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Under natural conditions, the plants are, usually, surrounded by a series of potential enemies. They had 
created strategies of defense against pathogens and herbivores' attacks, allowing its perpetuation 
throughout evolution. These defense mechanisms are closely associated with the synthesis of 
secondary metabolites, which are also worldwide used in several areas of industry. This bibliographic 
review was conducted aiming to better understand how plants synthesize these substances in 
response to biotic or abiotic stimuli. The results discussed here revealed that synthesis of plant 
secondary metabolites is dependent on changes in several metabolic pathways, being often directly 
associated with the primary metabolism. Injury by herbivores or pathogens, temperature, CO2 levels, 
solar radiation and drought, are the factors related to the environment that express the most significant 
signs of inhibition or synthesis of plant secondary metabolites. Global climatic changes recently 
observed can affect the metabolic pathways network and, consequently, secondary metabolites 
synthesis. Nowadays, genomic tools have been useful alternatives that are leading to a new revolution 
of plant breeding, allowing the overexpression or inhibition of these substances. Some limitations and 
challenges to be achieved upon the dynamics of secondary metabolite synthesis in plants are 
presented. 
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INTRODUCTION 
 
Plants produce a range of organic compounds which, a 
priori, have no direct relation to its growth and 
development. Originating  of  primary  metabolism,  these 

compounds are known as secondary metabolites. These 
metabolites show no functions hitherto recognized in vital 
processes  of  plants,  such  as   photosynthesis,   cellular  
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respiration, protein synthesis, solute transport and nutrient 
assimilation, unlike the primary metabolites. The synthesis 
of a specific secondary metabolite is not observed in all 
species of the plant kingdom, being restricted to one or a 
few species (Taiz and Zeiger, 2010). 

For a long time, the importance of secondary 
metabolites was not fully understood. Nowadays, with 
advances in research, technology, and especially with the 
genome sequencing of some species such barley (Mayer 
et al., 2012), tomato (Consortium, 2012), Pinus taeda 
(Kovach et al., 2010), pear (Wu et al., 2013) and rice 
(Project, 2005), and with the recently gene-editing 
technique (Gaj et al., 2013; Woo et al., 2015; Bortesi and 
Fischer, 2015) many doubts about the role of these 
compounds in the evolution of the main grown species 
were clarified. 

It is known that biotic factors such as pathogen and 
herbivores attack, and abiotic such as radiation, 
temperature, hydric and nutritional stress, have the 
potential to induce physiological changes in plants by 
altering metabolic pathways. In this context, the aim of 
this bibliographic review was to discuss the biosynthetic 
pathways responsible for the synthesis of the main 
secondary metabolites, its main functions in plants, and 
how the environment can influence, positively or 
negatively, the synthesis of these compounds. 
 
 
SECONDARY METABOLITES 
 
We now know that much of the secondary metabolites 
has important functions but not vital in plants, such as its 
protection to parasites (fungi, insects, bacteria), attractive 
features (color, odor, taste) for pollinators and seed 
dispersers, as well as in acting as subjects in plant-plant 
competition and plant-microorganism symbioses. 
However, the same metabolites responsible for 
increasing plant production performance can also make 
them undesirable for human consumption. As an 
example, we can consider the production of capsaicin, a 
capsaicinoid responsible for the pungency in peppers 
(Capsicum spp.). Its synthesis is controlled by a dominant 
allele locus Pun1. In its homozygous recessive state, 
pun1 / pun1, capsaicin's synthesis does not occur (Blum 
et al., 2002). Different degrees of poignancy observed 
among genotypes occur so, both due to the 
environmental effects where the genotype is subjected, 
as due genotype x environment interaction, being found 
variations in pungency level among and within genotypes 
(Zewdie and Bosland, 2000). 

This can be explained due to high outcrossing rates (7 
to 90%), which may occur among cultivars,  although  this  

 
 
 
 
species be considered autogamous (Bozokalfa et al., 
2009). It is known that the genotype x environment 
interaction is characterized by the differential response of 
each genotype in each environment; and that this 
interaction is caused mainly by the variation of 
meteorological elements of each site. Studies have 
shown that temperatures above 30°C (Ohta, 1960) and 
water restriction (Gurung et al., 2011; Sung et al., 2005), 
increment the capsaicin level in Capsicum spp. 

Secondary metabolites can be divided into three 
chemically distinct main groups: terpenes, phenolic 
compounds and nitrogen compounds. 
 
