About AJMR

The African Journal of Microbiology Research (AJMR) is a peer reviewed open access journal. The journal commenced publication in May 2007. The journal covers all areas of microbiology such as environmental microbiology, clinical microbiology, immunology, virology, bacteriology, phycology, molecular and cellular biology, molecular microbiology, food microbiology, mycology and parasitology, microbial ecology, probiotics and prebiotics and industrial microbiology.

Indexing

CAB Abstracts, CABI's Global Health Database, Chemical Abstracts (CAS Source Index) Dimensions Database, Google Scholar, Matrix of Information for The Analysis of Journals (MIAR), Microsoft Academic, Research Gate

Open Access Policy

Open Access is a publication model that enables the dissemination of research articles to the global community without restriction through the internet. All articles published under open access can be accessed by anyone with internet connection.

The African Journal of Microbiology Research is an Open Access journal. Abstracts and full texts of all articles published in this journal are freely accessible to everyone immediately after publication without any form of restriction.

Article License

All articles published by African Journal of Microbiology Research are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited. Citation should include the article DOI. The article license is displayed on the abstract page the following statement:

This article is published under the terms of the Creative Commons Attribution License 4.0
Please refer to https://creativecommons.org/licenses/by/4.0/legalcode for details about Creative Commons Attribution License 4.0

Article Copyright

When an article is published by in the African Journal of Microbiology Research, the author(s) of the article retain the copyright of article. Author(s) may republish the article as part of a book or other materials. When reusing a published article, author(s) should; Cite the original source of the publication when reusing the article. i.e. cite that the article was originally published in the African Journal of Microbiology Research. Include the article DOI, Accept that the article remains published by the African Journal of Microbiology Research (except in occasion of a retraction of the article).

The article is licensed under the Creative Commons Attribution 4.0 International License.

A copyright statement is stated in the abstract page of each article. The following statement is an example of a copyright statement on an abstract page.
Copyright ©2016 Author(s) retains the copyright of this article.
Self-Archiving Policy

The African Journal of Microbiology Research is a RoMEO green journal. This permits authors to archive any version of their article they find most suitable, including the published version on their institutional repository and any other suitable website.

Digital Archiving Policy

The African Journal of Microbiology Research is committed to the long-term preservation of its content. All articles published by the journal are preserved by Portico. In addition, the journal encourages authors to archive the published version of their articles on their institutional repositories and as well as other appropriate websites.
https://www.portico.org/publishers/ajournals/

Metadata Harvesting

The African Journal of Microbiology Research encourages metadata harvesting of all its content. The journal fully supports and implement the OAI version 2.0, which comes in a standard XML format. See Harvesting Parameter
Memberships and Standards

OPEN ACCESS

Academic Journals strongly supports the Open Access initiative. Abstracts and full texts of all articles published by Academic Journals are freely accessible to everyone immediately after publication.

CC CREATIVE COMMONS

All articles published by Academic Journals are licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.

Crossref

Crossref is an association of scholarly publishers that developed Digital Object Identification (DOI) system for the unique identification published materials. Academic Journals is a member of Crossref and uses the DOI system. All articles published by Academic Journals are issued DOI.

Similarity Check powered by iThenticate is an initiative started by CrossRef to help its members actively engage in efforts to prevent scholarly and professional plagiarism. Academic Journals is a member of Similarity Check.

CrossRef Cited-by Linking (formerly Forward Linking) is a service that allows you to discover how your publications are being cited and to incorporate that information into your online publication platform. Academic Journals is a member of CrossRef Cited-by.

<IDPF>

Academic Journals is a member of the International Digital Publishing Forum (IDPF). The IDPF is the global trade and standards organization dedicated to the development and promotion of electronic publishing and content consumption.
Contact

Editorial Office: ajmr@academicjournals.org

Help Desk: helpdesk@academicjournals.org

Website: http://www.academicjournals.org/journal/AJMR

Submit manuscript online http://ms.academicjournals.org

Academic Journals
73023 Victoria Island, Lagos, Nigeria
ICEA Building, 17th Floor,
Kenyatta Avenue, Nairobi, Kenya.
Editors

Prof. Adriano Gomes da Cruz
University of Campinas (UNICAMP),
Brazil.

Prof. Ashok Kumar
School of Biotechnology
Banaras Hindu University
Uttar Pradesh, India.

Dr. Mohd Fuat Abd Razak
Infectious Disease Research Centre,
Institute for Medical Research, Jalan
Pahang, Malaysia.

Dr. Adibe Maxwell Ogochukwu
Department of Clinical Pharmacy and
Pharmacy Management,
University of Nigeria
Nsukka, Nigeria.

Dr. Nadezhda Fursova
Molecular Microbiology,
State Research Center for Applied
Microbiology and Biotechnology,
Russia.

Dr. Mehdi Azami
Parasitology & Mycology Department
Baghaeei Lab.
Isfahan, Iran.

Dr. Franco Mutinelli
Istituto Zooprofilattico Sperimentale delle
Venezie Italy.

Prof. Ebiamadon Andi Brisibe
University of Calabar,
Calabar,
Nigeria.

Prof. Nazime Mercan Dogan
Department of Biology
Faculty of Science and Arts
University Denizli Turkey.

Prof. Long-Liu Lin
Department of Applied Chemistry
National Chiayi University
Chiayi County Taiwan.

Prof. Natasha Potgieter
University of Venda
South Africa.

Dr. Tamer Edirne
Department of Family Medicine
University of Pamukkale
Turkey.

Dr. Kwabena Ofori-Kwakye
Department of Pharmaceutics
Kwame Nkrumah University of Science &
Technology
Kumasi, Ghana.

Dr. Tülin Askun
Department of Biology
Faculty of Sciences & Arts
Balikesir University Turkey.

Dr. James Stefan Rokem
Department of Microbiology & Molecular
Genetics
Institute of Medical Research Israel – Canada
The Hebrew University – Hadassah Medical
School Jerusalem, Israel.
Editors

Dr. Afework Kassu
University of Gondar
Ethiopia.

Dr. Wael Elnaggar
Faculty of Pharmacy
Northern Border University
Rafha Saudi Arabia.

Dr. Maulin Shah
Industrial Waste Water Research Laboratory
Division of Applied & Environmental Microbiology, Enviro Technology Limited
Gujarat, India.

Dr. Ahmed Mohammed
Pathological Analysis Department
Thi-Qar University College of Science
Iraq.

Prof. Naziha Hassanein
Department of Microbiology
Faculty of Science
Ain Shams University
Egypt.

Dr. Shikha Thakur
Department of Microbiology
Sai Institute of Paramedical and Allied Sciences India.

Prof. Pongsak Rattanachaikunsophon
Department of Biological Science,
Ubon Ratchathani University,
Thailand.

Dr. Rafael Lopes e Oliveira
Chemical Engineering,
Amazon State University - Uea,
Brazil.

Dr. Annalisa Serio
Faculty of Bioscience and Technology for Food, Agriculture and Environment,
University of Teramo.
Italy

Dr. Samuel K Ameyaw
Civista Medical Center
USA.

Dr. Mahmoud A. M. Mohammed
Department of Food Hygiene and Control
Faculty of Veterinary Medicine
Mansoura University Egypt.

Dr. Anubrata Ghosal
Department of Biology
MIT - Massachusetts Institute of Technology
USA.

Dr. Bellamkonda Ramesh
Department of Food Technology
Vikrama Simhapuri University
India.

Dr. Sabiha Yusuf Essack
Department of Pharmaceutical Sciences
University of KwaZulu-Natal
South Africa.

