium and zinc (Reddy and Duke, 2015). Substitution of wheat flour with carrot pomace and soybean flour led to an increase in the mineral concentration of dry instant noodles (Table 3). Sample C had the highest

Table 2. Proximate composition of instant fried noodles supplemented with soybean flour and carrot pomace flour.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Carbohydrate (%)</th>
<th>Moisture (%)</th>
<th>Ash (%)</th>
<th>Crude fat (%)</th>
<th>Crude fiber (%)</th>
<th>Protein (%)</th>
<th>Total carotenoid (mg/100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>81.085±0.102a</td>
<td>4.861±0.424b</td>
<td>0.592±0.044c</td>
<td>4.235±0.007a</td>
<td>0.913±0.071d</td>
<td>8.314±0.071d</td>
<td>ND</td>
</tr>
<tr>
<td>Sample A</td>
<td>79.214±0.082b</td>
<td>4.497±0.401b</td>
<td>1.521±0.052b</td>
<td>3.161±0.125b</td>
<td>1.446±0.132c</td>
<td>10.161±1.701c</td>
<td>1.336±0.528c</td>
</tr>
<tr>
<td>Sample B</td>
<td>74.214±0.132c</td>
<td>4.219±0.401c</td>
<td>2.041±0.032c</td>
<td>3.154±0.121ab</td>
<td>2.103±0.076bc</td>
<td>14.311±2.436b</td>
<td>3.592±0.494b</td>
</tr>
<tr>
<td>Sample C</td>
<td>71.911±0.201d</td>
<td>3.944±0.792d</td>
<td>2.352±0.210d</td>
<td>2.930±0.005c</td>
<td>2.403±0.018bd</td>
<td>16.460±0.854b</td>
<td>4.080±0.315c</td>
</tr>
</tbody>
</table>

Control=100% wheat flour, Sample A=80% wheat flour, 15% soybean flour, 5% carrot pomace flour, Sample B = 70% wheat flour, 20% soybean flour, 10% carrot pomace flour, Sample C=65% wheat flour, 25% soybean flour, 15% carrot pomace flour. Values shown as mean± standard deviation of triplicate analysis. Different superscript letters in a column indicate significant differences (P≤0.05). ND-Not detected.
Table 3. Mineral concentration (mg/100 g) of instant fried noodles supplemented with carrot pomace flour and soybean flours.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Zinc</th>
<th>Calcium</th>
<th>Magnesium</th>
<th>Phosphorous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.660±0.329c</td>
<td>33.473±0.513d</td>
<td>34.901±3.510d</td>
<td>3.31±0.011c</td>
</tr>
<tr>
<td>Sample A</td>
<td>2.119±0.168b</td>
<td>51.37±1.512c</td>
<td>49.365±1.3364d</td>
<td>6.696±0.227b</td>
</tr>
<tr>
<td>Sample B</td>
<td>2.451±0.021a</td>
<td>60.57±1.70b</td>
<td>53.651±3.8395b</td>
<td>6.994±2.991b</td>
</tr>
<tr>
<td>Sample C</td>
<td>2.602±0.034a</td>
<td>68.98±1.661a</td>
<td>55.015±1.9445a</td>
<td>8.112±0.1357a</td>
</tr>
</tbody>
</table>

Control= 100% wheat, Sample A=80% wheat flour, 15% soybean flour, 5% carrot pomace flour, Sample B = 70% wheat flour, 20% soybean flour, 10% carrot pomace flour, Sample C= 65% wheat flour, 25% soybean flour, 15% carrot pomace flour. Values are shown as mean± standard deviation of triplicate analysis. Different superscript letters in a column indicate significant differences (p≤0.05).

Table 4. Cooking time and cooking loss of instant fried noodles supplemented with soybean flour and carrot pomace flour.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Optimum cooking time(min)</th>
<th>Cooking loss (%)</th>
<th>Water absorption (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>13.0</td>
<td>9.261±1.258d</td>
<td>125.301±0.134d</td>
</tr>
<tr>
<td>Sample A</td>
<td>13.5</td>
<td>9.353±0.124c</td>
<td>128.103±1.534c</td>
</tr>
<tr>
<td>Sample B</td>
<td>13.5</td>
<td>11.318±0.371b</td>
<td>130.90±0.673b</td>
</tr>
<tr>
<td>Sample C</td>
<td>14.5</td>
<td>14.034±1.319a</td>
<td>135.50±0.321a</td>
</tr>
</tbody>
</table>

Control= 100% wheat, Sample A=80% wheat flour, 15% soybean flour, 5% carrot pomace flour, Sample B = 70% wheat flour, 20% soybean flour, 10% carrot pomace flour, Sample C= 65% wheat flour, 25% soybean flour, 15% carrot pomace flour. Values are shown as mean± standard deviation of triplicate analysis. Different superscript letters in a column indicate significant differences (P≤0.05).

Cooking time refers to the minutes required to gelatinize the starch core of noodles (Prerana and Anupama, 2020). The cooking time increase with replacement of wheat flour as shown in Table 4. Sample C cooked for 14.5 min, Sample A and B both took 13.5 min while the control cooked for 13 min. The cooking time of noodles in this study was higher than what was reported by Adegunwa et al. (2012); Jalgaonkar et al. (2018) and Rani et al. (2019). Prerana and Anupama (2020) reported a decrease in cooking time with replacement of wheat flour with carrot puree in noodles.

Cooking loss increased with replacement of wheat flour with soy flour and carrot pomace flour. Sample C had the highest cooking loss (Table 4). Cooking loss is an important factor denoting cooking quality of noodles. Structural stability of noodles during cooking process is determined by cooking loss. High cooking loss is undesirable because it represents high solubility of starch, resulting in turbid cooking water, low cooking tolerance and sticky texture (Wandee et al., 2014). There was significant difference (P< 0.05) in the water absorption of all the noodles made. Water absorption increased with substitution of wheat flour. Sample C had the highest percent water absorption (135%) while the control had the lowest value of 125%. The increase in water absorption is attributed to the high protein content of soybean flour (Rani et al., 2019) and high fiber content in the carrot pomace flour.

Color characteristics of noodles

Color is an important quality trait in noodles. Noodles should be bright in color and slow in discoloration with time after processing (Fu, 2008). Red or dull grey colored noodles are undesirable to most consumers. Factors influencing the color of a product are alkaline formulations used during processing, flour refinement and enzymatic browning associated with polyphenol oxidase (Asenstorfer et al., 2006). Figure 1 shows noodles made from the different composite flour and control. Color evaluation showed variation in the lightness value among the noodle samples as shown by the L* values (Table 5). Lightness of the noodles decreased with replacement of wheat with soybean and carrot pomace flour. The redness (a*) values increased with supplementation with Sample C having the highest value.
Figure 1. Image of instant noodles made from the different flour composites. Control was made with 100% wheat, Sample A with 80% wheat flour, 15% soybean flour, 5% carrot pomace flour, Sample B with 70% wheat flour, 20% soybean flour, 10% carrot pomace flour and Sample C with 65% wheat flour, 25% soybean flour, 15% carrot pomace flour.

Table 5. Color characteristics of instant fried noodles supplemented with soybean flour and carrot pomace flour.

<table>
<thead>
<tr>
<th>Sample</th>
<th>L*</th>
<th>a*</th>
<th>b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>55.910±1.434&lt;sup&gt;a&lt;/sup&gt;</td>
<td>-1.490±0.141&lt;sup&gt;d&lt;/sup&gt;</td>
<td>19.271±0.121&lt;sup&gt;d&lt;/sup&gt;</td>
</tr>
<tr>
<td>Sample A</td>
<td>44.633±1.589&lt;sup&gt;b&lt;/sup&gt;</td>
<td>5.121±0.458&lt;sup&gt;c&lt;/sup&gt;</td>
<td>27.912±1.333&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Sample B</td>
<td>42.312±2.356&lt;sup&gt;c&lt;/sup&gt;</td>
<td>5.631±0.462&lt;sup&gt;ab&lt;/sup&gt;</td>
<td>26.812±0.213&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Sample C</td>
<td>39.673±0.586&lt;sup&gt;d&lt;/sup&gt;</td>
<td>5.712±0.378&lt;sup&gt;a&lt;/sup&gt;</td>
<td>25.231±0.763&lt;sup&gt;bc&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

Control= 100% wheat, Sample A=80% wheat flour, 15% soybean flour, 5% carrot pomace flour, Sample B = 70% wheat flour, 20% soybean flour, 10% carrot pomace flour, Sample C= 65% wheat flour, 25% soybean flour, 15% carrot pomace flour. Values are shown as mean ± standard deviation of triplicate analysis. Different superscript letters in a column indicate significant differences (P≤0.05).

Table 6. Textural properties of cooked instant fried noodles supplemented with soy flour and carrot pomace flour.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Tensile strength (N)</th>
<th>Breaking length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.280±0.01&lt;sup&gt;a&lt;/sup&gt;</td>
<td>36.512±1.013&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Sample A</td>
<td>0.171±0.021&lt;sup&gt;b&lt;/sup&gt;</td>
<td>28.013±1.213&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Sample B</td>
<td>0.153±0.215&lt;sup&gt;bc&lt;/sup&gt;</td>
<td>27.143±0.154&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>Sample C</td>
<td>0.121±1.314&lt;sup&gt;c&lt;/sup&gt;</td>
<td>24.165±0.314&lt;sup&gt;d&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

Control= 100% wheat, Sample A=80% wheat flour, 15% soybean flour, 5% carrot pomace flour, Sample B = 70% wheat flour, 20% soybean flour, 10% carrot pomace flour, Sample C= 65% wheat flour, 25% soybean flour, 15% carrot pomace flour. Values shown are mean ± standard deviation of triplicate analysis. Different superscript letters in a column indicate significant differences (P≤0.05).

but was not significantly different from sample B. The yellowness (b*) values also increase with the control being significantly different from the rest of the noodle samples.

Texture analysis

Textural characteristics of noodles are among the important consideration in determining their quality. The quality of the noodles is primarily defined by texture and appearance (Ross, 2006). The textural profile of the noodles prepared from the composite flour is shown in Table 6. The tensile strength and breaking length decreased with substitution of the wheat flour. The control had the highest tensile strength and was significantly different from the noodles prepared from the composite flours. This decrease in tensile strength is ascribed to addition of non-gluten flours which weakens the gluten strength of the dough hence the overall structure of the noodles (Kovacs et al., 2004). Gluten make up 80% of the total protein in wheat flour. Gluten is
Table 7. Sensory analysis results of cooked instant fried noodles supplemented with soybean flour and carrot pomace flour.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Taste</th>
<th>Aroma</th>
<th>Color</th>
<th>Texture</th>
<th>Overall acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7.75±0.753&lt;sup&gt;b&lt;/sup&gt;</td>
<td>7.083±1.164&lt;sup&gt;b&lt;/sup&gt;</td>
<td>6.683±1.833&lt;sup&gt;d&lt;/sup&gt;</td>
<td>7.181±1.601&lt;sup&gt;b&lt;/sup&gt;</td>
<td>6.416±2.094&lt;sup&gt;d&lt;/sup&gt;</td>
</tr>
<tr>
<td>Sample A</td>
<td>8.01±1.206&lt;sup&gt;a&lt;/sup&gt;</td>
<td>7.510±1.314&lt;sup&gt;a&lt;/sup&gt;</td>
<td>7.751±0.965&lt;sup&gt;a&lt;/sup&gt;</td>
<td>7.272±1.793&lt;sup&gt;a&lt;/sup&gt;</td>
<td>7.916±1.083&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Sample B</td>
<td>6.583±1.156&lt;sup&gt;c&lt;/sup&gt;</td>
<td>7.083±1.928&lt;sup&gt;b&lt;/sup&gt;</td>
<td>7.33±1.370&lt;sup&gt;c&lt;/sup&gt;</td>
<td>6.181±1.401&lt;sup&gt;c&lt;/sup&gt;</td>
<td>7.010±1.651&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>Sample C</td>
<td>5.833±1.589&lt;sup&gt;d&lt;/sup&gt;</td>
<td>6.583±0.996&lt;sup&gt;c&lt;/sup&gt;</td>
<td>7.583±1.24&lt;sup&gt;b&lt;/sup&gt;</td>
<td>5.363±1.689&lt;sup&gt;d&lt;/sup&gt;</td>
<td>6.551±1.654&lt;sup&gt;d&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

<sup>Control=100% wheat, Sample A=80% wheat flour, 15% soybean flour, 5% carrot pomace flour, Sample B = 70% wheat flour, 20% soybean flour, 10% carrot pomace flour, Sample C= 65% wheat flour, 25% soybean flour, 15% carrot pomace flour. Values shown are mean± standard deviation of triplicate analysis. Different superscript letters in a column indicate significant difference (P≤0.05).</sup>

Sensory analysis

Sensory parameters of cooked noodles evaluated (taste, aroma, color, texture and overall acceptability) are shown in Table 7. Sample A with 80% wheat flour, 15% soybean flour and 5% carrot pomace was the most preferred by the panelist. Sample C scored the lowest score in taste (5.833), texture (5.363) and overall acceptability (6.051). The control scored the lowest in color. Sensory characteristics like smell, taste, appearance influence food acceptability more than the nutritive value. They play a significant role in the selection of a food item.