 
Terpenes 
 
Terpenes, also known as isoprenoids are the largest 
class of known secondary metabolites, containing about 
50,000 identified substances (Vranová et al., 2012). 
These substances are formed by the fusion of five carbon 
units which have a branched backbone. These can be 
divided into monoterpenes (10 carbons), sesquiterpenes 
(15 carbons), and diterpenes (20 carbons). The largest 
terpenes include triterpenes, tetraterpenes and poly-
terpenoids, with 30, 40 and > 40 carbons, respectively 
(Taiz and Zeiger, 2010). Terpenes are synthesized from 
primary metabolites by at least two different pathways: 
the mevalonate pathway (joining three molecules of 
Acetyl-CoA) and the non-mevalonate pathway, which 
both produce Isopentenyl diphosphate (IPP) and 
Dimethylallyl diphosphate (DMAPP), respectively, being 
the basic units in the synthesis of terpenes (Figure 1). As 
can be noted, the basic source of terpenes and other 
secondary metabolites is directly related to the primary 
metabolism of plants. In this case, the presence of 
Acetyl-CoA at the pathway of IPP and Pyruvate plus 
Glyceraldehyde 3-Phosphate, at the pathway of DMAPP, 
is essential for the synthesis of terpenoids in plants. 

Several plants show a mix of terpenes with volatile 
compounds, which confer to they a specific odor. Among 
some species, it can be highlighted the lemon, mint, basil 
and sage. These compounds, known as essential oils, 
can be extracted from plants, being commercially 
important in pharmaceutical, cosmetic and food industries. 

Some terpenes show important functions on growth 
and development of plants, such as gibberellins 
(diterpenes) and brassinosteroids (triterpenes). Though 
some terpenes show metabolic importance, a great part 
of them, are basically associated with the defense of 
several plants against herbivores as insects (Trapp and 
Croteau, 2001; Veitch et al., 2008) and nematodes 
(Soriano et al., 2004). 
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Figure 1. Schematic representation of the biosynthetic pathway of some terpenoids. Observe the two basic pathways at the 
beginning of the synthesis: the IPP pathway held into cytosol of the cell, and the DMAPP pathway, held in the plastids. Source: 
Adapted from Yadav et al. (2014). 

 
 
 

In some conifers, resins exudation, secondary 
metabolite belonging to the group of terpenes, is 
presented as a defense mechanism against fungi and 
insects (Franceschi et al., 2005), and is used as a raw 
material for a wide range of industrial products, being one 
of the most important non-wood forestry products (Hall et 
al., 2013). Its synthesis can be induced by environmental 
factors such as high temperatures, radiation and 
evapotranspiration (Rodríguez-García et al., 2015), by 
exogenous application of chemical stimulants such as 
jasmonates (Dar et al., 2015; Moreira et al., 2009, 2012) 
or by mechanical damage (Ruel et al., 1998). Research 
has  shown  that  weather   conditions   can   affect   resin 

production of two ways: directly, by changing fluidity of 
the resin due to higher temperature (Blanche et al., 1992) 
and indirectly, due of changes in the physiological 
processes involved in the biosynthesis and secretion of 
this substance (Genoa et al., 2013). 

Effects of some environmental factors on the 
concentration of terpenes in tomato were revealed, 
indicating that high temperatures (above 32°C) 
significantly reduces the amounts of some tetraterpenoids 
as lycopene, if this stress is induced during late stages of 
fruit maturation. High temperatures since the vegetative 
stage, however, show no changes in the composition of 
these  substances  in  relation  to  the  control   treatment,  
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indicating metabolism's acclimation of these plants to 
high temperatures (Hernández et al., 2015). The 
influence of controlled water stress, may be related to an 
increase of lycopene in tomatoes, as evidenced by 
(Wang et al., 2015a), which reveals the dynamic and 
complex synthesis of these compounds, dependent on 
environmental factors. 

Several transcription factors of secondary metabolite 
biosynthesis, suggests that expression of activators or 
repressors in response to phytohormones and 
environmental signage is responsible for the synthesis 
and accumulation of such compounds. Recent research 
has revealed some of the metabolic pathways are also 
controlled by posttranscriptional and posttranslational 
mechanisms (Patra et al., 2013). Recent studies in 
Artemisia annua, a species of Artemisia genus, 
originating from temperate regions of Asia, revealed that 
several transcription factors activated by jasmonate 
phytohormone, leading to artemisinin synthesis, a 
sesquiterpene widely used in the treatment of malaria (Yu 
et al., 2012). Studies have shown that drought negatively 
modulates the production of artemisinin in this plant 
mainly by reducing the density and size of glandular 
trichomes, however, the synthesis of some 
monoterpenes and volatile compounds is induced by 
water deficit (Yadav et al., 2014). 