Dr. Navneet Rai
Genome Center
University of California Davis USA.

Dr. Iheanyi Omezuiruke Okonko
Department of Virology
Faculty of Basic Medical Sciences
University of Ibadan
Ibadan, Nigeria.

Dr. Mike Agenbag
Municipal Health Services,
Joe Gqabi,
South Africa.

Dr. Abdel-Hady El-Gilany
Department of Public Health & Community Medicine, Faculty of Medicine
Mansoura University
Egypt.

Dr. Bachir Raho Ghalem
Biology Department,
Faculty of natural sciences and life,
Mascara university,
Algeria.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploring the antimicrobial modulatory potential of the sap from oil palm tree</td>
<td>81</td>
</tr>
<tr>
<td>John Antwi Apenteng, Kwadwo Amanor Mfoafo, Hayford Odoi, Emmanuel Orman and Cornelius Cecil Dodoo</td>
<td></td>
</tr>
<tr>
<td>Resistance profile of urine isolate enterobacterial strains at Donka University teaching hospital in Conakry, Guinea</td>
<td>87</td>
</tr>
<tr>
<td>Djiba KABA, Ousmane NIABALY, Issiaga DIALLO, Ibrahima Sory Nana SYLLA, Castro G. HOUNMENO, Kadio Jean-Jacques Olivier KADIO, Aly Badara TOURE, Boubacar SALL, Emile BONGONO, Lancei KABA, Alpha Ousmane BARRY, Maladho DIABY, Thomas BALAMOU, Pascal KOIVOGUI, Ouo-Ouo Yaramon KOLIE, Mariama Sadjo DIALLO and Mohamed CISSE</td>
<td></td>
</tr>
</tbody>
</table>
Exploring the antimicrobial modulatory potential of the sap from oil palm tree

John Antwi Apenteng¹, Kwadwo Amanor Mfoafo², Hayford Odoi², Emmanuel Orman² and Cornelius Cecil Dodoo²*

¹Department of Pharmaceutical Sciences, Central University, Accra, Ghana.
²School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana.

Received 4 March, 2024; Accepted 28 March, 2024

The sap from the oil palms (Elaeis guineensis), harbours complex microbiota and provides a rich source of therapeutic metabolites. This study investigated the antibacterial modulatory activity of sap from Elaeis guineensis on selected bacteria. To test how well the sap from the oil palm tree affects bacteria, the minimum inhibitory concentration (MIC) of some common antibiotics was found by mixing the sap from the oil palm tree with broth and measuring the results. The MIC of chloramphenicol, ampicillin, amoxicillin /clavulanic acid, and cefixime combined with the sap from the oil palm tree against the test organisms were in the range of 1.25 - 2.5, <0.0024 - 2.5, <0.0024 - 0.625, and 0.3125 - 2.5 mg/ml, respectively. There was a 4-fold and 16-fold reduction in the MIC of chloramphenicol against Staphylococcus aureus and Pseudomonas aeruginosa respectively, and an 8-fold reduction of the MIC of cefixime against Staphylococcus aureus. There was an increase in the MIC of the antibiotics in 64% of the in vitro modulatory tests. A 2 – >2083-fold increment in the MIC of the antibiotics was observed against the test pathogenic bacteria. Metabolite profiling of the sap from the oil palm tree showed the presence of simple sugars such as cellobiose, maltose, sucrose and glucose. The sap from the E. guineensis exerted a modulatory effect on the antibacterial activity of chloramphenicol, ampicillin, amoxicillin /clavulanic acid and cefixime.

Key words: Elaeis guineensis, antibacterial modulation, antimicrobial resistance.

INTRODUCTION

The fresh sap from oil palm tree is very sweet and refreshing because of the presence of sucrose, but within 24 h the concentration of sucrose falls to less than 50% of the initial amounts. Microorganisms contaminate the palm sap and convert it into palm wine through a fermentation process. This fermented drink is traditionally appreciated and consumed by several people throughout the world. Fermentation virtually ends when the pH falls to 4.0; this whole process lasts about 48 h (Oluwole et al., 2023; Djeni et al., 2020; SatyaLakshmi et al., 2018). It is available to varied cultures worldwide as a locally manufactured drink with documented therapeutic benefits (Mbuagbaw and Noorduyn, 2012). In parts of Africa, the consumption of this fermented sap forms part of many ceremonies, including weddings, funerals, and birth celebrations. This fermented sap may be served in varied

*Corresponding author. E-mail: cdodoo@uhas.edu.gh.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
flavours which may be unfermented (sweet), fermented (sour), or vinegary (Chung and Yousef, 2003; Eze et al., 2019). Fewer stigmas are associated with the drinking of this fermented sap in all age groups as compared to other distilled derivatives which welcomes its use in many societies in Africa by children, adolescents, and the elderly. This fermented sap is often traditionally used in some African communities to extract bioactive metabolites from medicinal herbs (leaves, stems, barks) as a treatment for a wide variety of bacterial, parasitic, and viral infections including chicken pox, measles, malaria, and yellow fever (Nwaiwu et al., 2020; Akinrotoye, 2014; Sosa et al., 2009).

The increased evolution of antimicrobial resistance in pathogenic species of microorganisms, coupled with challenges in the discovery of new antimicrobial agents necessitates the search for varied agents that may synergistically enhance the activity of antimicrobials (Ali et al., 2021; Almuhayawi, 2020; Cheesman et al., 2017; Adusei et al., 2019). Foods and nutraceuticals may be able to modify the effects of commercial antimicrobials in a way that reverses the mechanism of resistance that resistant strains of microorganisms have developed (Sibanda and Okoh, 2007). Routine consumption of the sap either alone or with meals in many societies may gradually influence the use of this sap in orally administering medicinal formulations, including antibiotics (Endo et al., 2014). Folklorically, there is a belief that taking the sap with anti-infectives increases the activity of antimicrobials against pathogenic bacteria. Some community pharmacists have observed this belief in Ghana whereby clients request antibacterial agents, intending to take them with the sap from oil palm trees. This laboratory-based study, therefore, sought to ascertain this claim and also determine whether the sap from an oil palm tree has any potential antibacterial modulating activity using selected antibiotics against common pathogenic bacteria.

MATERIALS AND METHODS

Sample collection

Freshly tapped sap from oil palm (Elaeis guineensis) was collected from a farm at Sokode Gborgame in the Volta Region, Ghana. It was directly aliquoted into sterile bottles and frozen at -20°C.

Test microorganisms and antibiotics

The test organisms employed in determining the antimicrobial and resistance-modulating activity of the sap from oil palm were Staphylococcus aureus (ATCC 27853), Proteus mirabilis (ATCC 49586), Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922) and Klebsiella pneumoniae (ATCC 33495), Salmonella paratyphi A (clinical isolates) and Salmonella paratyphi B (clinical isolates). All the typed strained organisms were obtained as frozen stock cultures from the Centre for Plant Medicine Research, Mampong, Akuapem, Ghana while the clinical strains were obtained from the Microbiology Laboratory of Central University, Ghana. The organisms were revived by inoculating two loopfuls of the frozen culture into peptone broth (Oxoid, UK, CM0009B) and incubating at 37°C for 24 h. The cells were then suspended in Mueller Hinton broth (Oxoid, UK, CM0405B) and incubated at 37°C for 24 h. A microbial count of 0.5 McFarland standard (approximately 1.0 × 10^8 CFU/mL) was used for the experiment. This was obtained by diluting the cultures with a sterile solution of 0.9% saline. The test antibiotics used in the study were pure powders of chloramphenicol, amoxicillin /clavulanic acid (co-amoxiclav), ampicillin, and cefixime obtained from Ernest Chemist Limited, Tema, Ghana.