Conclusion

Instant fried noodles were prepared by substituting wheat flour with soybean (15, 20 and 25%) and carrot pomace flour (5, 10 and 15%) in an effort to improve their protein and dietary fiber content. Addition of soybean and carrot pomace flour in the noodles increased their protein, crude ash, crude fiber and total carotenoid content. Cooking time, cooking loss and water absorption of the prepared noodles increased with replacement of wheat flour. Lightness of the noodles decreased with replacement of wheat with soybean and carrot pomace flour. The control (100% wheat flour) had the highest tensile strength and was significantly different from the noodles prepared from the composite flours. Sensory analysis showed that noodles prepared from substitution of wheat with 15% soybean flour and 5% carrot pomace flour had the highest rating in taste, color, aroma, texture and overall acceptability. Soybean and carrot pomace flour can be used to formulate nutritious noodles with acceptable sensory properties.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES


Gunathilake KDPP, Abeyrathne YMRK (2008). Incorporation of coconut flour into wheat flour noodles and evaluation of its Rheological,


Increasing gallic acid contents in green tea extracts using acid hydrolysis

Hae-Soo Kim¹, Do Yeon Jeon¹, Ha-Nul Lee¹, Seong-Jin Hong¹, Seung-Hee Nam², Jeong Choi³, Yong-Hee Kwon⁴, Doo-Gyung Moon⁴, and Young-Min Kim¹*

¹Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea. ²Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea. ³Jeonnam Agricultural Research and Extension Services, Naju-si 58213, Republic of Korea. ⁴Research Institute of Climate Change and Agriculture, Rural Development Administration, Jeju 690150, Republic of Korea.

Received 17 September, 2020; Accepted 4 January, 2021

Gallic acid (GA) is a functional ingredient abundant in Chinese pu-erh tea. The aim of this study was to increase the GA content in green tea extracts using acid hydrolysis. (−)-Epigallocatechin gallate treated with 1 M hydrochloric acid at 110°C for 1 h resulted in a GA yield of 45.6%. However, under these conditions, (−)-epigallocatechin was easily oxidized and rendered undetectable. On applying the same treatment to green tea extracts of Korea-cultivated Chamnok, a native species, and Yabukita, the GA contents increased from 0.17 to 4.87, 0.28 to 5.33 and 0.17 to 4.44 mM, respectively. In Chamnok extracts prepared following harvesting at three different time points, the GA contents increased from 0.17 to 4.48, 0.12 to 5.16 and 0.06 to 5.71 mM. Therefore, it is possible to produce green tea extracts with high GA concentrations using simple acid hydrolysis. This will greatly benefit the production of functional ingredients and will be useful in the beverage industry.

**Key words:** Domestic cultivar, EGCG, EGC, tannase.

INTRODUCTION

Green tea is consumed globally and has been reported to have beneficial effects on fat oxidation and energy expenditure; it also favors weight loss (Kim et al., 2020). Green tea contains catechins, which represent a major...
component that can comprise up to approximately 30% of dry tea leaves (Chacko et al., 2010). The most abundant green tea catechins are (-)epigallocatechin gallate (EGCG), which account for approximately 68–69% of all green tea catechins, followed by (-)epigallocatechin (EGC, approximately 15–18% of all green tea catechins), (-)-epicatechin gallate (ECG, approximately 5–6% of all green tea catechins), and (-)-epicatechin (EC, approximately 2–5% of all green tea catechins) (Wang et al., 2019). The health benefits of green tea have been highly attributed to these polyphenolic compounds (Shang et al., 2020). In vivo, green tea catechins, especially EGCG, reduce the incidence of cancers, demonstrate antiviral activity, and reportedly ameliorate collagen-induced arthritis, oxidative stress-induced neurodegenerative diseases, and streptozotocin-induced diabetes (An et al., 2020; Hayakawa et al., 2020; Izzo et al., 2020; Mohan et al., 2020). In addition, EGCG tends to reduce body weight and fat.

During the fermentation process, gallate-type catechins such as EGCG or ECG are degraded, and gallic acid (GA, 3,4,5-trihydroxybenzoic acid) levels are markedly increased (Ge et al., 2019). GA is a characteristic component of fermented tea. It not only exerts antioxidant, anti-obesity, antibacterial, and anti-inflammatory effects, but also promotes the loss of body fat (Ge et al., 2019; Zhou et al., 2020). Furthermore, the Ministry of Food and Drug Safety in Korea has recognized the tea extract of pu-erh tea (containing GA as the standard component) as a functional health food ingredient. Green tea, a raw material of fermented tea, originally contained a small amount of GA, but also contained other types of catechins, such as EGCG, ECG, EGC, and EC (Kongpichichoke et al., 2016).

The three predominant green tea species cultivated in Korea are the native species, and the cultivars Yabukita and Chamnok. Native species accounted for the highest percentage of cultivation area, and Yabukita is typically processed mechanically, mostly employing the Jeju Island as its center. The production area of Chamnok, a domestic breed in Korea, is currently expanding. Both tannins and catechins are major contributors to the bitter taste of green tea, which are important indicators of tea quality, and their levels increased with an increased delay in harvesting. Conversely, the levels of free amino acids, theanine, and total nitrogen (all of which contributed to the pleasant taste of green tea) decreased with an increased delay in harvesting, resulting in a deterioration of quality (Jo et al., 2011). Isolated catechins appeared as a brown powder, which is extremely bitter and easily oxidizable; this hindered their application as a pharmaceutical agent (Dai and Mumper, 2010). Consequently, green tea leaves at the third harvest (collected in August) are less desirable for beverage production (Cao et al., 2019). More recently, GA was found to contribute to the sweet aftertaste of a green tea infusion at the third harvest, following its biotransformation using tannase (Cao et al., 2019). Additionally, Kim et al. (2019, 2020) reported that EGC and GA complexes from EGCG or green tea infusion by tannase biotransformation exert an anti-obesity effect in brown adipose tissues.

Therefore, this study attempts to improve the functionality and aftertaste of EGCG in pu-erh tea using a simple acid-based chemical reaction by replacing biotransformation with tannase or long-time fermentation. In this study the aim was to produce a green tea extract with an increased GA content through the acid hydrolysis of EGCG or a green tea infusion.

MATERIALS AND METHODS

Materials

The green tea leaves were supplied by Jeonnam Agricultural Research & Extension Services Centre (Bosung, Korea) and by the Agricultural Research Centre for Climate Change (Jeju, Korea). For use as standards, EC, EGC, EGCG, EGCG, and catechin (C) were purchased from Aktin Chemicals Inc. (Cheng-du, China), and GA was purchased from Tokyo Chemical Industry Co. (Chuo-ku, Tokyo, Japan). All standards had a purity of >95%.

Preparation of EGCG solution and green tea extracts

The EGCG solution (at a concentration of 0.2 M) was prepared by shaking at 25°C for 2 h in the dark. Green tea powder (5 g) was dissolved in 250 ml of 60% (v/v) ethanol, followed by homogenization and incubation at 25°C for 1 h in the dark (Kim et al., 2018). After filtration through a No. 2 Whatman filter paper (GE Healthcare, Buckinghamshire, UK), the remaining insoluble residue was added to 250 ml of 100% (v/v) ethanol, followed by incubation under the same conditions. The total filtrate was concentrated to a volume of 30 ml using 60% (v/v) ethanol. This green tea extract was used for hydrolysis experiments.

Acid hydrolysis of green tea extracts and identification of catechins by high-performance liquid chromatography (HPLC)

EGCG was acid-hydrolyzed using different catalysts, treatment times, and temperature conditions. Both the EGCG solution and green tea extract were subjected to hydrolysis using HCl (0.025–1 M) for 5, 15, 30, 45, or 60 min at 110°C, as previously described at various temperatures (Zhang et al., 2014). After cooling on ice, EGCG solution-acid mixtures were neutralized using 1 M sodium hydroxide, prior to lyophilization and resuspension, for HPLC analysis. Dried samples were dissolved in 100 μl of solvent A (20 mM phosphoric acid in water); they were diluted, filtered through a 0.20-μm, filtered (DISMIC-13HP, Advantec, Tokyo, Japan), and injected onto a HPLC column (Shimadzu, Tokyo, Japan) equipped
Figure 1. Content of catechins in Chamnok green tea extracts prepared from various cultivars (A) and with different plucking times (B). Data means with different letters in the same column are significantly different \((p < 0.05)\), as determined by Duncan’s multiple range test. The concentrations of GA, EGC, and EGCG were analyzed by HPLC. C, (-)-catechin; EC, (-)-epicatechin; EGC, (-)-epigallocatechin; ECG, (-)-epicatechin gallate; EGCG, (-)-epigallocatechin gallate.

Statistical analysis

All experiments were performed in triplicate and the data were analyzed for statistical significance using a one-way analysis of variance (ANOVA), followed by Duncan’s multiple range test [SPSS version 18.0 (IBM Co., Armonk, NY, USA)]. The significance level was set at \(p<0.05\). Mean values obtained from each group were compared using ANOVA.

RESULTS AND DISCUSSION

Catechin and GA contents in green tea extracts

Polyphenols, especially catechins and phenolic acids, are considered the major mediators of the health effects presented by green tea. The EGCG, ECG, or GA contents varied depending on the Korean domestic cultivar. As shown in Figure 1, phenolic compounds constituted approximately 30–40% of the dry weight of green tea leaves. Consistent with findings reported in a previous study (Wang et al., 2019), assessment of the catechin content in green tea extracts from various cultivars revealed that EGCG was the most abundant, followed by EGC, ECG, EC, and C. Furthermore, although EGCG and EGC were the most abundant among the native species and in the cultivar Yabukita, respectively, EGCG, GA, and C levels did not differ significantly among the

with a Shodex Silica C18P 4D column (5 μ, 4.6×150 mm, Shodex, Tokyo, Japan) pumps A and B (LC-20AD, Shimadzu, Kyoto, Japan), and a UV-VIS detector (SPD-20A, Shimadzu, Kyoto, Japan). Catechins and GA were eluted using a mobile phase composed of a mixture of 20 mM phosphoric acid in water (phase A) and acetonitrile (phase B), at a flow rate of 1 ml/min. The linear gradient dynamics were as follows: phase B increased from 0 to 15% (v/v) over 5 min, maintained at 15% (v/v) for 10 min, increased from 15 to 40 % (v/v) over 15of a mixture of 20 mM phosphoric acid in water (phase A) and a (v/v) over 25–30 min, and then maintained at 0% (v/v) for an additional 5 min. The UV-VIS detector wavelength was set to 280 nm, and the identification of individual catechins and GA was based on a comparison of peak retention times of the samples with those of the reference standards. The concentrations of green tea constituents were estimated from the area under the curve (Baik et al., 2015).

Statistical analysis

All experiments were performed in triplicate and the data were analyzed for statistical significance using a one-way analysis of variance (ANOVA), followed by Duncan’s multiple range test [SPSS version 18.0 (IBM Co., Armonk, NY, USA)]. The significance level was set at \(p<0.05\). Mean values obtained from each group were compared using ANOVA.

RESULTS AND DISCUSSION

Catechin and GA contents in green tea extracts

Polyphenols, especially catechins and phenolic acids, are considered the major mediators of the health effects presented by green tea. The EGCG, ECG, or GA contents varied depending on the Korean domestic cultivar. As shown in Figure 1, phenolic compounds constituted approximately 30–40% of the dry weight of green tea leaves. Consistent with findings reported in a previous study (Wang et al., 2019), assessment of the catechin content in green tea extracts from various cultivars revealed that EGCG was the most abundant, followed by EGC, ECG, EC, and C. Furthermore, although EGCG and EGC were the most abundant among the native species and in the cultivar Yabukita, respectively, EGCG, GA, and C levels did not differ significantly among the...
three cultivars evaluated. The levels of catechins, phenolic acids, and caffeine in commercial teas varied with the species, season, horticultural conditions, and particularly, the degree of fermentation (Yang et al., 2018). In the Chamnok green tea extract, we observed that the content of catechins (except C) increased when the harvesting (plucking) period was delayed (Figure 1B). Accordingly, for Chamnok, the EGC content gradually increased based on the plucking time (from April to August).

