Review

A review on golden species of Zingiberaceae family around the world: Genus *Curcuma*

Ewon Kaliyadasa* and Bhagya A. Samarasinghe

Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka.

Received 23 November, 2018; Accepted 11 February, 2019

Genus *Curcuma* has a long history of traditional uses, ranging from folk medicine to its culinary uses. More than 70 species of *Curcuma* are distributed throughout the world but extensively cultivate in Asian, Australian and Western African counties. Many phytochemical, pharmacological and molecular studies have been conducted on several *Curcuma* species worldwide. The interest on its medicinal properties have increased due to the discovery of novel bioactive compounds which possessing wide range of bioactivities such as antioxidant, antiviral, antimicrobial, and anti-inflammation activities. Furthermore, this valuable plant is used as natural dye, insecticide and as a repellent. This review focuses on gathering information regarding genus *Curcuma* including morphological characteristics, phytochemicals and their biological and pharmacological activities which provide information for further advance research studies.

Key words: *Curcuma*, biological activity, morphology, pharmacology, phytochemicals.

INTRODUCTION

The genus *Curcuma* belongs to the family Zingiberaceae comprises rhizomatous annual or perennial herbs. According to Xia et al. (2005), the genus *Curcuma* comprises of 70 species, which are distributed widely throughout tropical and subtropical regions of the world. Out of 70 species, about 40 species are reported from India (Pemba and Sharangi, 2017). However, the exact number of species is still controversial (Akarchariya et al., 2017). *Curcuma* naturally found in India to Thailand, Indochina, Malaysia, Indonesia, and finally spreads to northern Australia. *Curcuma* is extensively cultivated in tropical and subtropical regions of Asia, Australia, Western Africa and South America (Ravindran et al., 2007). The species are naturally found in tropical forests and tropical broad-leaved evergreen forests.

Curcuma is an economically important genus having many different uses. It is used as spices, food preservatives, flavouring agent, medicines, dyes, cosmetics, starch and ornamentals (Xiang et al., 2011; Sahdeo and Bharat, 2011). The underground rhizome of *Curcuma* is an important source of a yellow dye (Srivilai, et al., 2018). The word “*Curcuma*” is derived from the Arabic word "Kurkum" which means yellow colour (Su et al., 2017). They have been used for the treatment of various diseases like enlarged liver, spleen, stomach ulcer, diabetes, cough, hepatic disorders, chest pain, skin diseases, boils, blood purifier, and rheumatism (Saikia and Borthakur 2010). Various parts of these plant species

*Corresponding author. E-mail: ewon101k@yahoo.com. Tel: +94718310540.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
have been used either raw or cooked as vegetables in many Asian countries (Devi et al., 2014). They also considered as nutritionally rich foods because Curcuma plants are a rich source of starch, carbohydrates, proteins, fats, vitamins, and minerals (Roshan and Gaur, 2017).

Curcuma plants have been shown to contain various bioactive molecules, which possesses many pharmacological properties such as; anti-inflammatory (Sikha et al., 2015), antimicrobial (Jagtap, 2015), hypocholesteremic (Shafreen et al., 2018), antirheumatic (Abdel-Lateef et al., 2016), antiviral (Pant et al., 2013), antifibrotic (Jose et al., 2014); antihepatotoxic (Jagtap, 2015); antidiabetic (Nwozo et al., 2014); antinociceptive (Ramasree and Indira, 2006); anticancerous (Pawar et al., 2011); gastroprotective properties (Jeon et al., 2015) and beneficial effects on cardiovascular diseases (Nithya and Jayashree, 2017). Plants belonging to the genus Curcuma are gaining importance all over the world and subjected for many investigation and exploration in recent years due to its promising potentials and wide range of usage. Therefore, a proper morphological and phytochemical identification is necessary, but not systematically studied yet. This review intends to provide a comprehensive insight into the morphology, phytochemistry and pharmacology of the genus Curcuma.

STUDIES ON GENUS CURCUMA

Several reports have been published concerning the phytoconstituents, essential oils, and pharmacological actions of Curcuma (Faiz et al., 2015; Abdel-Lateef et al., 2016). The significance of the genus Curcuma has been recognized since the discovery of the antioxidant properties. The dried rhizome of Curcuma longa L has been found to be a rich source of beneficial phenolic compounds known as the curcuminoids (Lechtenberg et al., 2004). The most important of Curcuma species, C. longa, is commercially known as turmeric plant. Since Vedic age turmeric has been used as spice, herbal medicines, dyeing agents and cosmetics (Shirgurkar et al., 2001). Phytochemical investigations have been reported three main curcuminoids called curcumin, demethoxycurcumin and bisdemethoxycurcumin, which are characteristic developing yellow pigmentation to turmeric rhizome (Lechtenberg et al., 2004).