Preliminary investigations and LC-MS Based Metabolomics Analysis of freshly tapped sap from oil palm

Benedict’s test was conducted to confirm the presence of reducing sugars (Simoni et al., 2002) while ascorbic acid and alcohol content were quantified by iodometric and back titration methods respectively (Ikewuchi and Ikewuchi, 2011). Liquid chromatography–mass spectrometry (LC–MS) was also conducted on the sap from the oil palm sample as follows. 30 ml of the sample was centrifuged at 12,000 × g. The supernatant was used for metabolomics analyses while the pellets were washed twice with sterile saline water and frozen at −80°C for later culturing and microbial diversity analyses. 1 ml of the sap from the oil palm sample supernatant was diluted in 1 ml of acetonitrile. The mixture was centrifuged at 18,000 × g for 10 min at 4°C and filtered through 0.2 µm PTFE filter into a 2 ml septum vial and used for LC-MS analysis.

Antibacterial assay of reference antibiotics

The MICs of the reference antibiotics (chloramphenicol, co-amoxiclav, ampicillin, and cefixime) were determined against S. aureus, P. mirabilis, S. paratyphi A, S. paratyphi B, P. aeruginosa, E. coli, K. pneumoniae using the broth microdilution method (Wiegang et al., 2008). The reference antibiotics at concentrations of 0.0024 mg/ml to 5 mg/mL were prepared in 96-well plates and the volumes were adjusted to 190 µL. A volume of 10 µL of test organism suspension containing 5 ×10^6 CFU/mL was added to make it 200 µL per well. They were incubated at 35°C for 24 h (Andrews, 2001). The MIC was recorded as the least concentration that showed no visible bacterial growth which was detected by the presence of reducing sugars which had an additional concentration of 10 µL of 0.1% w/v 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to each well followed by incubation at 37°C for 30 min.

Determination of the antibiotic resistance modifying activities of sap from oil palm

The MICs of the reference antibiotics were determined against the study organisms in the presence of a sub-inhibitory concentration of the sap from the oil palm. The sap from oil palm (alcohol content 0.7% v/v) was used as a vehicle to dissolve the antibiotics. The required volume of the antibiotic solution was added to 100 µL of double-strength Mueller Hinton broth. The broth was adjusted to 190 µL with sterile distilled water, and 10 µL of test organism was added to produce 200 µL. The plates were then incubated at 37°C for 24 h. The MIC was recorded as the least concentration that showed no visible bacterial growth which was detected by the absence of purple colour after the addition of a few drops of 0.1% MTT to each well followed by incubation at 37°C for 30 min. The experiment was done in triplicate. Modulation factor (MF), calculated as (MIC of antibiotic alone) / (MIC of antibiotic + sap from oil palm), was used to express the antibiotic-potentiating effects of
Table 1. Modulatory effect of freshly tapped sap from oil palm on the antibacterial activity of selected antibiotics.

<table>
<thead>
<tr>
<th>Test organisms</th>
<th>Chloramphenicol</th>
<th>Ampicillin</th>
<th>Amoxicillin/clavulanic acid</th>
<th>Cefixime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC of antibiotic only (mg/mL)</td>
<td>MIC of antibiotic + sap from oil palm (mg/mL)</td>
<td>MF</td>
<td>Δ</td>
</tr>
<tr>
<td>S. aureus</td>
<td>1.25</td>
<td>0.3125</td>
<td>4</td>
<td>4+</td>
</tr>
<tr>
<td>P. mirabilis</td>
<td>1.25</td>
<td>2.5</td>
<td>0.5</td>
<td>2-</td>
</tr>
<tr>
<td>S. paratyphi A</td>
<td>1.25</td>
<td>1.25</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>S. paratyphi B</td>
<td>1.25</td>
<td>0.625</td>
<td>2</td>
<td>2+</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>2.5</td>
<td>0.1563</td>
<td>15.99</td>
<td>15.99+</td>
</tr>
<tr>
<td>E. coli</td>
<td>1.25</td>
<td>0.625</td>
<td>2</td>
<td>2+</td>
</tr>
<tr>
<td>K. pneumonia</td>
<td>1.25</td>
<td>0.625</td>
<td>2</td>
<td>2+</td>
</tr>
<tr>
<td>S. paratyphi A</td>
<td>0.0781</td>
<td>2.5</td>
<td>0.03126</td>
<td>32-</td>
</tr>
<tr>
<td>P. mirabilis</td>
<td>0.1563</td>
<td>2.5</td>
<td>0.03126</td>
<td>32-</td>
</tr>
<tr>
<td>S. paratyphi B</td>
<td>0.625</td>
<td>2.5</td>
<td>0.25</td>
<td>4-</td>
</tr>
<tr>
<td>E. coli</td>
<td><0.0024</td>
<td>2.5</td>
<td><0.00096</td>
<td>>1042-</td>
</tr>
<tr>
<td>K. pneumonia</td>
<td>0.1563</td>
<td>2.5</td>
<td>0.06252</td>
<td>16-</td>
</tr>
</tbody>
</table>

MIC2: MIC of antibiotic + palm wine (mg/mL). (+): reduction in MIC (increased activity), (-): increase in MIC (decreased activity), Δ: Fold increase or decrease in the MIC. Amoxi/clav: amoxicillin/clavulanic acid, MF: modulatory factor.

the sap from oil palm.

RESULTS

Effect of freshly tapped sap from oil palm on the antibacterial activity of chloramphenicol, ampicillin, amoxicillin /clavulanic acid, and cefixime

The MIC of chloramphenicol, ampicillin, amoxicillin /clavulanic acid, and cefixime with sap from oil palm against all the test organisms were in the range of 1.25 – 2.5, <0.0024 – 2.5, <0.0024 – 0.625, and 0.3125 – 2.5 mg/ml respectively (Table 1). There was a resistance modifying effect of fresh sap from oil palm on the activity of chloramphenicol against all the test microorganisms except S. paratyphi A. A reduction in the MIC of chloramphenicol was observed against S. aureus (4-fold), S. paratyphi B (2-fold), P. aeruginosa (16-fold), E. coli (2-fold) and K. pneumoniae (2-fold). There was no change in the MIC of chloramphenicol against S. paratyphi A. The freshly tapped sap from oil palm enhanced the activity of ampicillin through a 2-fold reduction in the MIC against Escherichia coli. There was an increase in the MIC of ampicillin against S. aureus (8-fold), P. mirabilis (8-fold), S. paratyphi A (>2083-fold), S. paratyphi B (64-fold), P. aeruginosa (32-fold) and K. pneumoniae (16-fold). The antibacterial activity of amoxicillin /clavulanic acid against all the test organisms was reduced (increase in MIC) in the presence of the freshly tapped sap from oil palm. The MIC of co-amoxiclav increased against S. aureus (8-fold),
Figure 1. Chromatogram from LC-MS Based Metabolomics Analysis of sap from oil palm (Compound 5, RT: 1.905).