Jasmonic acid (JA) presents itself as an important 
signaling molecule of secondary metabolites synthesis, 
triggering the emission of volatile products such as 
homoterpenes, like the emission of volatile compounds 
observed after injury caused by herbivores (Arimura et 
al., 2000; Hopke et al., 1994; Nabity et al., 2013). 
Research has revealed that JA is responsible for the 
increase in secondary metabolites levels in more than 
thirty species, mainly due to signaling of genes 
responsible for the synthesis of enzymes such as 
phenylalanine ammonia-lyase, known to be involved in 
the chemical plant defense mechanism (Dar et al., 2015; 
Gundlach et al., 1992). Exogenous applications of JA can 
act as a tolerance inducer of some plants to salt stress 
(Qiu et al., 2014), where even in situations of stress of an 
isolated plant, for example, increasing in concentration of 
this substance can induce the expression of genes 
defense in the surrounding plants, even these being from 
different families (Farmer and Ryan, 1990). 

The increase in endogenous concentration of JA is 
mainly determined by response of plants to 
environmental stimuli such as high luminosity (Li et al., 
2014), low CO2 levels (Sun et al., 2013.), water stress 
(Zhang and Huang, 2013) and high levels of toxic 
substances (Yan et al., 2015). The complexity of the 
interactions between environmental factors and 
responses of plants has been stimulating conducting 
research aimed at obtaining superior genotypes tolerant 
to adverse climatic conditions, mainly due to prospects of 
global warming and increases in CO2 levels, expected for 
not too distant future. 

 
 
 
 
Phenolic compounds 
 
Plants produce a large variety of secondary metabolites 
which contain a hydroxyl functional group into an 
aromatic ring; such substances are known as phenolic 
compounds. Phenols are a large group of compounds 
which can be divided into five subgroups: coumarins, 
lignins, flavonoids, phenolic acids and tannins. Among 
these, lignins and flavonoids are the most pervasive 
phenolic compounds in plants (Gumul et al., 2007). 

In superior plants, the biosynthesis of phenolic 
compounds is associated with two basic metabolic 
pathways: the shikimic acid pathway and the malonic 
acid pathway. Most of the phenolic compounds are 
derived from phenylalanine, a product of the shikimic acid 
pathway, which is converted into cinnamic acid by 
phenylalanine ammonia-lyase (PAL), perhaps the most 
studied enzyme in plant secondary metabolism. 

In many species, PAL activity regulation becomes 
complex due the existence of multiple genes that encode 
this enzyme, some of which are only expressed in 
specific tissues or under certain environmental 
conditions, revealing the complex dynamics of signaling 
and synthesis of secondary metabolites (Cheng et al., 
2015; De Jong et al., 2015; Logemann et al., 1995). 
 
 
Coumarins 
 
Coumarins are benzene and dipirona fused rings with 
great therapeutic importance. Depending on your 
configuration has a great ability in regulating cellular 
routes that can be exploited for cancer prevention 
(Thakur et al., 2015), besides having great influence on 
the central nervous system (Skalicka-Woźniak et al., 
2015). Despite advances in research with this phenolic 
compound are not found specific results regarding the 
influence of environment factors in its synthesis or 
inhibition. 
 
 
Lignins 
 
Lignins are very important in plants' sustaining, due to its 
ability to provide greater rigidity to the cell wall. Although 
several synthetic polymers are used in a range of 
applications, the dependence of crude oil for its 
manufacture has resulted in several environmental 
impacts, encouraging scientists on finding alternative raw 
materials for this purpose (Obaid et al., 2016). Lignins, 
due to its specific structure, it is becoming an 
environmentally friendly substance with large utilities in 
the industry as the manufacture of molds, thermoplastic 
reinforcement and integration with natural fibers to obtain 
the most varied materials (Saheb et al., 1999). 

The synthesis of this substance in plants seems to be 
related to  the  presence  of  sucrose,  causing  significant  



 
 
 
 
intracellular disorder, irregular thickening of the cell wall 
and lignification. The response to lignification, however, is 
changed due to the activity of H2O2, being lignin 
synthesis temporarily correlated with the synthesis of this 
peroxide (Nose et al., 1995). Many are the works 
evaluating the behavior of different types of lignin, 
particularly for the thermal behavior, degradation 
products and processing methods of these substances, 
but still needs more information that reveals how the 
interaction between the species and growth environment 
influences the synthesis of these substances. 
 