**Investigation of the acid hydrolysis conditions for EGCG**

Depending on the HCl concentration, EGCG was gradually hydrolyzed up to a concentration of 1 M HCl (Figure 2A). Consequently, the GA content was highest at 110°C for 1 h, revealing a GA yield of 45.6% of the initially added EGCG (Figure 2B). Additionally, EGCG was not hydrolyzed following exposure to mild acids such as acetic, lactic, or citric acid, but it was degraded into GA and EGC in an HCl concentration-dependent manner under heating conditions (Figure 2A). Lee et al. (2012) have demonstrated that radical-mediated oxidation of EGCG can result in a low EGCG yield. Furthermore, acid hydrolysis did not increase the EGC content in the EGCG solution over time, and ECG was undetectable in the green tea infusion after acid treatment, indicating that it is unstable under acidic heating conditions (Figure 2C). Additionally, GA was not produced at a yield exceeding 50%, possibly due to a radical reaction.
Similar results were obtained in the experiment investigating the impact of different cultivars (Figure 3A) and harvesting (plucking) time points on the content of EGCG in the green tea extract (Figure 3B). However, the GA yield was high owing to the presence of multiple gallated catechins (ECG, GCG, and EGCG). Indeed, in the green tea extract, the contents of EGCG and ECG were significantly reduced, whereas the GA content was enhanced following acid hydrolysis at 110°C. The GA content increased from 0.17 to 4.87 mM (28.64-fold), 0.28 to 5.33 mM (19.04-fold), and 0.17 to 4.44 mM (26.12-fold) in the green tea extracts prepared from Chamnok, a native species, and Yabukita, respectively (Table 1).

The content of catechins increased with an increasing delay in harvesting (plucking) time, and subsequent acid hydrolysis proportionately increased the GA levels in relevant green tea extracts. In case of the Korea-cultivated Chamnok, the GA content increased from 0.17 to 4.48 mM (22.35-fold), 0.12 to 5.16 mM (43-fold), and 0.06 to 5.71 mM (95.17-fold) in green tea extracts prepared from the first (April), second (June), and third

Figure 3. Contents of GA, EGC, and EGCG after acid hydrolysis of green tea extracts prepared from various cultivars (A) and with different plucking times at 110°C (B). GA, gallic acid; EGC, (-)-epigallocatechin; EGCG, (-)-epigallocatechin gallate.
Table 1. Catechin content changes after acid hydrolysis, in the green tea infusion depending on the cultivar or plucking times.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Non-treatment</th>
<th>Acid hydrolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GA (mM)</td>
<td>EGCG (mM)</td>
</tr>
<tr>
<td><strong>Chamnok</strong></td>
<td>0.17±0.05&lt;sup&gt;NS&lt;/sup&gt;</td>
<td>3.49±0.00&lt;sup&gt;NS&lt;/sup&gt;</td>
</tr>
<tr>
<td>Native species</td>
<td>0.28±0.12&lt;sup&gt;NS&lt;/sup&gt;</td>
<td>3.37±0.25&lt;sup&gt;NS&lt;/sup&gt;</td>
</tr>
<tr>
<td><strong>Yabukita</strong></td>
<td>0.17±0.09&lt;sup&gt;NS&lt;/sup&gt;</td>
<td>3.43±0.09&lt;sup&gt;NS&lt;/sup&gt;</td>
</tr>
<tr>
<td><strong>Cultivar</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Plucking times</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First</td>
<td>0.17±0.03&lt;sup&gt;a&lt;/sup&gt;</td>
<td>3.43±0.07&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>Chamnok</td>
<td>0.12±0.0&lt;sup&gt;c&lt;/sup&gt;</td>
<td>4.57±0.00&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
<tr>
<td>Second</td>
<td>0.06±0.00&lt;sup&gt;c&lt;/sup&gt;</td>
<td>5.20±0.08&lt;sup&gt;c&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

Data presented are means ± standard deviation from triplicate measurement and means with the different letters in the same column are significantly different (p < 0.05) as determined by Duncan’s multiple range test. GA, gallic acid; EGC, (-)-epigallocatechin; EGCG, (-)-epigallocatechin gallate; NS, not significantly different.

(August) harvests (plucks), respectively (Table 1).

Conclusion

In this study an attempt was made to improve the GA contents in EGCG solutions or green tea infusions using a simple acid-based chemical reaction, and expanded the same process using domestically cultivated cultivars or different harvesting times of green tea. There was GA yield of 45.6% after treatment with 1 M HCl at 110°C for 1 h. Following acid hydrolysis, GA levels improved by 19%, 28%, and 28-fold in green tea infusions of the native species, Yabukita, and Chamnok, respectively, compared with those observed before treatment. Compared with tannase treatment, acid hydrolysis did not lead to the production of EGC or EC from EGCG or ECG, owing to their instability under conditions of strong acid hydrolysis. Although, EGC or EC was not obtained, acid hydrolysis is a simple and cost-effective process to increase the GA content in green tea infusions. Based on the present results, the high concentration of GA in green tea infusions can be replaced with several processes in pu-erh tea that require more than six months to over 10 years to ferment. Thus, the production of green tea solutions with high GA contents will have potential applications in manufacturing functional ingredients and beverages at an industrial level.

Acknowledgement

This research was supported by the “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ012565)”, Rural Development Administration, Republic of Korea.

Conflict of interests

The authors declare that there are no conflicts of interest.

Abbreviations

EC, (-)-epicatechin; ECG, (-)-epicatechin gallate; EGCG, (-)-epigallocatechin; GA, gallic acid.

References


Assessment of phytochemical and mineral composition of unripe and ripe plantain (Musa paradisiaca) peels

Sani Muhammad Uzairu* and Muhammad Atiku Kano

Department of Biochemistry, Bayero University Kano, P. M. B. 3011, Kano, Nigeria.

Received 3 December, 2017; Accepted 12 February, 2018

Plantain (Musa paradisiaca) fruit constitutes a staple food widely consumed predominantly in Africa. The peel, a major by-product, of plantain fruit is largely viewed to be of little or no significance and consequently discarded, thereby constituting a threat to the environment. It is on account of the foregoing that this study was designed to investigate the phytochemical and mineral components of both the unripe and ripe plantain peels, and possibly suggest ways for its proper utilization. This study was conducted using standard phytochemical assay procedures and the atomic absorption spectrophotometric methods. The result of the phytochemical screening showed the presence of alkaloids (3.53 ± 0.64 and 3.4 ± 0.38 g/100 g), flavonoids (0.16 ± 0.05 and 0.13 ± 0.02 g/100 g), tannins (2.18 ± 0.63 and 3.22 ± 0.82 g/100 g) and terpenoids (1.88 ± 0.24 and 1.83 ± 0.19 g/100 g) in unripe and ripe plantain peels, respectively. More so, for both the unripe and ripe plantain peels, considerable levels of Ca (176.30 ± 8.77 and 176.42 ± 8.94 mg/100 g), Na (47.37 ± 5.82 and 47.34 ± 5.72 mg/100 g), K (787.70 ± 6.20 and 787.73 ± 6.29 mg/100 g), Mg (81.60 ± 0.12 and 81.31 ± 0.31 mg/100 g), and Fe (40.95 ± 15.61 and 26.25 ± 14.80 mg/100 g) were detected in the peel samples investigated, respectively, with the unripe plantain however possessing a significantly higher level of Fe. The amount of Pb (0.4 ± 0.02 mg/100 g) and (0.023 ± 0.01 mg/100 g) for unripe and ripe, respectively, were significantly low (P < 0.05) to engender any deleterious consequences. This study therefore demonstrates that, the often undervalued plantain peels contain a substantial amount of mineral elements, phytochemicals and an infinitesimal level of toxicants. The peels, as a result, could be further processed and utilized as nutraceuticals in food and animal feeds.

Key words: Mineral elements, phytochemicals, plantain peels.

INTRODUCTION

In developing countries, the management of waste is a major difficulty faced by agro-based industries. In Nigeria, for example, plant biomasses are often incinerated in the open air regardless of the environmental implications (Babayemi et al., 2010). According to Tchobanoglous et al. (1993), the public are exposed to serious health hazards resulting from poor and inefficient solid waste disposal. These include not only to environmental pollution and increase in insect vectors of disease. Tchobanoglous et al. (1993) expressed further that, the
failure to remediates and utilize these materials ultimately leads to superfluous build-up of waste and natural resource depletion.

*M. paradisiaca* is an important staple food crop in Central and West Africa. The estimates of the Food and Agriculture Organization indicate that Nigeria produces about 2.11 million metric tons annually, and this contributes considerably to the diet of the local population (FAO, 2005). Plantain belongs to the genus *Musa* and can be consumed in both the unripe and ripe stages.

Wolfe et al. (2003) opined that the main by-product derived during the processing of fruits is the peels; and, in myriad instances these peels have proven a good source of dietary fibres, carotenoids, polyphenols and other bioactive compounds which are beneficial to human health. The work of Wolfe et al. (2003) preceded that of Ajasin et al. (2006) where it was chronicled that, plantain peels are of substantial nutritional value because it possess about 16% crude fibre, 12% crude protein and 1300 Kcal/kg on the basis of dry matter. Ajasin et al. (2006) further observed that whilst the quantity of starch decreased from 50 to 35%, the amount of total sugar increased from 3.0 to 31.6% in the peel during ripening. Even so, plantain peel is considered a rich source of hemicellulose (13%) and cellulose (10%) than its pulp which contains 1.3 and 1.4% for hemicellulose and cellulose, respectively (Agama-Acevedo et al., 2015).

Plants generally contain some biologically active naturally occurring chemicals also referred to as “secondary metabolites” (Zenk, 1996). It is yet well documented in the literature that, some of these bioactive substances in plants essentially serve as medicinal herbs (Soetan, 2008). Consequent upon this, several research works have been conducted to assess the phytochemical and mineral content of various parts of diverse plants to, among other things, unearth viable therapeutic alternatives to synthetic drugs. These phytochemicals include: alkaloids, flavonoids, saponins, tannins etc. Soetan (2008) advanced that some of these phytochemicals are applied as pharmacologically active agents and in nutrition. Because of harsh weather conditions, appreciable amount of plantains are lost during post-harvest period due to accelerated ripening by warm weather. This therefore makes it imperative to bring out a way of making use of the ripe plantain peel. Additionally, it is equally on record that apart from the use of unripe plantain peel in soap making and possibly animal feeds, the usefulness of the ripe plantain peel, by contrast, has not been effectively maximized (Onyegbado et al., 2002). The foregoing observation is indeed unfortunate in this era of nutraceuticals and functional foods.

Also, besides the obvious use of these peels, most literature research studies lay little or no stress on the chemical composition of these peels, how they can be harnessed and bio-converted into useful materials. For this reason, this work sought to find out the phytochemical and mineral composition of unripe and ripe plantain peels separately and comparatively in an attempt to promote its bioconversion into value added products.

**MATERIALS AND METHODS**

**Chemicals**

Concentrated sulphuric acid, Acetone, Sodium hydroxide, Boric acid, Ethanol, Concentrated HCL, Folin-Ciocalteau’s reagent were products of Sigma Aldrich, St. Louis, MO, USA. All other chemicals, including the distilled water utilized, were of analytical grade.

**Plant collection and extract preparation**

The plantain samples (unripe and ripe) utilized for this research were purchased from Sabon Gari market, Kano, Nigeria. And the botanical identification and verification were carried out at the Department of Botany, Bayero University, Kano.

The unripe and ripe peels of plantain were subsequently removed. The peels were then collected, grouped and properly washed under running tap water to rid them of any contaminants. They were further rinsed with distilled water. Thereafter, these peels were sliced into small pieces (0.5 to 1.0 mm) and immediately air dried at 25°C for 240 h. The dried peels were ground into powder and passed through 0.1 mm mesh size sieve. The free-flowing powder samples were then packed into screwed bottles and labeled appropriately.

5 g of each powdered samples was consequently soaked in 500 ml solvent, distilled water and ethanol, as the case may be. The mixture was left to stand for about 48 h during which it was shaken intermittently. It was then filtered and the extract evaporated under reduced pressure at 40°C, whilst final solvent elimination was actualized with the aid of water bath.

**Phytochemical screening**

Phytochemical evaluation of peel samples was conducted on the aqueous, ethanolic and dried powder specimens according to standard procedures (Earl and Warren, 1961; Felgis, 1975; Sofowora, 1979 and 1993).