Table 2. Metabolites identified from the sap from oil palm samples.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Retention time (min)</th>
<th>Observed m/z [Adduct(s)]</th>
<th>Monoisotopic mass</th>
<th>Molecular formula</th>
<th>Identification</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.487</td>
<td>177.2 (M+H)</td>
<td>176.12</td>
<td>C₆H₁₀O₅</td>
<td>Ascorbic acid</td>
<td>Doddipalla et al. (2022) and Ezeagu et al. (2010)</td>
</tr>
<tr>
<td>2</td>
<td>1.487</td>
<td>365.2 (M+Na); 342.30</td>
<td>342.30</td>
<td>C₁₂H₂₂O₁₁</td>
<td>Celllobiose</td>
<td>Ezeagu et al. (2010)</td>
</tr>
<tr>
<td>3</td>
<td>1.487</td>
<td>365.2 (M+Na)</td>
<td>342.30</td>
<td>C₁₂H₂₂O₁₁</td>
<td>Maltose</td>
<td>Ezeagu et al. (2010)</td>
</tr>
<tr>
<td>4</td>
<td>1.487</td>
<td>381.1 (M+K)</td>
<td>342.30</td>
<td>C₁₂H₂₂O₁₁</td>
<td>Sucrose</td>
<td>Ezeagu et al. (2010)</td>
</tr>
<tr>
<td>5</td>
<td>1.905</td>
<td>198.1 (M+NH₄)</td>
<td>180.16</td>
<td>C₆H₁₂O₆</td>
<td>Glucose</td>
<td>Doddipalla et al. (2022) and Ezeagu et al. (2010)</td>
</tr>
</tbody>
</table>

P. mirabilis (510-fold), S. paratyphi A (32-fold), S. paratyphi B (32-fold), P. aeruginosa (4-fold), E. coli (>1041-fold) and K. pneumoniae (16-fold). There was no change in the MIC of cefixime against P. aeruginosa and K. pneumoniae. A reduction in the MIC of cefixime was obtained against S. aureus (8-fold). However, an increase in MIC was observed in the in vitro modulatory assay of cefixime and fresh sap from oil palm against P. mirabilis (4-fold), S. paratyphi A (2-fold), S. paratyphi B (16-fold) and E. coli (8-fold).

Chemical constituents in sap from oil palm as determined from LC-MS Analysis

LC-MS screening of the fresh sap from oil palm principally showed the presence of monosaccharides (like glucose), disaccharides (including celllobiose, maltose, and sucrose), and ascorbic acid (Figure 1 and Table 2). The presence of these compounds has been previously reported in the sap of oil palm tree (Doddipalla et al., 2022; Ezeagu et al., 2010). The sweet taste of the product could thus be attributed to the presence of the free sugars. Ascorbic acid, on the other hand, could be thought to contribute to the observed antimicrobial effects of the product.

DISCUSSION

The modulatory effect of sap from oil palm on selected antibiotics was assessed by determining the MIC of the
antibiotics with sap from oil palm against some reference organisms. A decrease in MIC of the antibacterial agent with sap from oil palm implied potentiation of the antibacterial activity by the sap from oil palm. An increase in MIC, however, suggested a decrease in the activity of the antibacterial agent against the test organism (Adusei et al., 2019).

The addition of sap from oil palm to the antibiotics did not have any resistance-modifying effect on chloramphenicol against S. paratyphi A. Also, there was no change in the MIC of ampicillin against P. aeruginosa and K. pneumoniae. In general, the test antibiotics' MIC (the amount they needed to kill bacteria) went down in 25% of the in vitro modulatory assays that were done. Considerable among these is the 4-fold and 16-fold reduction in the MIC of chloramphenicol against S. aureus and P. aeruginosa respectively, and the 8-fold reduction of the MIC of cefixime against S. aureus. The metabolites from fresh sap from oil palm have been reported to possess antimicrobial effects against S. aureus, E. coli, S. typhi, S. dysenteriae, and some viruses (Oluwole et al., 2023; Akinrotaye, 2014).

This finding suggests that there may be some bioactive present in sap from oil palm worth exploring that could produce a potentiating effect on the activity of some antibiotics. The modulatory effect of the fresh sap from oil palm on the selected antibiotics increased the MIC (reduction in antibacterial activity) of the antibiotics in 64% of the in vitro modulatory assays conducted. No modulation occurred in 10% of the tests conducted. This finding suggests that the effect of sap from oil palm on the antibacterial activity of some antibiotics is not always synergistic. Several studies conducted have established that sap from oil palm has a complex microbial diversity (Djeni et al., 2022; Astudillo-Melgar et al., 2019). Predominant among them are yeast and bacteria cells such as S. cerevisiae, responsible for alcohol fermentation and characteristic odour of sap from oil palm, lactic acid bacteria (Lactobacillus spp, known for their probiotic potential), and acetic acid bacteria (Djeni et al., 2022; Djeni et al., 2020). These are responsible for the pH reduction through the production of organic acids, which give a sour taste to the sap from oil palm, and are also, associated with the aroma, consistency, and colour of sap from oil palm by the production of polysaccharides (Santiago-Urbina and Ruiz-Terán, 2014).

Metabolite profiling of sap from oil palm by Liquid chromatography-mass spectrometry analysis has shown sap from oil palm to be a chemically rich substrate of polyphenols, vitamins, and amino acids including free sugars, organic acids, sugar alcohols, sugar acids, ketones, terpenes, and several unknown compounds (Djeni et al., 2020; Oluwole et al., 2023). These metabolites could have interfered with the activity of the antibiotics by interacting with bioactive chemically unstable structural groups causing a reduction or potentiation in antibacterial activity (Martinez-Lopez et al., 2014; Erukainure et al., 2018).

In the current study, LC-MS screening of the fresh sap from the oil palm showed the presence of ascorbic acid which may contribute to its antimicrobial activity. Ascorbic acid has been reported to exert an antibacterial effect against Listeria monocytogenes and S. aureus (Bayan, 2013). Additionally, the combination of ascorbic acid and lactic acid was also shown to be effective against E. coli 0157:H7 (Tajkarimi and Ibrahim, 2011). The presence of other organic acids, as reported in other studies has also been shown to possess significant antimicrobial effects. Thus, the cumulative presence of these compounds in the fresh sap from oil palm could be said to contribute to the observed enhanced antimicrobial effects of the antibiotics tested.

Also, some of the metabolites could enhance the overexpression of antibiotic resistance determinants (plasmids, integrons, transposons, and antibiotic resistance genes) in the study bacteria causing a change in their susceptibility profile to the tested antibiotics (Kung et al., 2010; Bockstael and Aerschot, 2009). A study by Doddipalla and colleagues using nuclear magnetic resonance and liquid chromatography – high resolution mass spectrometry also confirmed the presence of organic acids and sugars, however, they reported that the amounts of these metabolites were significantly altered upon storage (Doddipalla et al., 2022). This, therefore, has the potential to alter any resistance modulatory activity that could be observed from the sap of oil palm tree.

Conclusion
The findings from this research indicate that sap from oil palm obtained from Elaeis guineensis can modulate the antimicrobial activity of some antibiotics. This modulatory activity in some instances potentiates antimicrobial effects while in others it attenuates this effect in vitro. Further work will now be conducted to elucidate which bioactives in the sap from the oil palm are responsible for the modulatory effects observed.

CONFLICT OF INTERESTS
The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS
The authors appreciate Mr. Edem Fiati and Mr Harry Oblie Laryea of the School of Pharmacy, Central University, for their assistance.

REFERENCES
and Inhibition of Biofilm Formation Effects of Plumbagin from *Plumbago zeylanica* Linn. *Journal of Tropical Medicine* pp. 1-8.