 
Flavonoids 
 
Flavonoids are the major class of plant phenolic 
compounds. The basic skeleton of these substances 
contains 15 carbons arranged in two aromatic rings 
connected by a three-carbon bridge. Besides to promoting 
pigmentation in flowers, flavonoids are important in 
protecting plants against UV rays, besides to attracting 
pollinators and seed dispersers. In addition to the 
beneficial effect on plants, some research has shown its 
importance in humans‟ diet, acting as a potent antioxidant 
(Winkel, 2004). Flavonoids can be classified into four 
subgroups, due to the degree of oxidation of the carbon 
chain, as follows: anthocyanins, flavones, flavonols and 
isoflavones: 
 
 

Anthocyanins 
 
Anthocyanins are one of the most important flavonoids 
studied at the physiology, mainly acting in plant-
pollinator-dispersers interaction, due to its ability to 
provide color to plants. These compounds are essential 
for the plants being associated with cold and pathogens 
(Sivankalyani et al., 2016) and when present in the 
human diet may act as antioxidant (Homoki et al., 2016; 
Sui et al., 2016). 

By the year 2007, it has been suspected that JA 
regulates plant metabolism in response to many stressful 
situations, such as the attack of pathogens or insects, 
drought, or extreme changes in ambient temperature, 
triggering a series of gene expression, however, JA 
transmission mechanism was not known in detail. 
Research has identified a family of repressor proteins 
called jasmonate-ZIM-domain proteins (JAZ), that bind to 
transcription factors of several defense mechanisms and 
prevents them from acting. When the plant identifies any 
stress situation (injury, temperature, drought), JA is 
synthesized as an alarm signal which binds to a receptor 
and induces degradation of JAZ by ubiquitin-proteasome 
26S system, as shown in Figure 2 (Chini et al., 2007; 
Thines et al., 2007). Genetic engineering techniques 
have been effective in increasing JA biosynthesis. An 
example was shown when genes responsible by 
transcription  factors  that  regulate  JA  responses   were  
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overexpressed, resulting in a greater accumulated amount 
of terpenoids (Fits and Memelink, 2000). 

Low temperatures induce expression of specific genes 
in the metabolic pathway of synthesis of key enzymes, 
such as PAL, retarding the degradation of these 
substances as well as flavonoids and polyphenols 
(Rouholamin et al., 2015; Zhang et al., 2015). Small 
RNAs (miRNAs) are important components of a gene-
regulatory network, being involved in anthocyanin 
biosynthesis. Studies using Arabidopsis, has revealed 
that the expression of genes encoding key enzymes in 
the biosynthesis of these substances is regulated by 
specific transcription factors, and its synthesis is induced 
by JA in the presence of light, but not in dark, being 
dependent on the phytochrome's response on red-distant 
light stimuli (LI et al., 2014). 

Genetic and physiological evidence has shown that the 
Myb regulation (Figure 2) by JA triggers an immediate 
accumulation of anthocyanin and trichomes initiation. 
Overexpression of MYB75 leads to accumulation of 
anthocyanin in Arabidopsis coi1-1 mutants, compared to 
the wild-type genotype (WT), in the same way that 
overexpression of GL3 and EGL3 increments the number 
of trichomes in this plant (Figure 3). 

In Arabidopsis, there is an accumulation of anthocyanin 
mainly at the junction of the rosette and stem. This spatial 
pattern is controlled by miRNA156, which have a 
relationship with SPL9, a key regulator of plant 
development which promotes flowering (Figure 2). When 
increased activity of miRNA156 occurs, there is an 
expression of genes that increase the synthesis of 
anthocyanins; on the other hand, the reduced activity of 
miRNA156 promotes greater expression of SPL9, 
resulting in higher levels of flavonoids. This interaction 
reveals a direct relationship between the transition to 
flowering stage and secondary metabolism of plants, 
providing crucial information for handling anthocyanins 
and flavonoid content in plants (Gou et al., 2011). 

Studies with Potamogeton gramineus L., an aquatic 
plant found in irrigation canals in Northern California, has 
revealed some effects of environmental factors in the 
synthesis of anthocyanins. Under nitrogen and 
phosphorus limitation, these substances are inhibited, 
while the temperature and luminosity slightly increase its 
content and reduces the chlorophyll content, which 
seems to be related to the reddish-brown color of this 
species (Spencer and Ksander, 1990). We saw the 
complex dynamics of synthesis and inhibition of these 
compounds in plants and, taking into account the 
importance of these substances, it is clear the difficulty, 
particularly regarding the breeders, in finding genotypes 
with high anthocyanin production and acclimatized in 
varied environments. 
 