Curcumin is the main active constituent, which is a curcuminoid present in genus Curcuma. Even though environmental factors influence its stability, curcumin is an important secondary metabolite whose biosynthesis involves genetic control (Anandaraj et al., 2014). The chemical composition of Curcuma longa has been studied extensively. A number of biologically active components have been identified with antioxidant, antimicrobial, aromatic, carminative, anti-helminthic, cholesterol lowering and neuroprotective properties and turmeric has been also used for the treatment of dyspepsia, peptic ulcers and gastric ulcers through pharmacological and clinical studies (Sikha et al., 2015; Shafreen et al., 2018; Jose et al., 2014; Jagtap, 2015). In addition, wound healing and detoxifying properties of curcumin have also reported (Jagtap, 2015).

Some Curcuma species such as Curcuma aeruginosa, Curcuma amada, Curcuma angustifolia, Curcuma caesia, Curcuma elata, Curcuma petiolata, Curcuma rubescens, Curcuma zanthorrhiza and Curcuma zedoaria produce beautiful inflorescences and foliages that have a commercial value in floriculture as ornamental crops (Maciel and Criley, 2003). Among them Curcuma alismatifolia is recognized and popular in international trade as cut flower (Paisooksantivatana and Thepsen, 2001). Even though Curcuminoids have been approved by the US Food and Drug Administration (FDA) as “Generally Recognized As Safe” (GRAS) with good tolerability and safety profiles, which is proven by clinical trials (Gupta et al., 2013). There is limited literature available for studies related to curcuminoids as food value, nutritional composition, and health benefits of the edible Curcuma species (Sanatombi and Sanatombi, 2017).

Many morphological and physicochemical studies have been reported on commonly used plant parts of the Curcuma such as rhizome (Satyendra et al., 2013), leaves (Cuellar et al., 1998), stem (Dung et al., 1997), roots (Dung et al., 1996), inflorescence/ flowers and buds (Dung et al., 1998) and Entire plant (Maikhuri and Gangwar, 1993). From all evidences, the leaf, flowers, fresh and dry rhizomes are important in obtaining different phytochemical effects as a medicine as well as for other uses.

MORPHOLOGICAL CHARACTERISTICS OF GENUS CURCUMA

Many researchers have been studied the morphological characteristics of different species in genus Curcuma. When one consider the Morphology, the genus Curcuma is highly variable in taxonomically important traits. Four tribes in family Zingiberaceae were recognized namely, Globbaeae, Hedychieae, Alpiniaeae and Zingibereae based on morphological features like number of locules and placentation in the ovary, development of staminodes, modifications of the fertile anther, and rhizome-shoot-leaf orientation (Kress et al., 2002) where Curcuma is belongs to Zingibereae.

Commonly the rhizomes of Curcuma are branched, fleshy and aromatic (Revathi and Malathy, 2013). Roots attached to the rhizome often bear conical or ellipsoid tubers (Dung et al., 1997). Basal leaf blades are normally broad, lanceolate or oblong or rarely linear in shape (Cuellar et al., 1998). Flowers contain a single versatile anther and spiral bract with large compound spike inflorescence is a prominent characteristic when
recognizing the genus Curcuma (Dung et al., 1998). The terminal bracts form a sterile cluster is very long and often brightly coloured (Dung et al., 1998). It has two distinct flowering times. Early flowering species develop flowers laterally from rhizomes before the development of leafy shoots and late flowering species usually developed terminally from the leafy shoots (Sirirugsa, 1998). The plants are normally 50 to 200 cm in height. Curcuma species are mostly triploid and reproduce asexually by rhizomes. They do not produce seeds (Malek et al., 2006). Morphology of the different early flowering Curcumas lead to identification problems because they exhibit large intra- and inter specific morphological variations.

C. longa rhizome is medium sized, aromatic and conical in shape. The internal colour of the rhizome is deep orange-yellow (Abdel-Lateef et al., 2016). They are native to Southeast Asia, southern China, the Indian Subcontinent, New Guinea and Northern Australia and naturally found in some warm regions of the world such as tropical Africa, Central America, Florida, and various islands of the Pacific, Indian and Atlantic Oceans. It has cylindrical and branched sessile tubers. Leaf lamina is oblong-lanceolate with wavy margins and short ligules. Inflorescence is in the middle. The peduncle concealed within the leaf sheaths Spike has a distinct white coma and bracts are pale green. Corolla tube of the large flowers are white in colour with unequal lobes. Labellum is light yellow in color with a median dark yellow band. Lateral staminodes are linear and anthers are spurred (Kress et al., 2002).

C. amada Roxb. consists of a large rhizome which is light yellow in colour inside and white towards the periphery, with the smell of green mango being found in southern India (Policegoudra et al., 2010). It has branched sessile tubers, which are thick and cylindrical or elliptipsoid in shape. Roots are fleshy and tubers are absent. Pseudostem is 30 to 35 cm tall. The leaf laminas are oblong or lanceolate with puberulous lower surface and glabrous upper surface. Inflorescence is lateral or central with a peduncle covered by sheaths. Spike is light violet with fused coma bracts at base. Bracts are obtuse and green in colour. Corolla tube of the large flowers are funnel shaped and pale yellow in colour with unequal white lobes (Rao et al., 1989). Labellum is elliptical and pale yellow with a median dark yellow band. Stamens are white thecae and the basal spur is convergent. Ovary has many ovules with dense hairs. Style is long and filiform. Stigma is closely appressed within the anther lobes (Faiz et al., 2015).