Resistance profile of urine isolate enterobacterial strains at Donka University teaching hospital in Conakry, Guinea

Djiba KABA¹,²,³,⁴*, Ousmane NIABALY⁴#, Issiaga DIALLO¹,²,⁴#, Ibrahima Sory Nana SYLLA²#, Castro G. HOUNMENO ³‡, Kadio Jean-Jacques Olivier KADIO³‡, Aly Badara TOURE³‡, Boubacar SALL², Emile BONGONO³, Lancei KABA³, Alpha Ousmane BARRY², Maladho DIABY³, Thomas BALAMOU²,⁴, Pascal KOIVOGUI²,⁴, Ouo-Ouo Yaramon KOLIE²,⁴, Mariama Sadjo DIALLO¹,²,⁴,⁵ and Mohamed CISSE¹

¹Faculté des Sciences et Techniques de la Santé, Université Gamal Abdel Nasser de Conakry, Guinée. ²Service de Laboratoire de Biologie Médicale, Centre Hospitalo-Universitaire de Donka, Conakry, Guinée. ³Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Conakry, Guinée. ⁴Laboratoire de Biologie Moléculaire Nestor BANGOURA/Helene LABROUSSE, Hôpital de jour Donka, CHU Donka, Conakry, Guinée. ⁵Centre d’Excellence Africain pour la Prévention et le Contrôle des Maladies Transmissibles, Conakry, Guinée.

Received 24 February, 2024; Accepted 9 April, 2024

The objective of this study was to describe the resistance profile of enterobacters isolated from urine samples at the laboratory of Donka National Hospital. Urine samples were collected from both outpatients and hospitalized patients. Cultures were performed using standard techniques, strains were identified using the API 20E kit, and antibiotic susceptibility testing was carried out using the ATB™ UR EU (08) kit. The results were interpreted according to the recommendations of the Antibiogram Committee of the French Society of Microbiology (CASFM v1 2023). Out of a total of 520 urine samples analyzed, 111 were positive for enterobacterial strains. Among them, 75 (67.57%) were of community origin. Escherichia coli was the most represented species (n=61, 55%), followed by Klebsiella pneumoniae (n=24, 22%). The resistance of E. coli strains to third generation cephalosporins (TGC) varied from 5.41% (n=6) to 25.23% (n=28) in the community and from 13 to 38% in the hospital. The profile for carbapenems was categorized as "susceptible to high dosage (SHP)," accounting for 16.22% (n=18). This study provided insight into the resistance profile to antibiotics used in urinary tract infections. The increasing resistance to carbapenems poses a threat to the management of strains producing extended-spectrum beta-lactamases (ESBL). It would be important to strengthen resistance surveillance in this context.

Key words: Enterobacterial, urinary tract infection, resistance, community, hospital, Guinea.

INTRODUCTION

Enterobacterials constitute a group of Gram-negative bacteria divided into seven groups (groups 0 to 6). They constitute most of the commensal flora in the intestine (Jenkins et al., 2017; Machado et al., 2013). They have
natural resistance to certain antibiotics based on their group membership due to the presence of β-lactamase enzymes capable of hydrolyzing penicillins, carboxypenicillins, and first-generation cephalosporins (FGC) (Carattoli, 2009; Paterson, 2006; Philippon and Arlet, 2006). Secondary resistances can occur and spread within the groups through genetic supports (plasmids, integrons) (Carattoli, 2009; Machado et al., 2013). This phenomenon can lead to a therapeutic deadlock due to the acquisition of multidrug resistance, making enterobacterials redoubtable among the causative agents of urinary tract infections (Carattoli, 2009; Paterson, 2006; Philippon and Arlet, 2006). Among uropathogenic enterobacterials, *Escherichia coli* is the most frequent, followed by *Klebsiella* species (Matalka et al., 2021; Moges et al., 2021).

Multidrug resistance poses a challenge to the selection of antibiotics, impacting all prescribed classes of antibiotics. Various studies conducted in different locations highlight the extent of this phenomenon (Lee et al., 2018; Pasom et al., 2013; Sbili et al., 2017) and its consequences, both at the individual and public health levels.

Thus, high proportions of multidrug resistance have been reported in various studies conducted in Africa, and these proportions vary from one region to another (Djim-Adjim-Ngana et al., 2023; Moges et al., 2021). The prevalence of multidrug-resistant bacteria can reach up to 85% (Moges et al., 2021). A review on the emergence and spread of resistance in West Africa described a particularly concerning situation regarding the production of extended-spectrum β-lactamases (ESBLs) among Enterobacterales. The same trend has been observed for carbapenem resistance (Ouedraogo et al., 2017).

Guinea is not spared from the phenomenon of resistance. The prevalence of urinary tract infections accounts for between 16 and 60.2% of healthcare-associated infections, according to studies (Diallo et al., 2022; Keita et al., 2016). *E. coli* and *Klebsiella pneumoniae* are the most isolated pathogens. Resistance in Enterobacterial is characterized by high-level cephalosporinases (56%), extended-spectrum β-lactamases (20%), and carbapenems (12%). Resistance to quinolones is reported at 36%, and 20% for aminoglycosides (Diallo et al., 2022). However, antibiotic susceptibility data are not always accessible, and treatments are often empirical. This study aimed to describe the resistance profile of Enterobacterales isolated from urine samples at the National Hospital of Donka laboratory.

MATERIALS AND METHODS

Study design, sites and samples collection

This is a cross-sectional study conducted at Laboratoire de Biologie médicale du Centre Hospitalier Universitaire de Donka (CHU Donka) over a period of 15 months (September 2022-December 2023). It is one of the level I hospital structures that reopened its doors after a renovation period. The laboratory service of the CHU consists of 7 technical units (Immunology, Biochemistry, Bacteriology, Parasitology, Haematology, Blood Transfusion, and the emergency laboratory) and a sample collection room. The assays were performed in the bacteriology unit.

Urine samples were collected from both outpatients and hospitalized patients at the University Teaching Hospital of Donka (Emergency Department and other services). Urine samples were collected in sterile containers and transported to the laboratory within 2 h of collection.

Isolation and identification

Upon receiving the samples, the conformity of the container was checked. The samples were macroscopically assessed for color and turbidity upon receipt. Microscopy using a Malassez cell allowed for the evaluation of the presence of leukocytes, red blood cells, crystals, and other elements. Culture media, Uriselect, and CLED (cystine lactose electrolyte deficient) were inoculated and incubated for 24 to 48 h at 37°C in aerobic conditions. Enumeration was performed with a threshold of 10⁵ CFU/mL for *E. coli* and 10⁶ CFU/mL for other Enterobacterial strains. Identification was conducted using the 23 biochemical tests (O-nitrophenyl-β-D-galactosidase, arginine dihydrolase, lysine and ornithine decarboxylase, citrate utilization, hydrogen sulfide, urease, tryptophan deaminase, indole, Voges–Proskauer, gelatin liquefaction, fermentation of glucose, mannitol, inositol, sorbitol, rhamnose, sucrose, melibiose, amygdalin and arabinose, nitrate reduction, and nitrogen gas production, and catalase production) available on the API 20E gallery (BioMérieux SA, Marcy-l’Etoile, France).