**Mineral composition determination**

Mineral elements were determined after 1 g of the ashed peel samples were subjected to wet oxidation using perchloric acid and nitric acid in accordance with the method of Osborn and Voogt (1978). The estimates of sodium and potassium in the digested samples were obtained using flame photometer (Model S2-A, Perkin Elmer, Waltham, MA, USA) in line with the procedure of Bonier et al. (1990).

The atomic absorption spectrophotometer (Analyst 200, Perkin Elmer, Waltham, MA, USA) was used to analyze the concentration of calcium, copper, magnesium, lead, zinc and iron according to the method of Bamhard (1985). The absorption of these mineral elements was compared with their respective standard absorption.

**Statistical analysis**

All analysis was conducted in triplicates. The results obtained therein were used for the statistical analysis using the statistical
Table 1. Qualitative screening of phytochemicals in aqueous and ethanolic extract of unripe and ripe plantain peels.

<table>
<thead>
<tr>
<th>Phytochemicals</th>
<th>Aqueous extract</th>
<th>Ethanol extract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unripe peels</td>
<td>Ripe peels</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Anthraquinones</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cardiac glycosides</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+: Present, –: Absent.

Table 2. Quantitative estimate of phytochemicals present in ethanolic extract of unripe and ripe plantain peel (g / 100 g).

<table>
<thead>
<tr>
<th>Phytochemicals</th>
<th>Ethanol extract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unripe peels</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>3.53 ± 0.64</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>0.16 ± 0.05</td>
</tr>
<tr>
<td>Tannins</td>
<td>2.18 ± 0.63</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>1.88 ± 0.24</td>
</tr>
</tbody>
</table>

The results represent the mean of three determinations ± standard deviation. Data on the same row with different superscripts are significantly different (P < 0.05).

RESULTS AND DISCUSSION

The objective of this study was to assess the phytochemical profile and mineral composition of unripe and ripe plantain peels separately and comparatively. The qualitative phytochemical evaluation was conducted in solvent extracts of unripe and ripe M. paradisiaca peel using distilled water and ethanol (Table 1), whilst only ethanolic dried powder specimen was subjected to quantitative screening (Table 2). The ashed peel samples were equally investigated for mineral element composition (Table 3).

According to Ighodaro et al. (2009), the medicinal properties of plants are largely informed by the bioactive compounds inherent in them. In this study, it was observed that phytochemicals like saponins and tannins were present in both the aqueous and ethanolic extracts of unripe and ripe plantain peels (Table 1). Surprisingly however, alkaloids, flavonoids and terpenoids were exclusively detected in only the ethanolic extract of the samples investigated (Table 1). It is notwithstanding plausible to rationalize that, the exclusive discovery of alkaloids, flavonoids and terpenoids in only the ethanolic peel extract could be attributed to the different polarities of the solvents used for extraction.

Beyond that, the composition of these phytochemicals does not however seem to have been quantitatively influenced by ripening which is often marked by chemical changes. Besides the concentration of tannins that was found to be significantly higher (P < 0.05) in ripe plantain peels, no significant difference (P > 0.05) was observed in the level of alkaloids, flavonoids and saponins in the unripe and ripe plantain peels investigated (Table 2). Middleton and Kandaswami (1992) had advanced that phytochemicals induce myriad biological and pharmacological activities. Soforowa (1993) further corroborated Middleton and Kandaswami's hypothesis by stating that alkaloids, flavonoid and tannins possess enormous medicinal properties. According to Koleva et al. (2002), flavonoids inhibit free radical generation by interfering with biochemical pathways leading to ROS production. And hence are considered potent antioxidants.

Ojo et al. (2006) reported that, saponins possess antimicrobial properties and could function as precursors of several steroidal substances with diverse physiological roles. The discovery of saponins in the peels extract of plantain also renders it ideal for utilization in the preparation of medicinal soap given that saponin could function as a forming agent. This essentially could assist
in reducing the utilization of synthetic forming agents in medicinal soaps (Wijetunge and Perera, 2016). In a paper by Asquith and Butler (1986), it was posited that tannins confer anti-hemorrhagic and anti-diarrhoeic properties. These observations, taken together, presuppose that the unripe and ripe plantain peels contain invaluable therapeutic potential yet to be optimized.

Refreshingly, plantain peels seem to be a promising source of nutrients for animal feeds production (Babatunde, 1992). Calles et al. (2000) reported that in the diet of growing pig, meals made from ripe plantain peel replaced about 31% of maize without any adverse condition on growth performance. This could possibly be linked to the disease preventive nay protective effect of the putative non-nutritive chemicals present in this peel.

It has been revealed by this research that plantain peels are high in potassium, sodium and calcium, and hence could be considered a vital source of these elements for both plants and animals nutrition. In quantitative terms, a relatively high level of calcium, magnesium, potassium and sodium were discovered in both peels (Table 3). There was nonetheless any significant difference (P>0.05) in the content of these mineral elements. In one twist however, unripe plantain peels demonstrated a significantly higher (P<0.05) level of iron and lead (Table 3). While it is true that these findings are consistent with the observations of Ighodaro (2012), it is even yet promising that the levels obtained were in conformity with WHO recommendations.

O’Connell (2011) posited that calcium is an essential part of intracellular processes that take place inside insulin responsive tissues like the adipose tissue and skeletal muscle. Changes in calcium flux can result in deleterious consequences on insulin secretion, a calcium dependent process. Therefore, the considerable level of calcium in the peels of unripe and ripe plantain in this study hints the significance of these peels to diabetics.

Chen et al. (2010) linked the incidence of hypertension to the intake of diet with higher Na to K ratio. Interestingly, the relatively higher amount of K to Na observed in this work could serve a comparative advantage on grounds of Chen’s observation. Alternative revelation from this investigation is that, K is the predominant mineral element in plantain peels.

Combustion is the primary process for directly utilizing biomass energy with consequent production of ash as by-product. The ash of plantain peels possesses an enormous quality that qualifies it for wide range of applications in agriculture (Onyegbado et al., 2002). According to Israel and Akpan (2016), ashes from these peels could be utilized in the production of NPK fertilizer. The plantain peel nay biomass is combusted in hot fire to produce a white ash and Potassium oxide is extracted from the ash thereof. This procedure is more economical than obtaining KOH from the market. The potash obtained from plantain peels is utilized for local production of soap and is equally a potential chemical for biodiesel production, hence making plantain peels a potential renewable energy source (Enontiemonnia et al., 2016; Betiku and Sheriff, 2014).

Pyruvate kinase utilizes magnesium as a cofactor. Beyond this, magnesium also regulates glucose transport across cell membrane (O’Connell, 2011). With the discovery of no significant loss of magnesium in the samples studied, the usefulness of these peel samples is even yet established. The role of zinc in the control of insulin production by pancreatic tissues and the use of glucose by fat and muscle cells was comprehensively elucidated by Eleazu et al. (2013). Observation from this study reveals a significantly higher level of zinc in the ripe plantain peel. This revelation is, however, confounding as Okorie et al. (2015) reported diametrically opposite results.

Copper is a trace element found in living organisms and crucial not just in redox chemistry, but also in growth and development. Today, this element is being explored as a therapy for several conditions, including neurodegenerative disorders like Alzheimer and Parkinson disease (Tisato et al., 2010).

### Table 3. Mineral composition of unripe and ripe plantain peels (mg / 100 g).

<table>
<thead>
<tr>
<th>Mineral element</th>
<th>Unripe peels</th>
<th>Ripe peels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>47.37 ± 5.82a</td>
<td>47.34 ± 5.72a</td>
</tr>
<tr>
<td>Calcium</td>
<td>176.30 ± 8.77a</td>
<td>176.42 ± 8.94a</td>
</tr>
<tr>
<td>Magnesium</td>
<td>81.60 ± 0.12a</td>
<td>81.31 ± 0.31a</td>
</tr>
<tr>
<td>Zinc</td>
<td>2.51 ± 0.48a</td>
<td>3.01 ± 0.57b</td>
</tr>
<tr>
<td>Iron</td>
<td>40.95 ± 15.61a</td>
<td>26.25 ± 14.80b</td>
</tr>
<tr>
<td>Potassium</td>
<td>787.70 ± 6.20a</td>
<td>787.73 ± 6.29a</td>
</tr>
<tr>
<td>Copper</td>
<td>1.19 ± 0.01a</td>
<td>1.01 ± 0.01a</td>
</tr>
<tr>
<td>Lead</td>
<td>0.4 ± 0.02a</td>
<td>0.23 ± 0.01b</td>
</tr>
</tbody>
</table>

The results represent the mean of three determinations ± standard deviation. Data on the same row with different superscripts are significantly different (P < 0.05).
Exposure to heavy metals like lead, mercury, cadmium and arsenic yet remains a huge threat to human health (Jarup, 2003). Lead is obviously toxic to kidneys, heart, intestines, bone, nervous and reproductive systems. It specifically impairs nervous system development and thus toxic to children, resulting in permanent behavior and learning disorders (Jarup, 2003). Most importantly, the detection of considerable level of iron in unripe plantain peel tends to be a significant discovery in this study. Chen et al. (2010) contended that iron is an important component of hemoglobin and it is critical in the production of energy and normal function of the immune system.

**Conclusion**

This study has revealed that unripe and ripe plantain peels are rich source of minerals and phytochemicals. In this regard, their disposal or disuse must abate; because they could be nutritionally studied and well processed as a good source of nutrients, and even further, for biogas production. The presence of phytochemicals also demonstrates its potential to serve as nutraceuticals and a medicinally vital material in animal health.

**CONFLICT OF INTERESTS**

The authors have not declared any conflict of interests.

**ACKNOWLEDGEMENT**

Authors are grateful to the Department of Biochemistry, Bayero University, Kano for making available equipment to conduct this investigation.

**REFERENCES**


Review

Inactivation of microbes by ozone in the food industry: A review

Mohamed Ziyaina¹,²* and Barbara Rasco³

¹School of Food Science, Washington State University, Pullman, WA 99164-6376, USA.
²Animal Sciences, University of Zawia, Zawia, 00218, Libya.
³College of Agriculture and Natural Resources, University of Wyoming 1000 University Ave. Laramie, WY82070, USA.

Received 23 December, 2020; Accepted 24 February, 2021

Ozone is active against a broad spectrum of microorganisms. Ozone treatment can enhance safety and increase shelf life with limited impact on product quality. Ozone is known to be one of the strongest oxidizers that can have applications in foods. In the gaseous state, ozone is denser than air, colorless at lower concentrations and possesses a distinct odor. Ozone can be generated using a few methods, by photochemical procedures specifically UV light, electrolysis of water, with corona discharge being the most common method. In the food processing industry, ozone acts as a powerful sterilizer against both Gram-positive and Gram-negative bacteria, bacterial spores, fungi, viruses, and protozoa. Ozone affects the unsaturated lipids in the cell membrane causing leakage of cellular components that can lead to cell death. There are numerous examples to show that ozone has been successfully applied in food processing, specifically in sanitation by disinfecting food plant equipment and contact surfaces, packaging materials, water, air in storage and refrigeration systems, and for foods such as dried and fresh fruits and vegetables. The shelf life and quality of different food products can be maintained using ozone through reduction of spoilage microorganisms.

Key words: Ozone, food, inactivation, sanitation, bacteria.

INTRODUCTION

Ozone has been widely used in numerous industries including the food industry for many years (Fundo et al., 2018). Recently, there has been a renewed interest in ozone and its application in the food processing industry for use as a sanitizer (Lelieveld et al., 2016). Ozone or triatomic oxygen (O₃) is an unstable allotrope of oxygen. It is an effective alternative to chlorine compounds in the food industry (Ziyaina and Al Zogne, 2010). This is due to the advantage that, when decomposed into free radicals, ozone leaves no residual components on the food product when decomposition is complete, liberating the main product of oxygen (Segat et al., 2014). Ozone use was approved by the US Food and Drug Administration US in 1982 for use in water treatment. In 2001, the FDA officially approved ozone for applications in the food industry and for direct contact with food products, including use as an antimicrobial and surface sanitizer in CIP (Clean-In-Place) systems and in fish.