C. zedoaria has a large rhizome that is deep yellow in colour. The plant is native to India and Indonesia but now naturalized in other places including the US state of Florida. The sessile tubers are thick and branched (Newman et al., 2004). The roots are thick and fleshy with fusiform fleshy pearl white root tubers. Oblong-lanceolate leaf lamina is having purple coloured patches on the upper side along the whole midrib, which fades in older leaves. Inflorescences are laterally placed with peduncle. Spike has a distinct coma that is fused at the base and dark pink in colour. Fertile bracts are ovate, green with pink margin. 4-5 flowers are in each bract. Funnel shaped corolla tube is white in colour. Labellum is pale yellow in colour with a deep yellow band (Chen et al., 2013).

Curcuma aromatica has an aromatic yellow rhizome with many sessile tubers. The plant is native to Kerala, Karnataka, Orissa and Bihar in India. Leaf lamina is broadly lanceolate, acuminate and lower surface has dense pubescents (Choudhury et al., 1996). Coma bracts in inflorescences are large, spreading and pink in colour (Singh et al., 2002). Fertile bracts pale greenish-white in colour with hairs on upper surface. Corolla tube is funnel-shaped, pinkish-white in colour with unequal lobes. The dorsal lobe is broadly ovate arching over the anther and hooded. The lateral lobes are oblong and narrow. Labellum is deep yellow in colour. Lateral staminodes are oblong, obtuse and long, filiform (Jeon et al., 2015).

Curcuma caesia Roxb. has a large rhizome, which is strongly aromatic. It is native to North-East and Central India. Rhizome is blue in colour in the centre, varying towards grey depending on the nature of the soil and age. The roots are fleshy with many root tubers, which are sessile, and branched (Sarangthem and Haokip, 2010). Distichous leaves with petiole are oblong to lanceolate with acute tip and acuminate base. Glabrous purple or reddish-brown patch is present along the sides on the distal half of the mid rib on upper surface (Paliwal et al., 2011). Large coma bracts present within the inflorescence are pink to violet in colour. Flowers are slightly shorter than the bracts. Corolla tube is long, pink in colour with unequal lobes. Ovary is trilocular with many ovules (Vairappan et al., 2013).

Curcuma haritha has non-aromatic large yellowish grey colour rhizome. It is native to Kerala in India. There are many finger shaped, long and branched sessile tubers. Roots are numerous and fleshy. Ovate-elliptical shaped leaf sheaths with acuminate tip and acute base are green in colour with light pink dots. The leaf is thick, leathery, densely puberulent on the lower surface and sparsely hairy above. Inflorescence is lateral and coma is fused only at the base and bright pink in colour. The lower bracts are fully green in colour whereas the upper ones are green with pink tips. Flowers are slightly smaller than the bracts. Corolla tube white in colour (Kress et al., 2002).

Curcuma ecalcarata has small yellow colour rhizome without sessile tubers (Revathi and Malathy, 2013). It is native to Kerala in India. Leaf lamina is broadly ovate, acuminate and densely pubescent on the lower surface. Inflorescences are centrally located with a pubescent peduncle. Coma bracts are longer and bright pink or greenish-white. Flowers are yellow or orange-yellow in colour and longer than the bracts (Sirirugsa, 1998).
Curcuma oligantha has a small rhizome. It is non-aromatic and internal colour is yellow. Sessile tubers are absent. Leaves are distichous and the lamina is ovate-elliptic in shape with acuminate tip and oblique base. Inflorescence is lateral and there is no any distinct coma. Fertile bracts are green in colour with a pinkish tinge. Flowers are longer than the bracts. There are many seeds produced in this species (Lai et al., 2004).

Curcuma rakatakanta rhizome is medium sized, whitish towards the periphery and aromatic. The plant is naturally distributed in Kerala, India. There are many fleshy roots. Leaves are distichous and petiolar. The green leaf lamina is oblanceolate with acuminate base and tip. Reddish-purple sheaths and the spike long with a distinct coma cover inflorescence. Flowers are as long as the bracts. Style is long and filiform. Stigma is slightly exerted from the anther. Fruiting is unknown (Kim et al., 2007). Rhizome of Curcuma aereginosa is large (Pandey and Chowdhury, 2003). It is yellowish green colour in the centre and strongly aromatic (Angelo et al., 2014). The sessile tubers are branched and condensed. Leaves are distichous and oblanceolate in shape. Leaf tip is acute and base is acuminate. A purple or reddish-brown patch is present along the sides of the distal half of the mid rib on upper side. Coma bracts are pink to violet in colour. Flowers are slightly shorter than the bracts. Ovary is trilocular with many ovules (Kamazer et al., 2012).