 

Flavones and flavonols 
 

These substances are found in all organs  of  plants,  with  
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Figure 2. (A) Schematic representation of gene regulation of anthocyanin biosynthesis in response to environmental 
signals in Arabidopsis. Genes encoding pathway enzymes are represented in blue boxes. solid red arrows and T-
bars, represent the direct activation and repression, respectively. Dotted red arrows and T-bars indicate indirect 
activation and repression, respectively. Half-circle indicates self-activation. The activation of genes by Myb-bHLH-
WDR complex (green elliptical circle) and Myb11 / 12/111 (solid yellow rectangle) is shown. The red circle represents 
the elliptical repressor complex Myb-bHLH-WDR. (B) Schematic representation of posttranscriptional and 
posttranslational regulation of anthocyanin biosynthesis. The structural genes encoding the enzymes of the route are 
shown in blue boxes. solid red arrows and T-bars represent the direct repression and activation, respectively. Dotted 
red arrows and T-bar indicate indirect activation and repression, respectively. The blue shaded area shows the 
anthocyanin biosynthesis regulated by miRNAs in response to environmental signals and development. The gray 
shaded area represents a posttranslational degradation of components of the Myb-bHLH-WDR and JAZ proteins by 
the 26S ubiquitin proteasome system. Source: Adapted from Patra et al. (2013). 

 
 
 

 
 

Figure 3. (A) Overexpression of MYB75 in Arabidopsis coi1-1 mutants resulting in increased anthocyanin; (B) Overexpression of 
GL3 and EGL3, resulting in increased trichome number in coi1-2. Source: Adapted from QiI et al (2011). 
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Figure 4. Growth of Arabidopsis tt5 mutants and wild types under 8 kj day
-1

 (a), 15 kj day
-1

 (B) and on without UVB radiation 
wavelength (C). Source: Adapted from Li et al. (1993). 

 
 
 
special importance for the flowers. Usually, these 
substances absorb light-long waves that are lower to the 
visual ability of human beings. However, insects like 
bees, which are responsive to light in the ultraviolet 
range, are attracted by these colorations. 

Flavones and flavonols have great importance to 
plants, due to their ability to protect plants against 
damage from ultra-violet light (280-320 nm) mainly due 
be presents in the epidermis of leaves and stem, 
absorbing light at this wavelength (Taiz and Zeiger, 
2010). 

In Arabidopsis mutant for the synthesis of these 
compounds, plants are hypersensitive  to  UVB  radiation, 

grown less under normal condition. When protected, 
these plants have similar growth to the wild-type 
genotype. Figure 4 clarifies the role of this sub-group of 
phenolic compounds. Incident radiation with the presence 
of UVB, even at low density, causes the standstill of 
growth in Genotypes TT5 mutants, as compared to the 
wild-type. When the incident light has no radiation in the 
UVB wavelength, both the wild type as mutant for the 
synthesis of flavones and flavonols, have similar growth. 

It is visible the influence of radiation in the mutant 
plants for synthesis of these substances. Thus, a 
challenge to be achieved is to obtain genotypes that have 
high concentrations of these protective  substances,  thus  
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avoiding a reduction in the growth and development due 
to the inhibitory effect of radiation, especially with the 
prospect of ozone layer depletion, an important molecule 
responsible for filtering the vast majority of incident UV 
radiation. 
 
 
Isoflavones 
 
These substances are mainly found in Fabaceae species. 
With 745 genera and over 19,500 species, these 
legumes are the third largest family of plants. Among 
several biological activities of these substances, we can 
mention the beneficial effect on the initial growth of 
Trachinotus ovatus, a species of fish of Carangidae 
family (Zhou et al., 2015), increase in cell antioxidant 
activity (Al-Qudah et al., 2015), as well as a reduction of 
up to 27% in anti-Tobacco Mosaic Virus (Li et al., 2015). 

Recent research has aroused the interest of 
isoflavones for their action as phytoalexins. These 
compounds are generally absent in healthy plants, and its 
synthesis is induced by plant responses to biotic factors, 
including infection by fungi and bacteria (Budovská et al., 
2013; Ejike et al., 2013), or abiotic factors, such as 
physical injury (Darvill and Albersheim, 1984). Studies 
have also shown that there is a possibility of increasing 
the resistance of plants to diseases based on an 
additional external application of phytoalexins (Stuiver 
and Custers, 2001). 

One of the first studies evaluating the influence of the 
environment factors in response to the synthesis of these 
substances has revealed that when plants are adapted to 
metalliferous environments, their response to biotic stress 
(fungi) is more intense, resulting in increased production 
of phytoalexins (Martellini et al., 2014). This example of 
positive interaction between biotic and abiotic stimuli can 
arouse the interest of researchers, particularly regarding 
the production of plants with higher levels of phytoalexins. 
 
 
Phenolic acids 
 
These phenolic compounds are characterized by being 
formed by a benzene ring, a carboxyl group and one or 
more hydroxyl groups in their molecules, giving them 
antioxidant properties, both for the foods, as for the 
bodies, being indicated for treatment and prevention of a 
number of diseases, among them cancer (Chang et al., 
2015; Espinosa et al., 2015; Heleno et al., 2015; Kurth et 
al., 2015; Milner, 2002; Taofiq et al., 2015). 
 