*Corresponding author. E-mail: m.ziyaina@wsu.edu Tel: 5093394184.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
meat, and poultry processing plants (Al-Qadiri et al., 2019; Fundo et al., 2018; Najafi and Khodaparast, 2009; Zhang et al., 2016). There are several other applications of ozone in food processing, such as plant and equipment sanitation at food factories, surface hygiene, drinking water purification, and treatment for reuse of wastewater. Ozone can be applied to dried and fresh fruits and vegetables as a disinfectant (Rojas-Valencia, 2011). In food processing, ozone is used as a sterilizer against a wide range of microbes. Ozone is a triatomic allotrope of oxygen that is characterized by a high oxidation potential (Khadre et al., 2001; Lelieveld et al., 2016). Due to its antimicrobial properties, ozone conveys bactericidal properties that kill microorganisms such as viruses, bacteria, fungi and protozoa, which are causes of foodborne illness and food spoilage. Ozone actively destroys bacterial and fungal spores (Guzel-Seydim et al., 2004; Öztekin et al., 2006). Ozone treatment can remove up to 99% of bacteria and viruses at a concentration of 10 mg/l within 10 min.

Ozone is more stable in its gaseous phase than its liquid phase. Gaseous ozone dissolves easily in water and has higher solubility than nitrogen (N₂) and oxygen (O₂) gases. Ozone solubility in cool water is 13 times more than that of oxygen at 0–30°C. Gaseous ozone is more soluble in water compared to oxygen and nitrogen, but less soluble than chlorine and carbon dioxide (CO₂) (Guzel-Seydim et al., 2004). Solubility and stability of ozone in water depends upon several physical parameters, such as water temperature (the solubility of ozone in water is higher at lower temperatures), ozone concentration, other materials in the water, pH, metal ions, radical scavengers, and use of mechanical stirring (Kim et al., 2003; O’Donnell et al., 2012).

The use of ozone in food plants has led researchers to further explore other applications within their facilities and to study its effect on microbes. Continued research is needed for relevant and concise information about this sanitizer. This review surveys information about this important topic.

**OZONE GENERATION**

There are two methods commonly used to produce ozone for food applications, corona discharge (CD) commercially and photochemically with ultraviolet (UV) light. Electrochemical, chemical, biochemical, thermal, and chemonuclear are other possibilities (Cullen et al., 2011; Guzel-Seydim et al., 2004; O’Donnell et al., 2012).

To generate ozone by the corona discharge method, oxygen molecules are passed through the electrical field where they are split, resulting in oxygen free radicals. The free radicals can react with diatomic oxygen to form a triatomic ozone molecule (O₃). To break the bond between the oxygen molecules (O―O) requires a great deal of energy. Formation of ozone can be represented in the following equations:

\[ O_2 + e^- \rightarrow 2O \]

\[ 2O + 2O_3 \rightarrow 2O_3 \]

UV wavelength (188 µm) can be coupled with corona discharge to initiate the formation of oxygen free radicals through photo disassociation. In the photo disassociation process, a small percentage of oxygen molecules are split by UV rays, into unstable oxygen radicals. To become more chemically stable, O₁ radicals readily attach to surrounding O₃ molecules forming ozone shown in Figure 1 (Guzel-Seydim et al., 2004).

**ADVANTAGES OF OZONE USAGE**

One of the primary advantages of ozone is that it is a non-thermal process. It is a potent sanitizer and relatively safe and reliable for food processing applications. It has an oxidation potential of 2.07 V, which is much higher than chlorine (1.36 V) (Aguayo et al., 2006) while leaving no residue on food (Lelieveld et al., 2016; O’Donnell et al., 2012). Ozone half-life in water at room temperature is about 20 min, with it decomposing into molecular oxygen and posing few safety concerns about the consumption of residual ozone in a treated food. Because it rapidly decomposes into oxygen, there are no traces of toxic halogenated compounds present as residues (Isikber and Athanassiou, 2015). Ozone gas can be produced on-site, and it does not need to be stored or transported from another location; however, it must be used in a well-ventilated area since it is toxic when inhaled. However, a major disadvantage involves monitoring since as the lack of stable residue limits the ability for online testing (Cullen et al., 2011; Lelieveld et al., 2016; O’Donnell et al., 2012).

**INACTIVATION MICROORGANISMS BY OZONE**

Recent research points out that ozone is a powerful broad-spectrum antimicrobial agent, active against bacteria (Gram-positive and Gram-negative bacteria, bacterial spores, fungi, viruses, and protozoa.)
A deactivation involves destroying biological activities of a microbial cell such as inducing changes to structural components of the cell causing cell death through a change in cell permeability and cell lysis and by altering the ability of a cell to divide and thereby reproduce. Ozone damage results in breakage of the cellular membrane, inhibiting cellular reactivation mechanisms, and oxidizing unsaturated fatty acids, lipid fatty acids, glycoproteins, glycolipids, amino acids, sulfhydryl groups of certain enzymes, phenolic rings, and nucleic acids (Khadre et al., 2001).

The efficacy of ozone has been demonstrated against Gram positive Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Enterococcus, and Gram-negative Pseudomonas aeruginosa and Yersinia enterocolitica; Escherichia coli is one of the most sensitive to ozone damage, while Gram-positive cocci (Staphylococcus and Streptococcus) and Gram-positive bacilli (Bacillus) and mycobacteria are among the most resistant to ozone damage (Le Chevallier, Au, and World Health, 2004).

Ozone is a potent oxidant, as shown in Figure 2, and destroys microorganisms by reacting with oxidizable cellular components, particularly those containing double bonds.

The rate and degree of bacterial inactivation resulting from ozone treatment will depend upon the species. Findings from studies on ozone microbial inactivation are subsequently presented in the paper.

**Effectiveness of ozone on various food products**

The effect of ozone on bacteria depends on various factors, including the type of food product, microbial load, concentration of ozone and a suitable ozone treatment system, and treatment time. Optimizing these factors can decrease damage to susceptible food products and lead to favorable outcomes in the majority of commodities. A 2007 study by Bialka and Demirci, documented treatment of blueberries and spinach with 5% (wt/wt) gaseous ozone (Bialka et al., 2008). They reported that ozone resulted in a 2.2 and 1.9 log, respectively, reduction of Escherichia coli O157:H7. Perry and Yousef (2011) conducted a research study exposing whole apples to 23–30 mg/L aqueous ozone, finding a reduction of about 3.7-log in E. coli O157:H7. Also, they noted that treatment of blueberries with 5% (wt/wt) gaseous ozone for one hour caused a 2.2-log reduction of E. coli O157:H7 (Perry and Yousef, 2011). Akbas and Ozdemir (2006) reported cell damage to E. coli exposed to 0.167/mg/min/L ozone, at different times, caused deformation, surface roughness and surface destruction within 60 min. A 90-min treatment caused cell rupture and cellular lysis as shown in Figure 3.

The pH plays a significant role in ozone inactivation. For example, lower pH values provide a higher inactivation rate. Based on this factor, it was revealed that ozone treatment concentration 0.048 mg/min/mL and pH 3 and pH 5 reduced about 5-log of E. coli in apple juice in 4- and 18-min treatments.

Ozone has significant results in preservation efficacy and has been evaluated in a variety of liquid food products, including milk and water (Kim et al., 1999; Kim et al., 2003). Selma et al. (2007) found that ozone treatment by 1.6 and 2.2 ppm for 1 min decreased Shigella sonnei populations in water by 3.7- and 5.6-log CFU/ml, respectively; moreover, ozone applied to skim milk effectively decreased psychrotrophic counts by 2.4-logs (5-35 mg/l, 5-25 min (Rojek, 1996; Selma et al.,...
A study reported ozone inactivation of Gram-positive bacteria such as Staphylococcus faecalis, S. aureus and the yeast Candida albicans. One study found the S. aureus isolate to be more resistant than S. faecalis or C. albicans, and the longest time required to achieve total inactivation was 10 min. Exposure of P. fluorescens, E. coli O157:H7, L. mesenteroides, and L. monocytogenes to ozone at 2.5 ppm within less than a minute resulted in 5- to 6-log decrease for those bacteria (Cullen et al., 2011; Zhang et al., 1993).

Exposure to ozone (0.23–0.26 mg/L; 1.67 min; 24°C) achieved a 4.3 log inactivation of Salmonella Typhimurium. Ozone plus heat treatment is effective in causing greater inactivation at higher temperatures (50°C). According to a 2012 study, a higher process temperature (50°C) resulted in slightly higher inactivation (4.8 log in apple cider and orange juice) of Salmonella compared to 4.5 logs at 4°C due to higher ozone reactivity (Mukhopadhyay and Ramaswamy, 2012).

Similarly, another study observed that apple cider treated with ozone can result in a 6-log reduction of E. coli O157:H7 following a 45 min ozone treatment (9 g h⁻¹) to apple cider held at 50°C. The same conditions produced a 4.8-log reduction of Salmonella within 30 min (Perry and Yousef, 2011).

Viruses

Generally, viruses are more resistant to ozone compared to vegetative bacteria (Rojas-Valencia, 2011). Burleson et al. (1975) found that ozone killed viruses. In their waste-water treatment study, they found that ozone treatment successfully inactivated vesicular stomatitis virus, encephalomyocarditis virus, and GDVII virus after 15 s of treatment (Burleson et al., 1975). O'Donnell (2012) reported that viruses that contained lipid encirclement (lipid bodies) were more resistant to ozone than those that did not possess this feature. Also, he indicated that hepatitis A virus could be inactivated within 5 s by 0.4 ppm aqueous ozone treatment dose. Ozone can be effective in controlling Norwalk virus found in drinking water, with ozone (0.37 ppm) at pH 7 for 5 min at 5°C being effective reducing concentrations by greater than 3 logs in 10 s (O'Donnell et al., 2012).

The mechanic effect of ozone on viruses breaks the protein capsid into subunits, liberating RNA and disrupting virus adsorption to the host pili. In addition, ozone can randomly destroy the head, collar, contractile

Ozone gas could also be used in activating Salmonella on food surfaces. The experimental process involves applying ozone gas to inoculated fruits, resulting in maximum reductions of 1.5 and 0.9 log CFU/g. Treatment of ozone gas under pressure yielded greater reductions in Salmonella sp. in raspberries (1.9 CFU/g for Salmonella and E. coli O157:H7 2.8 log CFU/g) (Sung et al., 2014; Williams et al., 2005).

Figure 3. Transmission electron micrographs of E. coli cells after exposure to ozone in a continuous flow tubular reactor. Operating conditions: pH 7.2; temperature=20°C; No=5, 10^9 CFU/l; t=30 s; co= (A) 0 mg/l, (B) 9 mg/l, (C) 18 mg/l and (D) 196 mg/l. Source: Adapted from Akbas and Ozdemir (2006) and Hunt and Mariñas (1999).
sheath, endplate, and tail fibers and liberate the DNA from the head.

Fungi

Many fungi produce toxins that can cause foodborne illness. One genus, with the members *Aspergillus flavus* and *Aspergillus parasiticus*, produce aflatoxin that can cause illness in humans and animals’ while other fungi can cause food spoilage. Ozone can deactivate fungi by causing irreversible cellular damage (Valencia, 2011) and by oxidizing mold toxins. Zorlugenç et al. (2008) found that when dried figs were exposed to gaseous ozone, aflatoxin B1 content in the figs was reduced by exposure to 13.8 mg L⁻¹ ozone gas at 15 and 30 min, and ozone treatment at 15 min was sufficient for deactivation of *A. flavus* and *A. parasiticus* cells. Also, they noted that the samples of dried figs that were artificially contaminated with aflatoxin when treated with gaseous ozone and ozonized water for 30, 60 and 180 min, experienced a degradation of aflatoxin B1 that increased with increasing ozonation time (Öztekin et al., 2006; Zorlugenç et al., 2008).

**APPLICATIONS OF OZONE IN THE FOOD INDUSTRY**

Ozone improves food preservation in an aqueous solution or as a gas because of its ability to disinfect food, food surfaces and contact surfaces within a food processing facility. Ozone can be used to sanitize process water and to treat the atmosphere within a food processing facility; for example, a storage unit. Usually, gaseous ozone is used inside an enclosed treatment chamber because inhalation is dangerous. Ozone has been used in sanitizing eggs, fresh fruits and vegetables, fresh fish, and in cold storage applications. Ozone can also be used for sanitizing packaging materials (Khadre et al., 2001; Kim et al., 2003).

Ozone applications in the dairy industry

Recent studies have examined using ozone to remove biofilms from food plant equipment. Biofilms are a source of microbial contamination in addition to causing reduced heat transfer (O’Donnell et al., 2012). Concerns with *E. coli* and *L. monocytogenes* contamination in processed dairy food products (O’Donnell et al., 2012) resulting from contaminated food contact surfaces has led to a number of interesting studies. In a study from Baumann et al. (2009), *L. monocytogenes* biofilms formed on stainless steel chips were deactivated by ozone treatment, and higher concentrations of ozone had a synergistic effect when used with sonication for a 60-s exposure time(Baumann et al., 2009). Another research study from Dosti et al. (2005) showed the effectiveness of ozone (0.6 ppm at 10 min) on sessile cells in a bacterial biofilm.