Curcuma angustifolia has narrow, green, glabrous leaves. It is most commonly found growing wild in India, especially in the northeast and western coastal plains and hills. Such areas include the states of Maharashatra, Madhya Pradesh, Andhra Pradesh, Himachal Pradesh, Orissa (Odisha), Chhattisgarh, Tamil Nadu, and Kerala. This species can also be found in Burma, Laos, Nepal, and Pakistan. Small inflorescences are bearing yellow flowers with pink coma bracts (Sharma, 2012). Flowers usually appear near to the ground in the beginning of the rainy season (Jena et al., 2017). Species is endemic to northwestern, central, and south India. Curcuma australasica, commonly known as Cape York lily, is an endemic species and the only native representative of the genus from Australia (Sharma, 2012). The plant species is usually distributed along the coast of the Gulf of Carpentaria and New Guinea and shady rainforest margins of the Cape York Peninsula in northern Queensland (Sharma et al., 2011). Curcuma caulina is an herbaceous perennial plant producing unbranched, erect, leafy pseudostems. Underground rhizome is bearing inflorescence with prominent greenish white or pinkish white colored bracts and yellow or white colored flowers (Sharma, 2012). The plant is reported to be a native of India that grows in the wild in areas of high annual rainfall (Pukhrambah, 2002).

Rhizome of Curcuma leuconriza is a source of an edible starch (Huxley, 1992). According to the Grieve (1971), it is a stemless perennial plant growing up to 60 cm tall. Curcuma manga is commonly known as “mango turmeric” because it has a mango-like smell of rhizome as in Curcuma amada (Sharma, 2012). It is an herbaceous, perennial plant producing clumps. Erect pseudostems are emerging from a branched underground rhizome. It grows commonly in Java and Thailand (Liu and Wu, 1999). Curcuma phaeocaulis is widely distributed in southern regions of China (Sharma, 2012). This plant has similar characteristics as C. zedoaria, Curcuma caesia, and Curcuma aegruina (Sharma, 2012). Inflorescences are arising from pale blue, green, yellowish green or yellow colour rhizomes on separate shoots (Sirirugsa et al., 2007).

Curcuma pireeana is a herbaceous perennial plant. It has originated in Cambodia and Thailand (Tyag, 2005). Rhizomatous rootstocks are producing clumps of leafy stems. Inflorescences are sessile and have white staminodes with large purple-blotched apices (Huxley, 1992). Curcuma pseudomontana is grown as a potential ornamental species in Karnataka, Maharashatra, and Andhra Pradesh and endemic to the Western and Eastern Ghats of peninsular India. It has beautiful well-developed coma, with deep yellow flowers and broadly ovate and prominently succulat leaves with bright green color (Sharma, 2012). Curcuma purpurascens is a perennial herb with pseudostems arising from a branched rhizome and wide leaf blades. It is considered as a less known Curcuma species, due to limited phytochemical and biological investigations on this plant (Rajashhekhara and Sharma, 2010). Curcuma zanthorrhiza is a deeply colored rhizome native to Indonesia and was used as a dye. Nowadays it is often used as a substitute for Curcuma aromatica in cosmetics. The plant bears a cluster of erect pseudostems an underground rhizome and each pseudostem is made up of about eight long leaves (Ravindran et al., 2007).

PHYTOCHEMICALS OF GENUS CURCUMA

The rhizomes of the Curcuma species are the most commonly used part for chemical extractions. Non-volatile curcuminoinds and volatile oils are the main active components of the rhizome. Curcumin, demethoxycurcumin and bisdemethoxycurcumin are the major curcuminoinds. They are nontoxic polyphenolic derivatives of curcumin. Sesquiterpenoids and monoterpenoids are identified as the major components in Curcuma oil (Xiang et al., 2018).