 
Salicylic acid 
 
It is known the effect of salicylic acid in some plant 
functions, such as reducing ethylene levels and increasing 
capsaicin content of  peppers  (Sudha  and  Ravishankar,  

 
 
 
 
2003), as well the increasing anthocyanin production in 
carrots (Rajendran et al., 1992). However, this substance 
is basically related signaling of plant resistance to 
pathogens. 

Localized attack by a pathogen induces acquired 
resistance, mainly due to the accumulation of salicylic 
acid, which induces the accumulation of proteins related 
to the elimination of pathogens. Research has proved the 
efficiency of induced resistance in plants through genetic 
modification techniques and has demonstrated the ability 
of a leaf (resistant) promote long-distance signaling and 
induce resistance in the surrounding plants. This process 
is basically related to the interaction of „resistant‟ leaf with 
a derived-lipid molecule (Maldonado et al., 2002) and 
with methyl silicate production, a volatile liquid 
synthesized from salicylic acid (Shulaev et al., 1997). 

Few are studies about the influence of environmental 
factors in synthesis or inhibition of these compounds. 
Breeding programs have indicated that a large diversity 
of phenolic acids is found in more than 60 varieties of 
vegetables and wild relatives. The heritability estimates 
for these substances have relatively high (> 0.5), 
indicating that selection for higher levels of phenolic acids 
can be effective without major environmental influences 
(Prohens et al., 2007). With the advancement of plant 
breeding techniques, genetic tools such as transposon 
handling and gene silencing also have been shown to be 
effective in increasing the synthesis of phenolic acids in 
plants, without effects on the levels of other compounds. 
This suggests the possibility of improvement in 
antioxidant capacity and plant resistance, without 
changes in agronomic traits of the species (Kaushik et 
al., 2015; Niggeweg et al., 2004). 
 
 
Tannins 
 
Tannins along with lignin are considered one of the most 
important groups of secondary metabolites in the defense 
of plants, mainly due to their biochemical and molecular 
properties (Adamczyk et al., 2013; Zucker, 1983). There 
are basically two categories, namely condensed tannins, 
compounds formed by the addition of flavonoid 
constituents of woody plants and the water-soluble 
tannins, polymers that present phenolic acids and simple 
sugars (Taiz and Zeiger, 2010). 

Herbivores such as cattle, deer, monkeys and birds 
avoid plants or parts of them that have higher tannin 
levels. Studies have shown that interaction of these 
substances with proteins, for example, determines the 
selectivity of some herbivores in plant feeding (Clausen 
et al., 1990; Zungu and Downs, 2015). 

The plant defense strategies are intrinsically related to 
the organ in which the tannins are synthesized. Studies 
with Medinilla magnifica, known as rose grape, revealed 
the cells that synthesize tannins show distribution 
patterns defined  in  plant  organs  with  a  preference  for  



 
 
 
 
accumulation around or near the vascular tissues. In 
leaves, these substances tend to accumulate in 
mesophyll region and surrounding tissues, with the 
highest concentration in the apical region. Roots and 
stems tend to have lower levels of these substances, yet 
still found in small quantities.  

The concentration of tannins in reproductive structures 
and fruit maturity was also relatively high, reducing the 
extent which fruit maturing (Robil and Tolentino, 2015). 
This specific distribution both spatially and temporally 
may indicate its role in protecting vital structures of plants 
and also an obvious adaptation to make more palatable 
fruit only when they are physiologically mature and 
presenting viable seeds, leading to success in the spread 
of species. 

In addition to its role in herbivores food selectivity, 
these compounds may also have antibiotic activity. A 
condensed tannin isolated from Gossypium hirsutum 
flower, known as Mexican cotton, was presented as an 
antibiotic component of this plant, comprising about 3.4% 
of the dry weight of the flower. Its use in the diet of 
Heliothis virescens, tobacco caterpillar, retarded growth 
of the larvae in 84% (Chan et al., 1978). However, recent 
studies have revealed that addition of specific isolates of 
these substances in flour for cooking, improves their 
properties, primarily due to increased hydrogen bonding, 
improving the interactions between proteins and 
carbohydrates, resulting in a more compact gluten (Wang 
et al., 2015b). 

There are few studies that reveal how the environment 
provides changes in synthesis of these compounds, 
however, some research has shown that tannins can 
significantly influence the soil changes. The addition of 
these substances decreases carbon mineralization and 
nitrogen nitrification, significantly affecting the 
complexation of nitrogen compounds and consequently 
the availability of nitrogen (Adamczyk et al., 2013). 
 