They observed that ozone significantly reduced biofilms formation by *Pseudomonas* spp. on stainless steel and recommended the use of ozone as an alternative to chlorine when sanitizing dairy processing equipment (Dosti et al., 2005). A common problem in cheese processing plants is mold growth that occurs when cheese is ripening in storage rooms. Thus, cheese becomes moldy and could become contaminated with Aflatoxin M1. Ozone has been used to control mold growth associated with cheese ripening rooms (O’Donnell et al., 2012).

**Ozone applications in raw poultry and meats**

A significant number of cases of food poisoning in humans occur from contaminated raw poultry and meat products with pathogenic bacteria such *L. monocytogenes, Campylobacter* spp., *Salmonella* spp. and other enteric bacteria. Contamination of meat and poultry also dictates its shelf-life (Khubaib, 2019). Ozone is useful for decontamination of beef. Kim et al. (2003) reported that gaseous ozone was effective in preventing growth of microorganisms on meat surfaces. In addition, ozone has demonstrated microbiocidal efficacy and safety when washing poultry carcasses (Kim et al., 2003).

Another application of ozone is to control *Salmonella enterica* in shell eggs, where ozone can be used at low temperatures and under mild pressure for cold sanitization treatments. Yousef and Rodriguez-Romo (2008) noted that treating *Salmonella* in eggs with gaseous ozone for 10 min at 22-25°C and 15 psi led to decreased growth of *Salmonella* populations by more than 5 log (Perry et al., 2008).

**Ozone applications for vegetables**

Vegetables prior to harvest can become contaminated for a number of reasons from exposure to dirty irrigation water, lack of employee hygiene, improper handling, and after-harvest storage, use of contaminated water when washing or cleaning, dirty processing equipment, or from insanitary handling at the transportation facilities. In addition, when cutting fresh vegetables, the loss of surface integrity could lead to penetration and rapid growth of microorganisms within plant tissue. Using ozone to sanitize fresh produce is known to work very well. In one study on contaminants in fresh lettuce treated by ozone (1.3 mM) mesophilic and psychrotrophic bacterial counts were reduced 3.9 and 4.6 log units, respectively, during 5 min of ozone treatment. Ozone treatment of alfalfa sprouts for 5 min decreased their microbial load by 1.2 log units.

In another study on treatment of alfalfa sprouts, sprouts were placed in ozonized water (30-32 ppm) and stirred for 20 min; the average count decreased to 4.8 × 107CFU g⁻¹ and the sprouts had better quality and
Table 1. Summary of food decontamination studies by ozone.

<table>
<thead>
<tr>
<th>Food Type</th>
<th>Treatment (Type, Concentration, Time)</th>
<th>Targeted microorganisms</th>
<th>Inference</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>Aqueous ozone (23–30 mg/L, 3 min)</td>
<td><em>Escherichia coli</em> O157:H7</td>
<td>Up to 3.7 log reduction on surface, 1 log reduction in stem-calyx</td>
<td>Perry et al. (2008)</td>
</tr>
<tr>
<td>Blueberry</td>
<td>Gaseous ozone (5%, wt/wt, 64 min)</td>
<td><em>E. coli</em> O157:H7</td>
<td>2.2 log reduction</td>
<td>Bialka and Demirci (2007, 2008)</td>
</tr>
<tr>
<td>Spinach</td>
<td>In-package gaseous ozone (1.6 mg/L for air 4.3 mg/L for oxygen gas, 5 min) and with 5% (wt/wt) gaseous ozone</td>
<td><em>Salmonella enterica</em></td>
<td>Up to 5 log reduction</td>
<td>Bialka and Demirci (2007) and Bialka et al. (2008)</td>
</tr>
<tr>
<td>Red pepper flake</td>
<td>Gaseous ozone (9 ppm, 360 min)</td>
<td><em>Bacillus cereus</em> spores</td>
<td>1.5 log reduction</td>
<td>Akbas and Ozdemir (2008) and Asill et al. (2013)</td>
</tr>
<tr>
<td>Fabricated beef surfaces</td>
<td>Aqueous ozone (5 ppm) followed by heating (55°C)</td>
<td><em>Clostridium perfringens</em> spores</td>
<td>2.09 log reduction for vegetative cells</td>
<td>Novak and Yuan (2004) and Pohlman (2012)</td>
</tr>
<tr>
<td>Alfalfa seeds</td>
<td>Aqueous ozone (21.8 ppm, 10–20 min) followed by heating (60°C, 3 h)</td>
<td><em>Listeria monocytogenes</em></td>
<td>1.48 log10 CFU/g</td>
<td>Wade et al. (2003)</td>
</tr>
<tr>
<td>Table grapes</td>
<td>Gaseous ozone (5000 μL/L, up to 60 min)</td>
<td><em>Botrytis cinerea</em> (gray mold)</td>
<td>50–60% reduction</td>
<td>Ozkan et al. (2011)</td>
</tr>
<tr>
<td>Dried figs</td>
<td>Gaseous ozone (13.8 mg/L, 180 min)</td>
<td><em>Aflatoxin B1</em></td>
<td>95% reduction</td>
<td>Oner and Demirci (2016)</td>
</tr>
<tr>
<td>Corn kernels</td>
<td>Gaseous ozone (10–12%, wt/wt, 96 h)</td>
<td><em>Aflatoxin</em></td>
<td>92% reduction</td>
<td>Oner and Demirci (2016)</td>
</tr>
<tr>
<td>Potato strips</td>
<td>Heating (60°C for 10 min, 100°C for 5 min) followed by in-package gaseous ozone (5%, wt/wt, 15–30 min)</td>
<td><em>Mesophilic Psychrotrophic Mold-yeast</em></td>
<td>No growth up to 4 weeks at 4°C</td>
<td>Oner et al. (2011)</td>
</tr>
</tbody>
</table>

Source: Lelieveld et al. (2016).

texture (Kim et al., 2003). Other applications of ozone are described as follows:

i) Removal of pesticide residues from drinking and wastewater
ii) Disinfection of drinking and wastewater
iii) Control of air pollution
iv) Sterilization of containers and food storage tanks
v) Disinfection of aquaculture farms
vi) Sterilization of bottles and cans
vii) Disinfection of drinking and wastewater
viii) Organic oxidation of drinking and wastewater.

**OZONE - WORKER SAFETY ISSUES**

Ozone may cause headaches and irritation of eyes, upper respiratory tract, and lungs at concentration used for food treatment, but usually these effects disappear after breathing fresh air. According to the American Council of Industrial Hygienists, the short-term exposure limit is 0.3 ppm for 15 min. However, Occupational Safety and Health Administration (OSHA) regulations state that ozone concentration of 0.1 ppm inhaled during an eight-hour workday is the maximum limit (O’Donnell et al., 2012).

**OZONE AND REGULATORY RESTRICTIONS**

Ozone has been ‘Generally Recognized as Safe’ (GRAS) in food processing since 1997 in the U.S. (Patil et al., 2009). Furthermore, in 2001, the Food and Drug Administration (FDA) approved ozone as an antimicrobial agent for food additive applications (O’Donnell et al., 2012; Rice, 2011). Studies have been proved that ozone has effects significantly on a wide range of microorganisms including bacterial and spores, viruses, fungi, and parasites, with different concentrations and times. The application and effect of ozone on food decontamination are summarized in Table 1.

**CONCLUSION**

More attention is now focused on ozone as a powerful sanitizer that may meet the expectations of food industry. Ozone has been proven to be a powerful disinfectant and antimicrobial agent, reacting with intracellular enzymes’ nucleic material and its cell envelope. It is suitable for application
in the food industry, where it has been used in a gaseous or an aqueous form.

The food industry is currently in need of innovative processing technologies in order to meet consumer demand for fresher, safe products. Ozone might be considered as an emerging or best available alternative technology in food storage and in cleaning and disinfection of closed equipment in the food milk and drink industry. Examples of the use of ozone in food industry include use of ozone as disinfectant for meat, vegetables, fruits, and drinking water, and for its use in storing food in tanks for many years. It has also been used in reuse of wastewater treatment and lowering biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Recent studies have also investigated using ozone to remove biofilms from food plant equipment.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES


moisture Mozzarella cheese. LWT-Food Science and Technology 55(2):513-520.


Impact of instant controlled pressure drop (DIC) treatment on the technological quality of gluten-free bread based on rice-field bean formula using design of experiments

Souad BOULEMKAHEL¹*, Leila BENATALLAH¹, Colette BESOMBES², Karim ALLAF² and Mohammed Nasreddine ZIDOUNE³

¹Laboratoire de Génie Agro-Alimentaire, Institut de La Nutrition, de L’Alimentation et des Technologies Agroalimentaires (GéniAAI-INATAA), Université Frères Mentouri Constantine 1, 325 Route de Ain El Bey, Constantine, 25017, Algeria.
²Laboratory of Engineering Science for Environment, University of La Rochelle, Intensification of Transfer Phenomena and Industrial Eco-Proceses, LaSIE UMR 7356 CNRS, 17042. La Rochelle, France.
³Laboratoire de Nutrition et de Technologies Alimentaires (LNTA), Institut de la Nutrition, de l’Alimentation et des Technologies Agroalimentaires INATAA, Université Frères Mentouri Constantine 1, 325 Route de Ain El Bey, Constantine, 25017, Algeria.

Received 16 December, 2020; Accepted 24 February, 2021

This work aimed to investigate the impact of Instant Controlled Pressure Drop (DIC) treatment on the technological quality of Gluten-Free Bread (GFB) based on Rice-Field bean Formula (RFF). Two DIC factors were used as independent parameters of a Design of Experiments (DoE); X₁: DIC temperature ranged from 100 to 165°C which was rigorously correlated with the dry saturated steam pressure ranged between 0.1 and 0.7 MPa, and X₂: the processing time ranged from 20 to 60 s. The main response (Y) was the specific Volume (Vsp) of the GFB. The statistical analysis was performed using the Response Surface Methodology (MSR) to study and optimize the DIC treatment effect on technological quality (Vsp) of the GFB. The breads crumb was characterized by image analysis. The GFB optimum from RFF was obtained with DIC steam pressure of 0.3 MPa (temperature of 132.5°C) for a short treatment time of 20 s. It provided the highest Vsp of 2.7 ± 0.04 cm³/g with an improvement of 10.20% than the GFB control and a great total number of alveoli. Hence, DIC treatment was an effective improvement mean of technological quality of GFB based on RFF for celiac patients.

Key words: Instant controlled pressure drop (DIC), rice-field bean formula, gluten-free bread, design of experiments (DoE), specific volume, crumb structure.

INTRODUCTION

Celiac disease (CD) is considered as one of the most widespread gastro-intestinal diseases. It is a state of...
autoimmune response to gluten proteins in a genetically predisposed subject, characterized by nutriment malabsorption caused by the atrophy of intestinal mucosa (Lionetti and Catassi, 2011; Lebwohl et al., 2018). It touches approximately 1% of the world’s population with a great variation between countries (Makharia et al., 2011; Do Nascimento et al., 2017). Currently, the only treatment for CD is exclusively dietetic: a lifetime strict gluten-free diet, which entails removing any source of gluten containing in wheat, barley and rye and to substitute them by other gluten-free cereals such as rice and corn (O’Shea et al., 2014).

Bread is the basic consumed food in the world. However, its manufacture based on gluten-free ingredients remains difficult with a lower quality than the conventional wheat bread (Benatallah et al., 2012), due to the absence of the gluten, which is a great challenge for cereal researchers on gluten-free bread making (Masure et al., 2016). Many studies carried out for answering this problem were based on substituting the gluten by adding specific ingredients and additives like starches (Boureikoua et al., 2016; Bourekoua et al., 2018), proteins (Phongthai et al., 2016), enzymes (Mohammadi et al., 2015; Calle et al., 2020) and hydrocolloids (Benatallah et al., 2012).

Furthermore, the National Council of Food (CNA) (2009) of France highlighted the interest of the use of physical treatments in food industry in which these treatments could modify the chemical, functional, molecular, and structural properties of the raw materials used in the production of various foods. Among these physical treatments, the Instant Controlled Pressure Drop (French: Détente Instantanée Contrôlée- DIC) technology, which was defined in 1988, as a high temperature-short time stage usually carried out by establishing high-pressure dry saturated steam-high temperature (usually between 0.10 and 0.70 MPa according to a specific design of the DIC treatment vessel) during 5-60 s. This ends by an instant pressure-drop towards a vacuum of about 0.005 MPa and an instant cooling, at a rate ΔP/Δt higher than 0.5 MPa s⁻¹ (Allaf and Vidal, 1989).