C. longa is the major species subjected to many studies. It contains protein (6.3%), fat (5.1%), minerals (3.5%) and carbohydrates (69.4%) (Anjusha and Gangaprasad, 2014). The essential oil (5.8%) obtained by steam distillation of rhizomes contains a-phellandrene, sabinene, cineol, borneol, zingiberene and sesquiterpines (Zhang et al., 2017). Curcumin (diferuloylmethane) is the compound responsible for the yellow colour, and comprises curcumin I (94%), curcumin II (6%) and
curcumin III (0.3%) (Xiang et al., 2018). Chemotypes in the turmeric vary widely. There are hundreds of compounds identified from the turmeric essential oils such as; ar-turmerone, α-turmerone, and β-turmerone, followed by notable amounts of α-zingiberene, curlone, ar-curcumene, α-santalene, ς-santalene, β-sesquiphellandrene, (Z)-β-oicenene, β-bisabolene, β-caryophyllene, α-phellandrene, (Z)-β-farnesene etc (Angel et al., 2014). There is a significant variation in between the essential oils obtained from fresh and dry rhizomes of Curcuma longa (Kutti and Lingamallu, 2012). Oil extracted from rhizome of C. zedoaria is mainly composed of sesquiterpenoids and monoterpenoids (Purkeyastha et al., 2006). Essential oils in Curcuma aeruginosa is usually composed of relatively equal amounts of monoterpenes and sesquiterpenes such as; 8,9-dehydro-9-formyl-cycloisoolongifolene (35.3%), dihydrocostunolide (22.5%) (Kamazeri et al., 2012), germacrone (23.5%), curzerenone (11.8%) (Theanphong et al., 2015), dehydrocurdione (27.6%), curcumenol (15.1%), 1,8-cineole (22.7%), germacrone (17.7%) (Srivilai et al., 2018). Generally, monoterpenes are predominated (80–88%) in rhizomes of Curcuma zanthorrhiza (Akarchariya et al., 2017). The major constituents in Curcuma aromatica rhizome consisted with 8,9-dehydro-9-formyl-cycloisoolongifolene (2.7-36.8%), germacrone (4.3-16.5%), ar-turmerone (2.5-17.7%), turmerone (2.6-18.4%), curdione (50.6%), camphor (18.8-32.3%), xanthorrhizol (26.3%), ar-curcumene (19.5%), di-epi-a-cedrene (16.5%), curcumin (35.8%), and 1,8-cineole (12.2%) (Tsai et al., 2011). Curcuma phaeocaulis rhizome has 8,9-dehydro-9-formyl-cycloisoolongifolene (15.6-46.2%), germacrone (8.9-21.2%), and curelone (0.8-20.2%) as the main constituents (Zhang et al., 2017). Curcuma caesia composed mainly of 1,8-cineole (30.1%) followed by camphor, ar-curcumene, and camphene (Angel et al., 2014).

However, different Curcuma species produce a wide variety of volatile sesquiterpenes, monoterpenes, and other aromatic compounds (Singh et al., 2010). There is a significant variation in composition of Curcuma essential oils. Genotype, variety, geographical location, climate, season, cultivation practices, fertilizer application, stress during growth or maturity, harvesting time, stage of maturity, storage, extraction, and analysis methods will greatly determine different oil chemical profiles (Singhamitra et al., 2015; Srinivasan et al., 2016). However, some of the variation could be due to misidentification of the plant species or some of the components (Noura and William, 2018).

PHARMACOLOGICAL ACTION OF GENUS CURCUMA

Phytochemicals of Curcuma species possesses a wide variety of pharmacological properties, including anti-inflammatory (Sikha et al., 2015), anticancerous (Li et al., 2014), antiproliferative (Oon et al., 2015), hypocholesterolemic (Shafreen et al., 2018), anti diabetic (Nwozo et al., 2014), antihepatotoxic (Fagodia et al., 2017), antidiarrheal (Fouad et al., 2017), antimicrobial (Jagtap, 2015) and insecticidal (Fouad et al., 2017) activities. Curcuma oils are also known to enhance immune function, promote blood circulation, accelerate toxin elimination, and stimulate digestion (Raut and Karuppayil, 2014). C. longa and C. zedoaria are the most widely studied species of genus Curcuma (Noura and William, 2018).

Antioxidant activity

Curcumin has the ability to improve systemic markers of oxidative stress (Sahebkar et al., 2015). It can increase serum activities of antioxidants such as superoxide dismutase (Panahi et al., 2016a). Curcumins can scavenge different forms of free radicals, such as reactive oxygen (ROS) and nitrogen species (RNS) (Menon and Sudheer, 2007). Also, it can inhibit ROS-generating enzymes such as lipoxygenase/cyclooxygenase and xanthine hydrogenase/oxidase (Lin et al., 2007). In addition, curcumin is an efficient scavenger of peroxy radicals like vitamin E. Therefore, curcumin is also considered as a chain-breaking antioxidant (Priyadarsini et al., 2003). The antioxidant mechanism of curcumin is attributed to its unique conjugated structure, which includes two methoxylated phenols and an enol form of β-diketone (Fagodia et al., 2017).

Anti-Inflammatory activity

Curcumin blocks nuclear factor activation increased by several different inflammatory stimuli. Curcumin is effective against carragheen-induced oedema in rats and mice. In addition, curcumin stimulates stress-induced expression of stress proteins and may act in a way similar to indomethacin and salicylate. Moreover, curcumins enhance wound-healing in diabetic rats and mice and in H2O2-induced damage in human keratinocytes and fibroblasts (Panahi et al., 2016b).

Anticarcinogenic effect

Induction of apoptosis of curcumins plays an important role in its anticarcinogenic effect. It inhibits cell-cycle progression and cancerous cell growth in rat aortic smooth muscle cells (Chen et al., 2013). Curcumin induces apoptotic cell death by DNA-damage in human cancer cell lines via acting as topoisomerase II poison (Martin-Cordero et al., 2003). Curcumin rapidly reduces the potential in mitochondrial membrane to release of
cytochrome c (Jana et al., 2004). Curcumin can induce apoptosis by enhancing tumour necrosis factor-related apoptosis-inducing ligand (Deeb et al., 2003). Curcumin delays apoptosis along with the arrest of cell cycle at G1 phase in colorectal carcinoma cell line (Chen et al., 2013). Furthermore, curcumin produces nonselective inhibition of proliferation in several leukaemia, nontransformed haematopoietic progenitor cells. Curcumin suppresses human breast carcinoma and cancer cells through multiple pathways (Li et al., 2014).