Antibiotics susceptibility test and detection of extended spectrum beta-lactamase producers

The antibiotic susceptibility testing was conducted using ATB™ UR EU (08) (BioMérieux SA, Marcy-l’Etoile, France) following the manufacturer's recommendations *(Lustrier - Galerie ATB™ UR EU [Antibiogramme/Norme NCCLS] Biomerieux®, n.d)*. The ATB™ UR EU (08) gallery is a standardized qualitative technique for determining the sensitivity of urinary Enterobacterales to antibiotics in a semi-solid medium under conditions very close to reference dilution techniques in agar or microdilution. It consists of 16 pairs of wells. The first pair, without antibiotics, serves as a positive growth control. The next 15 pairs contain antibiotics at one or two concentrations (c and C). The bacteria to be tested are suspended and then transferred to the culture medium, inoculated into the gallery. After incubation, the growth in the wells is visually assessed. The obtained result categorizes the strain as Susceptible,

*Corresponding author. E-mail: dibakitagbe@yahoo.fr.

*Worked as second author.

†Contributed equally

Author[s] agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License.
Intermediate, or Resistant. Since 2020, the EUCAST committee introduced the concept of "Susceptible at standard dosage" for the Susceptible category and "Susceptible at high dosage" for the Intermediate category. The "Resistant" category remains unchanged.

The most commonly used antibiotics were tested: Beta-lactams (Penicillins: ampicillin, ticarcillin, piperacillin, amoxicillin-clavulanic acid, piperacillin-tazobactam, Cephalosporins: Cephalexin, Cefoxitin, Cefuroxime, Cefixime, Cefotaxime, Cefazidime, Cefepime, Carbapenems: imipenem, ertapenem, meropenem μg), Aminoglycosides (amikacin, gentamicin, tobramycin), Quinolones (nalidixic acid, ciprofloxacin, ofloxacin, norfloxacin, levofloxacin), Tetracyclines (tigecycline, tetracycline), and other antibiotics (nitrofurantoin, trimethoprim-sulfamethoxazole, fosfomycin). The results obtained were interpreted according to the recommendations of Comité de l'Antibiogramme de la Société Française de Microbiologie (CA-SFM 2023).

Statistical analysis

The data was extracted from the information system of CHU Donka, sent to Excel, and analysed using the R software. Chi-square test and Fisher’s exact test were used for comparing proportions or estimating the association between variables when the conditions for use were met. Quantitative variables were compared using the Student’s t-test.

Ethical consideration

The protocol was approved by the Research Committee of the University Gamal Abdel Nasser (Conakry, Guinea) and performed following the Declaration of Helsinki.

RESULTS

Table 1 describes the socio-demographic characteristics of the patients. Out of a total of 520 urine samples received and analyzed in the laboratory over a period of 15 months (September 2022 to December 2023), 111 were positive for Enterobacterial after culture on ordinary media. The median age of the patients was 42 (IQR: 28-63). The female gender was predominant with a ratio of 0.4.

Among the isolated Enterobacterial strains, 75 (67.57%) were of community origin, and 36 (32.43%) were of hospital origin (Table 1). The species E. coli was the most represented, whether of community origin (n=40) or hospital origin (n=21), followed by the species K. pneumoniae, with n=14 (58%) community strains and n=10 (42%) hospital strains.

Among the antibiotics tested on the 111 strains of Enterobacterial (Table 2), resistance to penicillin varied between 15.31% (n=17) and 81.08% (n=90). The resistance by antibiotic was distributed as follows: 72.97% (n=81) were resistant to ampicillin, 81.08% (n=90) were resistant to ticarcillin, 49.55% (n=55) were resistant to piperacillin, 39.64% (n=44) were resistant to amoxicillin/clavulanic acid, and 15.32% (n=17) were resistant to the piperacillin/tazobactam combination. The resistance for E. coli strains was (n=44), distributed in the community setting (n=23) and the hospital setting (n=21) (Table 2). For K. pneumoniae strains (n=17), seven were in the community setting and ten were in the hospital setting, and for Klebsiella oxytoca strains (n=5), all were in the community setting. Resistance to amoxicillin/clavulanic acid varied between 4.5 and 52%, with a predominance in E. coli strains (52%, n=23), which were community-acquired. Resistance to carboxypenicillins was predominantly found in E. coli, with n=53 for ticarcillin and n=32 for piperacillin. Resistance to piperacillin/tazobactam ranged from 6.30 to 63.00%, and...
this resistance was mostly encountered in hospital-acquired strains (14.41%, n=16).

Out of a total of 111 isolated Enterobacterial strains, resistance to cephalosporins (Table 3) varied between 7.21% (n=8) and 48.65% (n=54). Third generation cephalosporins (TGC) were affected, with proportions ranging from 36.94% (n=41) to 47.75% (n=53).

Resistance to fourth-generation cephalosporin (FGC) was around 7.2% (n=8). E. coli strains had resistance proportions to second and third generation cephalosporins ranging from 12.8 to 7.6%. Resistance to TGC (Table 4) ranged from 3.60% (n=4) to 23.42% (n=26) for hospital-acquired strains and from 42.34% (n=47) to 47.75% (n=53) for community-acquired strains. Resistance to FGC was 7.21% (n=8). The resistance of E. coli strains ranged from 5.41% (n=6) to 25.23% (n=28) in the community setting and from 13 to 38% in the hospital setting.

The profile for carbapenems (Table 5) was categorized as "Sensitive at High Dosage (SFP)," accounting for 16.22% (n=18). The SFP category varied from 8.5 to 100% depending on the Enterobacterial strains. The "Resistant (R)" category was 1.80% (n=2), involving resistance to Ertapenem, specifically 1.80% (n=2). The SFP category for E. coli strains was 8.5% (n=4.5).

Resistance to aminoglycosides varied from 6.31% (n=7) to 27.93% (n=31). This resistance fluctuated from 90% (n=1) to 18.01% (n=20) depending on the strains. Resistance based on the origin of Enterobacterial strains ranged from % (n=2) to % (n=6) for community-acquired strains and from 2.70% (n=3) to 22.52% (n=25) for hospital-acquired strains.

Resistance to quinolones varied from 9.91% (n=11) to 53.15% (n=59). This resistance ranged from 36% (n=4) to 64% (n=18) for E. coli strains. Quinolone resistance according to the origin of the strain varied from 14.66% (n=11) to 37.33% (n=28) for community-acquired and from 72.22% (n=26) to 83% (n=30) for hospital-acquired strains.

Resistance to other tested antibiotics based on strains varied from 13 to 43% for nitrofurantoin, from 3.6 to 61% for trimethoprim-sulfamethoxazole, and from 13 to 75%

Table 2. Distribution of enterobacterial species by origin.

<table>
<thead>
<tr>
<th>Species</th>
<th>Overall (N=111)</th>
<th>Community strain, n=75</th>
<th>Hospital strain (n=36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrobacter freundii</td>
<td>7 (6.3)</td>
<td>6 (86)</td>
<td>1 (14)</td>
</tr>
<tr>
<td>Klebsiella aerogenes</td>
<td>1 (0.9)</td>
<td>0 (0)</td>
<td>1 (100)</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>4 (3.6)</td>
<td>3 (75)</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>61 (55)</td>
<td>40 (66)</td>
<td>21 (34)</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>6 (5.4)</td>
<td>6 (100)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>24 (22)</td>
<td>14 (58)</td>
<td>10 (42)</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>4 (3.6)</td>
<td>4 (100)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Proteus spp.</td>
<td>1 (0.9)</td>
<td>0 (0)</td>
<td>1 (100)</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>1 (0.9)</td>
<td>0 (0)</td>
<td>1 (100)</td>
</tr>
<tr>
<td>Serratia odorifera</td>
<td>2 (1.8)</td>
<td>2 (100)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Fisher’s exact test; p-value= 0.11.

Table 3. Resistance profile to Penicillin of enterobacterial strain according to their origin.