This thermo-mechanical treatment method has been used in many industrial applications such as drying and texturing of plants (Louka and Allaf, 2002; Albitar et al., 2011; Nguyen, 2015), microbiological decontamination (Setyopratomo et al., 2009), extraction volatile compounds and essential oils (Kristiawan et al., 2004; Besombes et al., 2010), and steam treatment of cereals (Habba and Allaf, 1997; Duong et al., 2008; Pilatowski et al., 2010).

However, the effect of Instant Controlled Pressure Drop (DIC) treatment on the quality of GFB has never been previously studied. Therefore, this study aimed to investigate and optimize the effect of DIC treatment on the technological quality (specific volume) of GFB based on RFF, with the objective of improving the situation of celiac patients.

MATERIALS AND METHODS

Raw materials

White long rice grain (Oryza sativa) from Basmati variety obtained from India and field bean seeds (Vicia faba minor) obtained from an Egyptian Company (Elamir Company, Egypt) were used in our study. Rice and field bean seeds were ground by a laboratory mill (Moulinex, France); thereafter, the flours obtained were sieved manually with 200-μm seive. The Gluten-Free Formula (GFF) used was based on the mixture of rice and field bean flour with a ratio 2/1 (w/w). The soft wheat flour was used for the control bread. Additional ingredients were used such as bakery freeze-dried yeast, Saccharomyces cerevisiae (S.I. Lesaffre, France) and salt (ENASel, Algeria). All these raw materials were purchased from an Algerian local market.

Chemical composition of flours

Chemical composition of rice and field bean flours was determined following the ISO methods for moisture (ISO 712: 2009) and ash content (ISO 2171: 2010), and the AACC methods (1995) for protein (AACC 46-10) and lipid content (AACC 30-10) in three replications. Total carbohydrates content was evaluated by subtracting the total percentage of the other components from one hundred.

Instant controlled pressure drop (DIC) treatment of gluten-free formula

In the present study, DIC equipment used for the GFF treatment was a laboratory scale DIC unit (manufactured and provided by ABCAR-DIC Process, La Rochelle, France) (Figure 1). It consists of 11-L processing vessel with heating jacket, where samples are set and treated, a 1.6 m³-vacuum tank with cooling water jacket, a water ring vacuum pump, a steam generator with a thermally isolated storage tank and a specific condensed steam trap; a large-section pneumatic valve that assures an “instant” connection between the vacuum tank and the processing vessel that can be opened in less than 40 ms (Allaf, 2013).

DIC treatment of the different GFF samples, starts by placing 180 g of sample within a bag of coffee-type filter and positioning it in the treatment vessel at atmospheric pressure (Figure 2-phase a). After closing it, an initial vacuum stage (about 5 kPa = 0.005 MPa) was established (Figure 2-phase b) in order to remove the air presented in the vessel and, thus to assure close contact between the surface of the sample and the saturated dry steam to be injected just after (Figure 2-phase c). As demonstrated by Allaf and Allaf (2014), the use of dry saturated steam allows a subsequent hugely-fast heating by condensation. In our case, dry saturated steam pressure ranged between 0.10 and 0.70 MPa according to a specific design of experiments (DoE) we adopted based on the know-how of the research team, the literature, and a preliminary series of trials. This allowed the treatment temperature to be between 100 and 165°C. This stage (Figure 2-phase d) of 20 to 60 s ends by an abrupt pressure-drop towards a vacuum (5 kPa = 0.005 MPa) (Figure 2-phase e) obtained by opening the pneumatic large-section instant valve. Finally, the atmospheric pressure was restored in the treatment vessel (Figure 2-phase g) and the sample was recovered.

Design of experiments (DoE)

In order to study the effect of DIC operating parameters on the Vsp of GFB based on RFF, a specific DoE was carried out. It was a 5-level (-α, -1, 0, +1, +α) DoE with two factors; X1: DIC temperature
Figure 1. Schematic diagram of the Instant Controlled Pressure Drop (DIC) apparatus. Source: Allaf (2013).

Figure 2. Temperature and pressure history of a DIC processing cycle: (a) Sample at atmospheric pressure; (b) Initial vacuum; (c) Saturated steam injection to reach the selected pressure and temperature; heating by condensation; (d) stage for almost homogenizing both temperature and water content within the product; (e) abrupt pressure-drop towards a vacuum of ~4-5 kPa coupled to an autovaporization; (f) vacuum of 4-5 kPa; (g) releasing to the atmospheric pressure. Source: Allaf (2013)
(T) coupled with the dry saturated steam pressure (P) and X2: the thermal treatment time (t) (Table 1). In this case, DoE included 13 trials: \(2^2=2^2=4\) factorial points (-1,-1), (-1,+1), (+1,-1) and (+1,+1); \(2\times n=2\times 2=4\) star-points (-α,0), (0,-α), (0,α), and (+α,0); and 5 replicates for the center-point (0,0) were added. DIC treatment experiments were carried out in random using the operating conditions done in Table 2. The saturated dry steam pressure (expressed in Pa) applied in the current DIC range was accorded to the temperature level (T) (expressed in K) following the Equation 1:

\[
P\; (Pa) = 10^{\left(10.09938 - \frac{1781}{T-273.15}\right)}
\]  

(1)

The mathematical model used with the DoE is a second order model, which allows the study of the linear, quadratic and interaction effects according to the following Equation 2:

\[
Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{11} X_1^2 + \beta_{22} X_2^2 + \beta_{12} X_1 X_2
\]  

(2)

Where Y is response variable; \(X_1\), \(X_2\) are independent variables, treatment temperature and time, respectively; \(\beta_0\) is the constant coefficient; \(\beta_1\) and \(\beta_2\) are regression linear coefficients; \(\beta_{11}\) and \(\beta_{22}\) are regression quadratic coefficients and \(\beta_{12}\) is interaction regression coefficient.

### Optimization

The DIC treatment optimization consisted of defining the highest value of the studied response (Vsp). For that, the response surface of the Vsp of GFB from RFF was represented versus DIC factors (X1 and X2) of the couple (temperature-time). To confirm the optimized result computed by the MSR, a second experiment series was performed including selected couples of temperature-time inside and outside the optimal delimited zone, in which the Vsp of the obtained GFB was determined.

### Bread making process

In bread making test, the GFF used was based on rice and field bean flour with a ratio 2:1 (w/w) aimed to obtain a better nutritional balance of essential amino-acids (FAO, 1982; Benatallah et al., 2012).

For the 13 samples of treated DIC rice-field bean formula and the untreated formula, the amount of water added to each sample depended on its moisture content and it was calculated so that all the dough samples had the same final water content (70 g of water for 100 g of dough) (Table 2). So, preliminary tests allowed defining the hydration levels of manufacturing GFB as ranged between 219.5 and 222.93 mL of water for 100 g of rice/field bean flour. As for the control dough with soft wheat, preliminary tests based on obtaining the best Vsp of bread helped to retain an optimal hydration level of 61 mL of water for 100 g of wheat flour.

The bread recipe used consisted of 66.66 g of rice flour, 33.33 g of field bean flour, 2 g of salt, 2 g of instant freeze-dried yeast (Saccharomyces cerevisiae) and the amount of water suitable for each sample (Table 2). These ingredients were mixed for 15 min twice, with a 5-min break, in a kneader (HEIDOLPH RZR 2020, Germany) at 25°C. The resulting dough was divided in lumps (45 g) and put into a silicon mold (9 × 4.7 × 3 cm³), and then proofed at 37°C in wet atmosphere for 45 min in a fermentation cabinet (MEMMERT, France). The baking tests were performed in an electric oven (SAMSUNG, Germany) at 230°C in wet atmosphere for 55 min for GFB based on DIC-treated rice-field bean formula, 22 min for the control GFB and 15 min for the control wheat bread.

### Table 1. Codes levels values of factors used in the Design of Experiments (DoE).

<table>
<thead>
<tr>
<th>Code level</th>
<th>T (°C)</th>
<th>P (MPa)</th>
<th>0</th>
<th>+1</th>
<th>+α</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1: Temperature (T) coupled with the saturated dry steam pressure (P)</td>
<td>100.0</td>
<td>0.10</td>
<td>109.5</td>
<td>0.15</td>
<td>132.5</td>
</tr>
<tr>
<td>X2: Thermal treatment time (s)</td>
<td>20.0</td>
<td>40.0</td>
<td>25.9</td>
<td>40.0</td>
<td>54.1</td>
</tr>
</tbody>
</table>

### Table 2. Run experimental values used in DIC treatment and added water to make dough of differently DIC treated rice-field bean formula.

<table>
<thead>
<tr>
<th>Run</th>
<th>Coded variable</th>
<th>X1: Temperature (T) accorded to the steam pressure (P)</th>
<th>X2: Thermal treatment time (s)</th>
<th>Amount of water added (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0, 0)</td>
<td>132.5</td>
<td>0.30</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>(+1,414, 0)</td>
<td>165.0</td>
<td>0.70</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>(0, +1,414)</td>
<td>132.5</td>
<td>0.30</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>(0, 0)</td>
<td>132.5</td>
<td>0.30</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>(+1, +1)</td>
<td>155.5</td>
<td>0.55</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>(+1, -1)</td>
<td>155.5</td>
<td>0.55</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>(0, 0)</td>
<td>132.5</td>
<td>0.30</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>(-1, -1)</td>
<td>109.5</td>
<td>0.15</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>(-1, +1)</td>
<td>109.5</td>
<td>0.15</td>
<td>54</td>
</tr>
<tr>
<td>10</td>
<td>(0, 0)</td>
<td>132.5</td>
<td>0.30</td>
<td>40</td>
</tr>
<tr>
<td>11</td>
<td>(-1,414, 0)</td>
<td>100.0</td>
<td>0.10</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>(0, -1,414)</td>
<td>132.5</td>
<td>0.30</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>(0, 0)</td>
<td>132.5</td>
<td>0.30</td>
<td>40</td>
</tr>
</tbody>
</table>
Table 3. Chemical composition of rice flour, field bean flour, and gluten free formula (d.b).

<table>
<thead>
<tr>
<th>Flour</th>
<th>Moisture (%)</th>
<th>Protein (%)</th>
<th>Fat (%)</th>
<th>Ash (%)</th>
<th>Carbohydrate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice flour (RF)</td>
<td>10.83% ± 0.01</td>
<td>6.37% ± 0.02</td>
<td>0.33% ± 0.01</td>
<td>0.59% ± 0.03</td>
<td>92.71</td>
</tr>
<tr>
<td>Field bean (FF)</td>
<td>10.54% ± 0.04</td>
<td>29.41% ± 0.03</td>
<td>1.99% ± 0.01</td>
<td>3.18% ± 0.02</td>
<td>65.42</td>
</tr>
<tr>
<td>RF/FF (2/1)</td>
<td>10.73</td>
<td>14.05</td>
<td>0.88</td>
<td>1.45</td>
<td>83.61</td>
</tr>
</tbody>
</table>

*Carbohydrates content estimated by difference; †Results obtained by calculation (2:1).

Table 4. Statistical parameters of specific volume of gluten-free bread of treated DIC rice-field bean formula (Empirical Statistical Model: \( Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{11} X_1^2 + \beta_{22} X_2^2 + \beta_{12} X_1 X_2 \)).

<table>
<thead>
<tr>
<th>Regression coefficient</th>
<th>( \beta_0 )</th>
<th>( \beta_1 )</th>
<th>( \beta_2 )</th>
<th>( \beta_{11} )</th>
<th>( \beta_{22} )</th>
<th>( \beta_{12} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>-0.48</td>
<td>0.0567</td>
<td>-0.0301</td>
<td>-0.000159</td>
<td>0.001068</td>
<td>-0.000562</td>
</tr>
<tr>
<td>P-value</td>
<td>0.000</td>
<td>0.117</td>
<td>0.033</td>
<td>0.469</td>
<td>0.093</td>
<td>0.248</td>
</tr>
</tbody>
</table>

Gluten-free bread quality evaluation

After 60 min post-baking, GFB characterization was carried out by the determination of Vsp and the image analysis of bread crumb structure.

Volume was determined by the rapeseed displacement method according to the AACC Approved Method 10.05 (AACC, 2000). Vsp of bread expressed in "cm\(^3\)/g" was calculated by dividing its volume (V) by its mass (M).