Antimutagenic activity

Curcumin has been shown to reduce the number of aberrant cells in cyclophosphamide–induced chromosomal aberration in Wistar rats at 100 and 200 mg/kg body weight doses (Shukla et al., 2002). *Curcuma longa* has the ability to prevent mutation in urethane models (Hamss et al., 1999).

Anti-tumour activity

Germacrone from *Curcuma aromatica* inhibits the proliferation of glioma cells by promoting apoptosis and inducing cell cycle arrest. It also concluded that germacrone might be a novel potent chemo preventive drug for gliomas via regulating the expression of proteins associated with apoptosis and G1 cell cycle arrest (Liu et al., 2014). Beta-elemene isolated from the rhizome of *C. aromatica* is associated with the growth of hepatoma in mice on cellular proliferative activity (Wu et al., 2000).

Anticoagulant activity and Anti-platelet activity

Curcumin inhibits collagen and adrenaline-induced platelet aggregation in *in vitro* as well as *in vivo* in rat thoracic aorta (Su et al., 2017). According to Jantan et al., 2008, Curcumin isolated from *Curcuma aromatica* was the most effective antiplatelet compound as it inhibited arachidonic acid (AA), collagen and ADP-induced platelet aggregation with IC\(_{50}\) values of 37.5, 60.9 and 45.7 microM, respectively.

Antifertility activity

The 100% antifertility effect has been reported in rats with petroleum ether and aqueous extracts of turmeric rhizomes when fed orally (Garg, 1974). Curcumin inhibits 5α-reductase, which converts testosterone to 5α-dihydrotestosterone, thereby inhibits the growth of flank organs in hamsters (Liao et al., 2001). Curcumin also inhibits human sperm motility (Rithaporn et al., 2003).

Antitussive activity

Antitussive effect on Sulfur dioxide induced cough model in mice suggested that the *Curcuma aromatica* extract exhibited significant antitussive activity in a dose dependent manner (Marina et al., 2008).

Antimelanogenic activity

Antimelanogenic effects of *C. aromatica* extracts were investigated with Ultraviolet A (UVA) irradiation, leading to melanogenesis, which is associated with melanoma skin cancer and hyperpigmentation by assessing tyrosinase activity, tyrosinase mRNA levels, and melanin content in human melanoma cells. This study demonstrated that UVA mediated melanin productions were suppressed by *C. aromatica* extracts at non-cytotoxic concentrations (Panich et al., 2010).

Anti-nephrotoxic activity

C. aromatica leaf extract were studied on nephrotoxicity induced by arsenic trioxide in rats and the results revealed that leaf extract has a potential to modulate the renal dysfunction caused by arsenic trioxide (Saxena et al., 2009).

Antidiabetic activity

Galactose-induced cataract formation can be prevented by very low doses of curcumin (Suryanarayana et al., 2003). Blood sugar level in alloxan-induced diabetes in rat is decreased by curcumin (Arun and Nalini, 2002). Advanced glycation products induced complications in diabetes mellitus also can be reduced by curcumin (Nwozo et al., 2014). Ethanolic extract containing both curcuminoids and sesquiterpenoids is more powerfully hypoglycemic than either curcuminoids or sesquiterpenoids (Nishiyama et al., 2005).

Antifungal activity

Prevention of fungal growth may depend on concentration of curcumin. Dried powder of *Curcuma* rhizome addition in plant tissue culture at the 0.8 and 1.0g/L had considerable inhibitory activity against fungal infections (Ungphaplaen, 2005). The methanolic extract of *C. longa* showed antifungal activity against Cryptococcus neoformans and Candida albicans with values of 128 and 256 μg/mL respectively (Kim et al., 2003). Hexane extract of *C. longa* has antifungal effect against Rhizoctonia solani, Phytophthora infestans, and Erysiphe graminis (Chowdhury et al., 2008). Curcumin oil
showed antifungal effect against *Fusarium solani* and *Helminthosporium* (Prucksunand et al., 2001). It was reported that 18 months old and freshly distilled oil isolated from rhizome of *Curcuma longa* exhibited the most potent antifungal effect against 29 clinical isolates of dermatophytes with values of 7.2 and 7.8 mg/mL, respectively. Curcumin showed more potent significant effect against *Paracoccidioides brasiliensis* than fluconazole and it did not affect the growth of *Aspergillus* species (Martins et al., 2009).