<table>
<thead>
<tr>
<th>Species</th>
<th>N=111</th>
<th>Ampicillin</th>
<th>Ticarcillin</th>
<th>AMC</th>
<th>PipTaz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Com, n=45</td>
<td>Hosp, n=36</td>
<td>Com, n=55</td>
<td>Hosp, n=35</td>
<td>Com, n=44</td>
</tr>
<tr>
<td>Citrobacter freundii</td>
<td>7</td>
<td>4 (8.9)</td>
<td>1 (2.8)</td>
<td>4 (7.3)</td>
<td>1 (2.9)</td>
</tr>
<tr>
<td>Klebsiella aerogenes</td>
<td>1</td>
<td>-</td>
<td>1 (2.8)</td>
<td>-</td>
<td>1 (2.9)</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>4</td>
<td>2 (4.4)</td>
<td>1 (2.8)</td>
<td>2 (3.6)</td>
<td>1 (2.9)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>6</td>
<td>5 (11)</td>
<td>21 (58)</td>
<td>31 (56)</td>
<td>21 (60)</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>24</td>
<td>7 (16)</td>
<td>10 (28)</td>
<td>10 (18)</td>
<td>10 (29)</td>
</tr>
<tr>
<td>Klebsiella pneumoniae.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>4</td>
<td>2 (4.4)</td>
<td>0 (0)</td>
<td>3 (5.5)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Proteus spp.</td>
<td>1</td>
<td>0 (0)</td>
<td>1 (2.8)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>1</td>
<td>-</td>
<td>1 (2.8)</td>
<td>0 (0)</td>
<td>1 (2.9)</td>
</tr>
<tr>
<td>Serratia odorifera</td>
<td>2</td>
<td>2 (4.4)</td>
<td>-</td>
<td>1 (4.5)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Com= Community, Hosp=hospital, AMC=amoxicillin + clavulanic acid, PipTaz=piperacillin+tazobactam.
Table 4. Resistance profile to Cephalosporin of enterobacterial strain according to their origin.

<table>
<thead>
<tr>
<th>Species</th>
<th>N=111</th>
<th>1st generation</th>
<th>2nd generation</th>
<th>3rd generation</th>
<th>4th generation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cefalotin</td>
<td>Cefoxitin</td>
<td>Cefuroxim</td>
<td>Cefixim</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Com, n=53</td>
<td>Hop, n=20</td>
<td>Com, n=47</td>
<td>Com, n=53</td>
</tr>
<tr>
<td>Citrobacter freundii</td>
<td>4 (7.5)</td>
<td>1 (5.0)</td>
<td>1 (7.1)</td>
<td>3 (6.4)</td>
<td>3 (5.7)</td>
</tr>
<tr>
<td>Klebsiella aerogenes</td>
<td>-</td>
<td>0 (0)</td>
<td>1 (7.1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>3 (5.7)</td>
<td>0 (0)</td>
<td>1 (5.0)</td>
<td>0 (0)</td>
<td>3 (5.7)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>27 (51)</td>
<td>1 (100)</td>
<td>6 (30)</td>
<td>23 (49)</td>
<td>28 (53)</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>5 (9.4)</td>
<td>3 (15)</td>
<td>0 (0)</td>
<td>5 (11)</td>
<td>5 (9.4)</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>8 (15)</td>
<td>5 (25)</td>
<td>3 (21)</td>
<td>10 (21)</td>
<td>8 (15)</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>4 (7.5)</td>
<td>2 (10)</td>
<td>0 (0)</td>
<td>4 (8.5)</td>
<td>4 (7.5)</td>
</tr>
<tr>
<td>Proteus ssp.</td>
<td>-</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>-</td>
<td>0 (0)</td>
<td>1 (7.1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Serratia odorifera</td>
<td>2 (3.8)</td>
<td>2 (10)</td>
<td>0 (0)</td>
<td>2 (4.3)</td>
<td>2 (3.8)</td>
</tr>
</tbody>
</table>

Com= Community, Hosp=hospital.

Table 5. Resistance profile to Carbapenem of enterobacterial strain according to their origin.

<table>
<thead>
<tr>
<th>Species</th>
<th>N=111</th>
<th>Imipenem</th>
<th>Imipenem</th>
<th>Ertapenem</th>
<th>Meropenem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Com S, n=53</td>
<td>Hosp, s=33</td>
<td>Hosp, SFP, n=1</td>
<td>Hosp, R, n=2</td>
</tr>
<tr>
<td>Citrobacter freundii</td>
<td>2 (3.8)</td>
<td>1 (3.0)</td>
<td>3 (18)</td>
<td>0 (0)</td>
<td>1 (50)</td>
</tr>
<tr>
<td>Klebsiella aerogenes</td>
<td>0 (0)</td>
<td>1 (3.0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>3 (5.7)</td>
<td>1 (3.0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>34 (64)</td>
<td>20 (61)</td>
<td>5 (29)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>3 (5.7)</td>
<td>0 (0)</td>
<td>2 (12)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>7 (13)</td>
<td>10 (30)</td>
<td>5 (29)</td>
<td>0 (0)</td>
<td>1 (50)</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>3 (5.7)</td>
<td>0 (0)</td>
<td>1 (5.9)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Proteus ssp.</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (100)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (3.2)</td>
</tr>
<tr>
<td>Serratia odorifera</td>
<td>1 (1.9)</td>
<td>0 (0)</td>
<td>1 (5.9)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Com=Community, Hosp=Hospital, S=susceptible, SFP=susceptible to high posology. The strains categorized as SFP were 15.32% (n=17) at the community level and 0.90% (n=1) at the hospital level. Category R was 1.80% (n=2).

Regarding the overall resistance profile (Figure 1), the most affected antibiotics were penicillins (aminopenicillin and carboxypenicillin), cephaplosporins, and quinolones. Carbapenems retained their activity against the strains, while for fosfomycin.
A cross-sectional study was conducted over a period of 15 months (September 2022 to December 2023) with the aim of describing the resistance profile of Enterobacterales isolated from urine samples at the Laboratory of Medical Biology of CHU Donka. The limitation of this study was the duration and the size of the samples from the hospital setting. This could be attributed, firstly, to the fact that the laboratory initially started receiving samples from outpatient consultations, and secondly, hospitalizations at CHU began only after 3 months of the facility's opening. However, this does not allow for generalization to the entire population.

Nevertheless, the results obtained provide an idea of the current level of resistance and should help clinicians for management of patients with urinary tract infection (UTI) and also to encourage the surveillance of antimicrobial resistance in hospital and community setting.

Out of a total of 520 urine samples received and analysed in the laboratory, 111 tested positive for Enterobacterales. This allowed us to outline a comprehensive resistance profile of Enterobacterales to various antibiotic classes commonly used in urinary infections. The antibiotics most affected by resistance were penicillins (amino-penicillins and carboxy-penicillins), cephalosporins, and quinolones (fluoroquinolones), accounting for more than half. It is important to note that with Enterobacterales, there is a risk of spreading these resistances within the group. They possess resistance carriers (plasmids, integrons) that can be shared among them, facilitating the spread of resistance (Partridge et al., 2018; Rozwandowicz et al., 2018).