 
Nitrogen compounds 
 
A great variety of secondary metabolites has nitrogen in 
their structures. The main nitrogenous compounds found 
in plants are alkaloids, glycosides, and non-protein amino 
acids: these are usually synthesized from the common 
amino acids (Taiz and Zeiger, 2010). In this session will 
be addressed the main types of nitrogenous compounds 
produced by the plants, their biological properties and 
how environmental factors can influence their synthesis. 
 
 
Alkaloids 
 
Alkaloids are a large group with more than 15,000 
substances, being found in about 20% of the vascular 
species. These compounds are generally characterized 
by the occurrence of a  nitrogen  atom  in  oxidative  state  
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into a heterocyclic ring. Unlike other secondary 
metabolites, many alkaloids have independent 
biosynthetic pathways, may be originated from different 
amino acids (De Luca and Laflamme, 2001). With this, it 
is not surprising enzymes acting on alkaloid synthesis, 
while also performing functions in primary metabolism 
(Facchini, 2001). 

The roles of the alkaloids in plants have been the 
subject of several types of research. It was believed that 
these substances are responsible for nitrogen secretion 
(like urea and uric acid in animals); however, this 
hypothesis is not accepted due to few concrete results. It 
is believed that most of the alkaloids present defense 
function in plants, due to their general toxicity their and 
ability to inhibit feeding (Wink, 1988). 

Virtually all alkaloids are toxic to humans if ingested in 
sufficient quantities, however, many of these compounds 
are medicinally used, moving a worldwide volume of 
approximately 4 billion dollars (Julsing et al., 2006). 
Figure 5 shows some important alkaloids, such as 
morphine, berberine, vinblastine and scopolamine, which 
have medicinal properties and others such as cocaine, 
caffeine and nicotine, which have no medical use but is 
widely used as stimulants or sedatives (Facchini et al., 
2004). 

The alkaloid biosynthesis in plants requires the 
differentiation of specific cell types in response to specific 
environmental signals. For example, the N-
methyltransferase enzyme, responsible for the chemical 
changes in the molecules of several nitrogenous 
compounds, has its activity increased by about 30% 
when etiolated plants of Catharanthus roseus, known as 
Vinca, were exposed too light (De Luca et al., 1988). 

Few studies have shown specifically as changes in 
weather elements may affect the synthesis of this 
substance, but the most widely accepted hypothesis is 
that mainly light through phytochrome, modulates the 
regulation of protein and key enzymes involved in the 
metabolic pathways of these substances (Aerts and De 
Luca, 1992). Increases in alkaloids production of C. 
roseus were found with an increase of CO2, mainly in a 
greater supply of nitrogen (Singh et al., 2015), indicating 
the relationship between plant metabolic responses and 
environmental factors. 
 
 
Glycosides 
 
Besides the alkaloids, glycosides also act as protective 
substances in plants. These substances can be divided 
into two types: cyanogenic glycosides, and glucosinolates. 
These metabolites are in wide varieties of plants. 
Alkaloids are not toxic in its natural state. For example, in 
crops such as sorghum and cassava, these substances 
are stored in the vacuole of the epidermal cells, whereas 
the enzymes responsible for the poisonous gas synthesis 
are  in  mesophyll  (Poulton,  1990).  When  the   plant   is  
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Figure 5. Some alkaloids of economic importance used by humans. 

 
 
 
physically injured, cyanogenic glycosides (present in 
vacuole) are mixed, with hydrolytic enzymes (present in 
mesophyll), producing volatile poisons such as hydrogen 
cyanide (Taiz and Zeiger, 2010). Plant breeding 
programs aimed at reducing these compounds in crops of 
interest has been done. In cassava, for example, when 
fragments of CYP79D1 / D2 genes (responsible for the 
synthesis linamarin a cyanogenic glycoside) were 
silenced, it was observed the reduction of about 60-94% 
of these substances in leaves and surprisingly, 99% in 
roots (Siritunga and Sayre, 2004). 

The influence of climatological variables in glycosidic 
compounds is significant. Studies in stevia, a small 
evergreen shrub with high sweetening capacity, has 
revealed that the transcript levels of 15 genes involved in 
vital pathways of steviol glycosides synthesis, were 
maximum at the temperature at 25ºC, while the 
transcription of 12 of the 15 genes was inhibited both at 
low temperatures (15°C) as at high temperatures (35°C). 
Most genes exhibited low transcription levels under water 
deficit, while the photoperiod did not significantly 
influence its transcriptions (Yang et al., 2015). These 
responses, however, cannot be generalized to all species, 
due to genetic specificity of each, and its adaptation to 
specific environments. This can be a stimulus for 
performing local research with cultures that have an 
economic interest. 
 