Antibacterial activity

Curcumin and the oil fractions extracted from *Curcuma* species can suppress the growth of several bacteria like *Streptococcus*, *Staphylococcus*, *Lactobacillus*, etc (Bhavani and Sreenivasa, 1979). The aqueous extract of *Curcuma longa* rhizomes has shown antibacterial effects (Kumar et al., 2001). Curcumin also prevents growth of *Helicobacter pylori* CagA+ strains *in vitro* (Mahady et al., 2002).

Antiviral activity

Curcumin acts as an inhibitor of Epstein–Barr virus key activator BamH fragment Z left frame 1 (BZLF1) protein transcription in Raji DR-LUC cells (Taher et al., 2003). Curcumin in the course of inhibitory activity against the enzyme called inosine monophosphate dehydrogenase (IMPDH) is flexible as a potent antiviral compound (Dairaku et al., 2010). According to the Li et al., 1993, curcumin to be an effective compound to inhibit the HIV-1 LTR-directed gene expression without any major effects on cell viability. Moreover, curcumin reserved the acetylation of Tat protein of HIV significantly by p300 related with invasion of HIV-1 multiplication (Balasubramanyam et al., 2004).

Antiprotozoan activity

It has been reported that the ethanol extract of the rhizomes has anti- *Entamoeba histolytica* activity and anti- *Leishmania* activity *in vitro* (Koide et al., 2002). Several synthetic derivatives of curcumin showed Anti- *Plasmodium falciparum* effects, anti- *L. major* effects (Rasmussen et al., 2000) and anti- *L. amazonensis* effects (Gomes et al., 2002).

Antidepressant properties and effect on nervous system

A study has been reported that rats suffering from the chronic mild stress (CMS) have a considerably lower consumption of sucrose, increased interleukin (IL-6), tumour necrosis factor alpha (TNF-α) levels, Corticotropin releasing factor (CRF), and cortisol levels. Ethanolic extract of turmeric causes to increase the sucrose intake to normal control levels, increase in serum IL-6 and TNF-α level and reduced the CRF levels (Yu et al., 2002). Ethanolic extracts of *C. longa* causes to reverse the decrease in some neurotransmitters concentrations as well as the increase in serotonin turnover, cortisol levels and serum corticotrophin-releasing factor (Xia et al., 2007). According to Xu et al., 2006, curcumin exhibited antidepressant activity on behavior in a long-lasting stress rats instead of imipramine, which was the control in the study. A study on Alzheimer’s disease (AD) has been shown a direct effect of curcumin in decreasing the amyloid pathology (Ringman et al., 2005).

Anti-asthmatic activity and smooth muscle relaxant activity

The hydroalcoholic extract of *C. caesia* showed relaxant effect in Guinea pig trachea and study revealed that the extract has receptor antagonists and enzyme inhibitors (Arulmozhi et al., 2006). The *Curcuma caesia* extract concentration dependently relaxed the carbachol (1 μM) -induced pre-contractions. Methanolic *C. caesia* extract was studied on the histamine aerosol induced bronchospasm and pre-convulsion dyspnoea in guinea pigs showed significant protection against histamine-induced bronchospasm (Paliwal et al., 2011).

Analgesic activity

Analgesic and antipyretic activity of extracts obtained from *C. caesia* and *C. amada* rhizomes were evaluated by chemical model of acute pain and brewer’s yeast induced hyperthermia in rats. Both plants exerted analgesic and antipyretic activity while *C. amada* showed better response than *Curcuma caesia* (Baghel et al., 2013).

Anthelmintic activity

Rhizomes of *C. amada* and *C. caesia* with four extracts viz; Petroleum ether, Dichloromethane, ethanol and aqueous extract were investigated for anthelmintic activity at three different concentrations (50 mg/ml, 100 mg/ml and 150 mg/ml). The results suggested that ethanol extract (150 mg/ml) of *C. caesia* was most effective in causing paralysis of earthworms, while the ethanol extract (150 mg/ml) and Dichloromethane extract (150 mg/ml) of both *Curcuma* species were very effective in causing death of earthworms (Gill et al., 2011).

Effect on gastrointestinal system

Turmeric powder act as gastroprotectant against irritants
while increasing mucin secretion in rabbits (Lee et al., 2003). Anti-ulcerogen (Uemura et al., 2001), ulcerogenic activities and antiflatulent activity in in vivo and in vitro experiments in rats also has been reported. Curcumin increases the intestinal lipase, sucrose, and maltase activity (Su et al., 2017). Curcumin also suppresses the intestinal fibrosis (Lin et al., 2006). Moreover, it has been reported that curcumin has significant effect on dyspepsia and gastric Ulcer and a study showed defensive effects of male Sprague-Dawley (pylorus-ligated) rats treated with curcumin (Kim et al., 2005). Ethanolic extracts of Curcuma are believed to inhibit gastric acid, gastric juice secretion, and ulcer formation (Rafatullah et al., 1990). Curcumin shows protective activity in cultured rat hepatocytes against carbon tetrachloride, D-galactosamine, peroxide and ionophore-induced toxicity (Kang et al., 2002). Both curcumin and essential oil of C. longa showed increased bile production in dogs (Jentzsch et al., 1959) and increases the activity of pancreatic lipase, amylase, trypsin and chymotrypsin (Platel et al., 2000). 1-phenyl-1-hydroxy-n-pentane of C. longa increases plasma secretion and bicarbonate levels (Chey et al., 1983).