According to Gonzales-Barron and Butler (2006), image analysis of bread crumb was performed using Image J software (version 1.43, National Institutes of Health, USA). Slices of bread (1 cm thick) were scanned using a flatbed scanner (Epson stylus SX 105) with a resolution of 300 dots per inch. The parameters recorded were the number of cells, the average surface and cells circularity (shape).

Statistical analysis

Statistical analysis of the design of experiments (DoE) was performed with MINITAB 17 software (Minitab Inc., PA State College, USA) and the response surface was traced using STATISTICA version 10 software (Stat Soft, France). The K-means test was applied to classify (regroup) the different types of breads. A coefficient of determination (R\(^2\)) was computed and the model adequacy was tested by separating the residual sum of squares into pure error and lack-of-fit. The significance level was set at 0.05.

RESULTS AND DISCUSSION

Chemical composition of raw materials

The chemical composition results of rice and field bean flour used, expressed in percentage (based on dry basis), are given in Table 3. Rice flour was characterized by high carbohydrates (92.71%), lower protein (6.37%), fat (0.33%) and ash (1.37%) contents compared to field bean flour. The calculation of GFF composition based on rice and field bean flour with a ratio 2/1 indicated improvement in protein (14.05%), fat (0.88%), and ash (1.45%) contents due to the incorporation of field bean flour. The results obtained are in agreement with those reported for GFB made with rice/field bean flour with 2/1 (w/w) by Benatallah et al. (2012) and Bourekoua et al. (2016). Thus, the incorporation of legumes flours in gluten-free products enhances their nutritional quality (Lamacchia et al., 2014).

Model fitting

According to Goupy (2013) and Granato and de Araújo Calado (2014), the calculation of R\(^2\) coefficient is used to measure the DoE empirical model quality and the lower lack-of-fit indicated the adequacy of the model. The statistical analysis of the effect of DIC operating parameters (\( X_1 \); the steam temperature coupled with the pressure, and \( X_2 \); the thermal treatment time) on the Vsp (Y) of GFB indicated that the fitting model was adequate due to the reasonable value of R\(^2\) (0.73) and a non-significant lack-of-fit test (0.55).

Effect of DIC treatment on specific volume of gluten-free breads

The Vsp is one of the most important visual characteristics of bread, strongly influencing consumer choice, and it is the key-parameter for the bread quality evaluation (Hager and Arendt, 2013). The parameters of the statistical empirical model of the Vsp of GFB versus DIC factors are summarized in Table 4. It was observed that only the linear effect of DIC processing time \( X_2 \) was significant with the value 0.033, based on the p value relative to 0.050 (p < 0.05), whereas, the other terms were not significant (p > 0.05).

The effect of DIC operating parameters \( X_1 \) and \( X_2 \) on Vsp of GFB based on RFF is shown as response surface in Figure 3. It shows that the Vsp values varied from 1.2 to 2.8 cm\(^3\)/g. Moreover, the highest Vsp was lower than...
that of the wheat bread control (3.03 ± 0.10 cm$^3$/g), but it was higher than that of the GFB control from untreated formula (2.45 ± 0.04 cm$^3$/g). The highest values of the Vsp were recorded for a wide range of temperature and steam pressure, coupled with a short treatment time, also for low temperature and steam pressure, and a long treatment time.

**Optimization results**

The level curve of the Vsp of GFB of DIC-treated rice-field bean formula according to couple (temperature-time) is illustrated in Figure 4. It shows that the highest Vsp values of GFB situated in the optimal zone, in which the Vsp values were higher than 2.4 cm$^3$/g, include...
temperature that ranged from 110 to 165°C, steam pressure from 0.15 to 0.7 MPa, and low treatment time from 20 to 22 s.

Figure 5 represents the confirmation points selected inside and outside the optimal delimited zone of the Vsp of GFB based on DIC-treated rice-field bean formula. All the GFB presented lower Vsp than that of the wheat control bread (3.03 ± 0.10 cm$^3$/g). Obviously, this is due to the absence of structural protein "gluten" in the raw material used in our study (Gallagher et al., 2004).

Kawamura-Konishi et al. (2013) demonstrated the inability of rice proteins to form a three-dimensional viscoelastic network similar to that of wheat gluten, which results in low gas retention thus giving bread with low Vsp.

The k-mean classification indicates that the GFB obtained from the treated DIC-rice-field bean formula at 132.5°C (steam pressure of 0.3 MPa) for 20 s giving the highest Vsp of 2.7 ± 0.04 cm$^3$/g would belong in the same class of wheat bread control. In addition, this GFB showed an improvement of Vsp with a gain of 10.20% compared to the GFB control (2.45 ± 0.04 cm$^3$/g). Therefore, it is considered as the optimum GFB of our present study. On the other hand, the GFB of DIC-treated rice-field bean formula at 142.5°C/0.39 MPa for 20 s gave a Vsp of 2.48 ± 0.09 cm$^3$/g. This increase in Vsp of GFB of DIC-treated rice-field bean formula with these conditions compared to the GFB control, would probably be explained by the effect of DIC treatment on the properties of rice flour, which was the basic ingredient used in our GFF. According to Habba and Alal (1997), Duong et al. (2008), and Pilatowski et al. (2010), the DIC treatment improved and controlled the rice quality compared to the untreated rice sample. Therefore, the Vsp improvement of GFB of DIC-treated rice-field bean formula could be explained by the DIC impacts in terms of texturing, expanding, and instant cooling. Indeed, the instant pressure-drop towards a vacuum causes an abrupt water autovaporization of the treated sample, inducing a modification of its structure as well as a significant cooling. In addition, Delgado-Rosas et al. (2006) showed that the DIC treatment applied to a maltodextrin powder effectively generates a porous structure with alveoli in the treated sample compared to the untreated one.

According to Prameswari et al. (2018), there is a relationship between the amount of water added during bread making procedure and the ability of flour to absorb water; consequently, the characteristics of bread were affected. Therefore, in our present study, the increase in Vsp of GFB optimum compared to the GFB control could be related to the amount of water added during dough preparation, in which the DIC-treated rice-field bean formula required higher water quantity. Our results are corroborated by those of Setyopratomo et al. (2009), who found that the water holding capacity of DIC-treated cassava flour was greater than that of untreated flour. They explain their results by the microstructure change of the treated sample, as the total pore volume and the specific surface. Therefore, the higher amount of water added had a positive effect on the Vsp of GFB based on DIC-treated Rice-Field bean Formula.

On the other hand, the structure of rice flour starch can be affected and modified by the DIC treatment as reported by Onyango (2016), for which this physical treatment (DIC) is one of the methods used to synthesize the physically modified starch. In addition, Onyango (2016) indicated that the damaged starch content of physically treated flours was higher than that of untreated flours, and therefore their water absorption capacity increased, which could be the reason of the Vsp improvement of the GFB optimum.
Also, it should be noted that the field bean flour incorporated in our GFF has improved the protein content (14.05%) than that of rice flour (6.37%) as previously indicated. According to Verni et al. (2019), field bean flour is characterized by a high protein content (26-39%) of good quality, and its mixture with cereal proteins allows a good balanced amino acid composition. Therefore, we can explain the Vsp improvement of GFB by the positive effect of DIC treatment on protein structure and properties of field bean flour compared to that of untreated formula.

Concerning the points selected outside the optimal delimited zone, the Vsp values recorded are lower than the wheat control and also than the GFB control. They ranged from $1.18 \pm 0.04$ cm$^3$/g to $2.11 \pm 0.03$ cm$^3$/g for the couple temperature/pressure-time: $165^\circ$C/0.70 MPa - 40 s and $109.5^\circ$C/0.15 MPa - 25.9 s, respectively. Therefore, the increase in temperature (increase in steam pressure) and time of DIC treatment causes the decrease of Vsp of GFB of RFF. It is possible to observe that, for the same temperature (same steam pressure), the increase in treatment time causes the decrease of Vsp of GFB. For example, the Vsp was $1.76 \pm 0.04$ cm$^3$/g for the conditions $132.5^\circ$C/0.3 MPa and 40 s, whereas for 60 s it became $1.35 \pm 0.03$ cm$^3$/g. In addition, the decrease of Vsp is generated by the increase in temperature (increase in steam pressure) for the same treatment time. For instance, for a treatment time of 40 s and a temperature of $132.5^\circ$C/0.3 MPa, the Vsp was $1.76 \pm 0.04$ cm$^3$/g, whereas at $165^\circ$C/0.7 MPa, it decreases to $1.18 \pm 0.03$ cm$^3$/g. These decrease in Vsp values could be explained by the intense negative effect of severe DIC conditions treatment (temperature/pressure-time) applied on the GFF of rice and field bean flour.

**Structural characteristics of bread crumb**

The crumb appearance of the GFB optimum of DIC-treated rice-field bean formula compared to wheat bread control and GFB control is shown in Figure 6. Our GFB optimum has a well-developed crumb and alveolar structure including a majority of large *alveoli* close to that of GFB control, in opposite, the wheat bread control presents a homogeneous alveolar distribution of small size.

Image analysis results of breads crumb revealed that the *alveoli* total number of GFB optimum of DIC treated rice-field bean formula (28 *alveoli*) was greater than that of GFB control (14 *alveoli*), but it remains inferior than the wheat control bread (110 *alveoli*). Concerning the average size, our breads presented the following values, 0.81, 0.19, and 0.096 for GFB optimum, GFB control and wheat bread control, respectively. In this case, the cells average size of GFB optimum was higher than that of the GFB control and the wheat bread control. Therefore, the DIC treatment of our GFF based on RFF facilitated the air bubbles creation and also favored their development during fermentation. This might be due to the water absorption capacity of treated formula during dough preparation as already mentioned above, as well as the sudden drop of pressure toward vacuum and the rapid autovaporisation of moisture sample during DIC treatment, which could modify the texture and the functional behavior of the material. Indeed, those breads have all a circular *alveoli* shape, with the values close to 1. Consequently, the DIC treatment did not affect the roundness values of the GFB optimum than the GFB control. According to Table 5, the crumb *alveoli* of our GFB optimum and that of GFB control are more open compared to the wheat bread control.

**Conclusion**

Our study confirmed the considerable contribution of Instant Controlled Pressure Drop (DIC) treatment in the improvement of the technological quality of GFB based on RFF. After performing statistical validation of the obtained model, the effect of DIC operating parameters
Table 5. Crumb representation of the wheat bread control, gluten-free bread control and the gluten-free bread optimum of DIC treated rice-field bean formula.

<table>
<thead>
<tr>
<th>Type of bread</th>
<th>Real image</th>
<th>Gray level image</th>
<th>Binary image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat bread control</td>
<td><img src="image1" alt="Image" /></td>
<td><img src="image2" alt="Image" /></td>
<td><img src="image3" alt="Image" /></td>
</tr>
<tr>
<td>Gluten-free bread control</td>
<td><img src="image4" alt="Image" /></td>
<td><img src="image5" alt="Image" /></td>
<td><img src="image6" alt="Image" /></td>
</tr>
<tr>
<td>Gluten-free bread optimum of DIC treated rice-field bean formula</td>
<td><img src="image7" alt="Image" /></td>
<td><img src="image8" alt="Image" /></td>
<td><img src="image9" alt="Image" /></td>
</tr>
</tbody>
</table>

on the Vsp of GFB was analyzed. The optimization results obtained by the Response Surface Methodology showed the optimal zone including a wide range of temperature between 110 and 165°C corresponding to steam pressures of 0.15 and 0.7 MPa, respectively, and low treatment time ranging from 20 to 22 s. After bread making test, k-means classification indicated that the GFB obtained from DIC treated Rice-Field bean Formula at 132.5°C (steam pressure 0.3MPa) during 20 s is categorized in the same class of wheat bread control, and it is considered as the GFB optimum of DIC treated Rice-Field bean Formula, which gave the highest Vsp of 2.7 ± 0.04 cm³/g with a gain of 10.20% compared to the GFB control (2.45 ± 0.04 cm³/g). Based on the results of image analysis of bread crumb, the alveoli total number of our GFB optimum of RFF treated with DIC was greater than that of the GFB control. On the other hand, the field bean flour incorporation has improved the nutritional quality of our GFF used in bread making by increasing its protein content. This work carried out in the present study deserved to be completed by in-depth analyzes to have more comprehensive results.

**CONFLICT OF INTERESTS**

The authors have not declared any conflict of interests.

**ACKNOWLEDGEMENTS**

The authors thank Professor Allaf Karim and Besombes Collete of ABCAR-DIC PROCESS SAS, Laboratory of Engineering Science for Environment, University of La Rochelle, France for providing a set of DIC equipment.

**REFERENCES**