 
Non-protein amino acids 
 
Plants and animals incorporate the same 20 amino acids 
in their proteins. However, non-protein amino acids, 

which are not incorporated into proteins and roam freely, 
acting as protection substances in plants. Among some, 
may be cited the 2,4-diaminobutyric acid, 2,3-
Diaminopropionic acid, L-3-Amino-2-(oxalylamino) 
propanoic acid and 2-amino-6n-oxalylureidopropionic 
acid (oxalylalbizziine) which are present in certain fodder 
and has been causing toxicity in ruminants (Mcsweeney 
et al., 2008). 

Diaminobutyric acid can act as a competitive inhibitor of 
gamma-aminobutyric acid (GABA), an important regulator 
of neuronal excitability. A study with synaptosomal 
fraction isolated from mouse brains has revealed that 
diaminobutyric acid causes a competitive inhibition with 
the site of GABA absorption in a short time; for more 
prolonged periods, this inhibition was not competitive, 
being the effectiveness of this inhibitor, dependent on 
sodium levels and the temperature sensitive. (Simon and 
Martin, 1973). 
 
 
Final considerations 
 
The evidence presented here indicates that the synthesis 
and inhibition of plant‟s secondary metabolites are 
dependent upon its primary metabolism, and are subject 
to great influence by environmental factors, primarily due 
changes in the transcription factors responsible for its 
synthesis. Environmental factors such as extreme 
temperatures, radiation, CO2 levels and water availability 
are presented as potential factors in changing the 
pathways of several secondary metabolites in plants. The 
same can be said for biotic factors such as plant damage 
caused by pathogens or herbivores. The plants have

Morphine Berberine

Scopolamine Cocaine Caffeine Nicotine

Vinblastine
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Table 1. Limitations and challenges to be achieved upon the control of secondary metabolite synthesis in plants. 
 

Limitations Challenges 

Terpenes 

Dynamic and complex synthesis of terpenes in response to environmental 
factors in important crops such as watermelon, Gac, papaya and tomato are 
still limited. 

To identify the pathways responsible for synthesis of these compounds that 
are influenced by environmental factors. 

Reduction in endogenous concentrations of JA under increased CO2 levels. 
Obtaining superior genotypes with high JA synthesis in presence of elevated 
CO2 levels. 

 

Phenolic compounds 

Multiple-gene regulation of PAL enzyme's activity. 
To identify PAL genes in important crops responsible for role in the defense 
responses, under different environmental stimuli. 

Information about how the environmental factors acts on coumarins’ synthesis 
are still limited. 

To reveal the pathways modified by environmental factors aimed at 
production of responsive plants with greater therapeutic importance. 

Little information about how the environmental factors acts on Lignin’s 
synthesis and the response to lignification related to presence of peroxides. 

To identify how environmental factors act on its synthesis or inhibition, 
aiming to obtain superior genotypes with greater or lesser lignin content. 

The pleiotropy for miRNA156, controlling the synthesis of anthocyanin and 
flavonoids and its relationship with SPL9, a key regulator of plant development 
which promotes flowering in Arabidopsis. 

To identify the kind of pleiotropy acting in this crop, and to perform studies 
with economical-important crops in order to clarify the genome-wide 
significant associations with plant complex traits. 

The complex interaction between soil and environmental factors on the 
synthesis of anthocyanin. 

To create genotypes with high anthocyanin production and acclimatized in 
varied environments. 

Hyper sensibility to UVB radiation in plants mutants or with little synthesis of 
flavones and flavonols. 

To increase endogenous concentration of flavones and flavonols in crops in 
order to mitigate the effects of the reduction of ozone layer. 

Little information about the interaction of biotic and abiotic stimuli on 
Isoflavones synthesis and plant’s resistance. 

To identify the pathways altered by environmental factors in order to produce 
more resistant plants. 

 

Nitrogen compounds 

Research evaluating the influence of environmental factors on alkaloids’ 
synthesis are still limited. 

Due its medicinal importance, is highly encouraged the realization of 
research aiming at evaluating the influence of environmental factor in its 
synthesis. 

Limited information about dynamic of cyanogenic glycosides in plants such as 
cassava and sweet potato. 

To use genomic tolls in order to silence genes responsible for glycosides’ 
synthesis in economical-important crops. 

Toxicity in ruminants caused for non-protein amino-acids. 
To balance the lesser concentration of toxic compounds such non-protein 
amino acids with the maintenance of plants' defense against herbivores. 

 
 
 
created protection strategies which allowed them higher 
levels of evolutionary fitness. Scientific advances in 
molecular biology over the past years have been useful in 
understanding the dynamics of secondary metabolite 
synthesis in plants. Recent techniques in gene editing 
have been useful and can be used by breeders aiming to 
exert greater control over the expression or inhibition of 
these substances. A synthesis of limitations and the 
challenges to be achieved upon the control of secondary 
metabolite synthesis in plants is shown in Table 1. 
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