The strains of *E. coli* were the most isolated, followed by *K. pneumoniae*. These species are considered the most commonly isolated around the world, both in community and hospital settings. Some studies conducted in Germany, Espana, Peruvia, Ethiopia, Tanzania, and Ghana highlighted the same constatation (Abubaker and Anwar, 2023; Alzahrani et al., 2022; Donkor et al., 2019; Moges et al., 2021; Rondon et al., 2023; Schmider et al., 2022; Stoltidis-Claus et al., 2023). However, this pattern may vary in certain areas, as seen in a study conducted in Sierra Leone, where samples from the community showed a predominance of *Citrobacter freundii* strains (Leski et al., 2016) and another study among elderly patients living in the community and in the nursing home showed that *Proteus mirabilis* was the second strains isolated after *E. coli* (Pulcini et al., 2019).

The resistance profile to penicillins was dominated by high resistance to amino-penicillins and carboxy-penicillins. *E. coli* strains showed high resistance to these groups of penicillins, extending to the amoxicillin-clavulanic acid combination. This resistance profile has been described in other studies with high prevalence,
ranging from 51 to 97.2% for ampicillin and 20.5 to 77.3% for amoxicillin-clavulanic acid (Ahmed et al., 2019; Bernabé et al., 2017; Matalka et al., 2021; Moges et al., 2021; Schmider et al., 2022; Stoltidis-Claus et al., 2023). However, their sensitivity was restored by the combination of penicillin/beta-lactamase inhibitor (tazobactam), as described in other studies with sensitivity rates reaching between 94 and 96.12% (Matalka et al., 2021; Nkont et al., 2023; Schmider et al., 2022).

Resistance to penicillins was similar in both hospital and community settings, with a predominance of *E. coli* strains. This profile has been previously observed in other studies with variable prevalence rates depending on the regions (Nkont et al., 2023). Study conducted among rural patients in Karnataka (India) showed the high prevalence over than 45% (Mardourian et al., 2023). However, study performed in two French centres describe that Temocillin showed a high level of activity against Enterobacterales strains from community acquired urinary tract infection (UTI) (Alexandre et al., 2018). An increase in resistance to the combination of amoxicillin-clavulanic acid and ticarcillin was described for *E. coli* strains. Nevertheless, this resistance can be either natural or acquired for certain strains. It corresponds to a group resistance for the wild-type phenotype (Chagneau et al., 2024). The combination of piperacillin-tazobactam could be an alternative for managing infections caused by multidrug-resistant strains (Bader et al., 2017; Long and Koyfman, 2018).

Resistance profile to cephalosporins was impacted with high rates for TGC. *E. coli* strains showed high rates for TGC, as reported in Benin with 100% resistance of *E. coli* strains to cefixime and ceftriaxone (Assouma et al., 2023). However, the resistance rate to TCF was about 12.6% for *E. coli*, *K. pneumoniae*, and *P. mirabilis* UTI in Northern California (USA) (Mark et al., 2021) and 18.4% for *E. coli*, 30.7% for *Klebsiella* spp. in a systematic review conduction in some west African countries (Nigeria, Senegal, Ghana, Benin, Burkina Faso, and Cote d’Ivoire) (Bernabé et al., 2017). In addition, the activity of FGC remains maintained for all Enterobacterales isolated in our study. Nevertheless, low resistance proportions to FGC, particularly for *E. coli* strains, were noted. This calls for their rational use. Hospital strains showed high resistances as described in other areas, with rates ranging from 43.9 to 77% for *E. coli* and 49.2 to 72% for *K. pneumoniae* being resistant to TGC (Abubaker and Anwar, 2023; Rondon et al., 2023). A low level of resistance to FGC for community strains, unlike other studies that reported high rates around 50% (Abubaker and Anwar, 2023). FGC could be an alternative for managing multidrug-resistant strains in our context.

Carbapenems are antibiotics that are effective against Enterobacterial secreting penicillinase and cephalosporinase (Nkont et al., 2023). Strains categorized as "sensitive at high dosage (SHD)" or resistant to at least one of the carbapenems can be considered suspicious of producing a carbapenemase. These strains are producers of significant resistance mechanisms, including carbapenemases (Comité de l’Antibiogramme de la Société Française de Microbiologie, 2023). A low rate of resistance was observed to carbapenems and an increase in strains categorized as SHD. This profile has been described in other studies with prevalence rates of 0.9% for *E. coli* and 3.2% for *K. pneumoniae* to carbapenem (García-Castillo et al., 2018; Rondon et al., 2023). However, in a study on the confirmation of the carbapenem profile of Enterobacteriales, only 8.9% were confirmed resistant (Steward et al., 2003). Another study conducted in Benin reported resistance rates ranging from 12.5 to 66.6% of Enterobacterales to imipenem (Assouma et al., 2023). This low resistance rate to carbapenems could make these antibiotics an option for managing multidrug-resistant bacteria in our context and Ceftazidime-avibactam could be used to manage UTI caused by carbapenemase producing Enterobacterial such as KPC and OXA-48 producers (García-Castillo et al., 2018). Nevertheless, the increase in strains categorized as SHD should alert and lead to the search for carbapenemases. Another study conducted over the 20-year period showed that except carbapenems, all the antibiotics tested showed increasing resistance rate (Milano et al., 2022).

The resistance to aminoglycosides was high, affecting a quarter of the strains. The main aminoglycosides affected were gentamicin and tobramycin. Twenty-five percent of hospital strains were affected by this resistance. Higher rates have been described in other studies. In Iran the resistance rate was 47.9% for tobramycin, 39.3% for kanamycin, and 27.8% for gentamicin (Yekani et al., 2018) and in India the rate was 31% for all aminoglycosides (Mardourian et al., 2023). In Nigeria, the study conducted among pediatric population found 96.9% of resistance to kanamycin (Oli et al., 2019). These molecules, often used in the management of urinary tract infections due to their good diffusion, could be limited by the emergence of resistance.

Resistance to quinolones was high, with an overall proportion of 53%. It involved nalidixic acid, which was higher in hospital strains, and fluoroquinolones with the same proportions in hospital and community strains. High rates have been described, ranging from 32 to 63.2% of *E. coli* strains resistant to fluoroquinolones (Lyonga et al., 2015; Mardourian et al., 2023; Moirongo et al., 2020; Rondon et al., 2023; Schmider et al., 2022). As described in some studies, the resistance to quinolones is mediated by plasmid and more examination should be conducted in case of strains exhibiting reduced susceptibility and intermediate phenotype (Pasom et al., 2013; Szabó et al., 2018). This increase in resistance for this group raises concerns about the rational use of these molecules, as they are used in the management of multidrug-resistant bacteria (MDR) (Bader et al., 2017).
All strains tested for tetracycline were categorized as sensitive to high dosage. A study conducted in four sub-Saharan African countries reported an overall prevalence of 17%, with rates varying from 7 to 23% depending on the countries (Moirongo et al., 2020). Concerning other antibiotics, resistance was high for fosfomycin and trimethoprim-sulfamethoxazole, with a predominance among *K. pneumoniae* strains in the community and *E. coli* strains in the hospital setting. In contrast to other authors who reported widespread sensitivity to fosfomycin and strong resistance to trimethoprim-sulfamethoxazole (Schmider et al., 2022), a study conducted in sub-Saharan Africa reported prevalence ranging from 42 to 100% (Moirongo et al., 2020).

Conclusion
This study provided insight into the resistance profile of enterobacterial to antibiotics used in urinary tract infections. The observed resistance is substantial in both hospital and community environments. Additionally, the increasing resistance to carbapenems presents a challenge to the management of strains producing extended-spectrum beta-lactamases (ESBL). It would be important to strengthen resistance surveillance in this context.

CONFLICT OF INTERESTS
The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS
The authors thank the technical staff of Donka teaching hospital in Conakry. They also thank all the participants in this study.

REFERENCES