Effect on cardiovascular system
Curcumin increases the possibility of pharmacological interventions to correct the defective Ca\(^{2+}\) homeostasis in the cardiac muscle by Ca\(^{2+}\) transport and its slippage from the cardiac muscle sarcoplasmic reticulum (Sumbilla et al., 2002). Curcumin also has been reported a significant hypocholesteremic effect in hypercholesteremic rats (Shafreen et al., 2018).

Effect on nervous system
Curcumin and manganese complexes of curcumin extracted from Curcuma plants offer protective action against vascular dementia (Thiyagarajan and Sharma, 2004).

Effect on lipid metabolism
In vivo interaction between curcumin and \(\alpha\)-tocopherol that may increase the bioavailability of vitamin E and decrease cholesterol levels by significantly reducing low density lipoprotein and very low-density lipoprotein in plasma and total cholesterol level in liver along with an increment of \(\alpha\)-tocopherol level in rat plasma (Kamal-Eldin et al., 2000). Treatments with curcumin also leads to decrease the ethanol-induced liver damage of humans (Akrishnan et al., 2001).

Wound healing activity
Powdered rhizome, topical application of rhizome extracts and cream formulations of Curcuma aromatica exhibited wound healing activity in excision wound models of rabbits (Kumar et al., 2009).

Other uses of genus Curcuma
Curcumin has been recognized and used worldwide in many different forms due to its other multiple potential benefits except pharmacological actions. For example, in India and Sri Lanka, turmeric is used in curries; in Japan, it is served in tea; in Thailand, it is used in cosmetics; in China, it is used as a colorant. In addition, in Korea, it is served in drinks; in Malaysia, it is used as an antiseptic; and in the United States, it is used in mustard sauce, cheese, butter, and chips, as a preservative and a coloring agent (Gupta et al., 2013).

Curcuma as a natural dye
People used Curcuma species as natural dyes in cosmetics, food (Padhi, 2012), textile materials leather and in medicine (Nattadon et al., 2012). Curcumin, the only natural pigment extracted from the fresh or dried rhizomes of turmeric is historic one of the most famous and the brightest of naturally occurring yellow dyes. It is capable of directly dyeing silk, wool and cotton. Turmeric variety and maturity determine the curcuminoid content, which responsible for color. Harvesting at the correct maturity is an important factor for optimum colour (Aisha et al., 2018). The dye is found to have good saturation and rubbing fastness on cotton (Reazuddin et al., 2017).

Insecticidal effect
It has been found that the compound ar-turmerone of Curcuma could be used as a low-cost botanical insecticide for integrated management of cabbage looper in vegetable production (Abbott, 1925). The rhizome extract of Curcuma longa was found stronger on dose mortality action against Tribolium castaneum adults than the aerial part extract (Talukder and Howse, 1993). Termite (Reticulitermes flavipes) (Kollar) was exposed to different solvent extracts of turmeric to investigate potential termicidal properties showed that termicidal components of turmeric are extractable as a blend containing mainly ar-turmerone, turmerone, and curlone (Alshehry et al., 2014). Turmeric is toxic to the maize weevil (Sitophilus zeamais) and the fall armyworm (Spodoptera frugiperda) and essential oil extracts from turmeric leaf are toxic against Sitophilus oryzae L., Rhynozertha dominica and Tribolium castaneum (Tavaresa et al., 2013).

Repellent activity
C. aromatica extracts showed repellence against Aedes
CONCLUSION

According to the review, genus *Curcuma* is an important medicinal plant with several lead molecules, which are responsible for numerous bioactivities as well as other uses. Hence, isolation and identification of those important molecules are needed for opening of new window in therapeutics. Although there are many *Curcuma* species, chemical constituents and bioactivities and other uses have been investigated only for few commonly used species. In addition, there is limited literature available for studies related to food value, nutritional composition, and health benefits of the edible *Curcuma* species. Further research on nutritional values along with pharmacological studies of uninvestigated and novel compounds is desirable. This will provide immense opportunities for the development of new plant-based food and pharmaceutical products. Moreover, there is no systematic method to differentiate the species within the genera. Even though many species have been identified in India, other countries have not paid much attention to identify *Curcuma* species within their countries and phytochemical or pharmacological investigations. Therefore, researchers have vast field of research to be discovered than what exists presently on medicinally important *Curcuma* species, which will be more useful in therapeutic alternatives to treat many diseases as well as other ecological remedies.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGMENT

The authors appreciate Research Grants of Uva Wellassa University for funding this research.

REFERENCES

Mahady GB, Pendlind SL, Yun G, Lu ZZ (2002). Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, of group 1 carcinogenic. Anticancer Research 22:4179-4181.

