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Accurate estimates of groundwater level have a valuable effect in improving decision support systems 
of groundwater resources exploitation. The present study investigates the ability of a hybrid model of 
artificial neural network (ANN) and genetic algorithm (GA) in forecasting groundwater level in an 
individual well (target well). A standard feed forward networks (FFN) and recurrent neural networks 
(RNN) are utilized for performing the prediction task. Moreover, GA is used in order to determine the 
optimal structure of ANN (that is, number of neurons for each hidden layer). Air temperature, rainfall 
depth and groundwater levels in neighboring wells in Kerman plain (Kerman, Iran) were used as input 
data of the hybrid model. This study indicates that the ANN-GA model can be used successfully to 
forecast groundwater levels of individual wells. In addition, a comparative study of both hybrid models 
indicates that the feed forward networks performed better than the recurrent neural networks.  
 
Key words: Artificial neural network, feed forward networks, recurrent neural networks, genetic algorithm, 
groundwater level.  

 
 
INTRODUCTION 
 
The estimation accuracy of the groundwater levels has a 
valuable effect in efficiency of a supportive deciding 
system and exploitation of available water resources. 
Kerman is one of the provinces of Iran which is located in 
a dry area with 150 mm precipitation on average 
annually. Because of the development in cities, 
industries, agriculture and drought in these two recent 
decades, groundwater level has decreased at this area 
(around 1 to 3 m annually). In such situation, the 
simulated models of groundwater level can be used as an 
instrument for management of withdrawing water from 
these limited sources. 

The conceptual and physically based models require a 
large quantity of good quality data, sophisticated 
programs for calibration using rigorous optimization tech-
niques and a detailed understanding of the underlying 
physical process. When data is not sufficient, empirical 
models are a good alternative method, and can provide 
useful results without a costly calibration time (Krishna et 
al., 2008). In recent years, artificial neural networks being 
capable  of  analyzing  long  series  and large-scale  data,   
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and it become increasingly popular in hydrology and 
water resources among researchers and practicing 
engineers. 

ANNs are proven to be effective in modeling virtually 
any nonlinear function to an arbitrary degree of accuracy. 
Nasseri et al. (2008) developed a feed-forward neural 
network coupled with GA to simulate the rainfall field. The 
technique implemented to forecast rainfall for a number 
of times using hyetograph of recording rain gauges. 
Results showed that when FFN coupled with GA, the 
model performed better compared to similar work of 
using ANN alone.ANN applications in hydrology vary, 
from real-time to event based modeling. They have been 
used for groundwater modeling, level estimation 
(Coulibaly et al., 2001; Nourani et al., 2008).  

A comprehensive review of the applications of ANNs in 
hydrology can be found in the ASCE Task Committee 
report (ASCE, 2000a, b). A few applications of the ANN 
approach in groundwater related problems can be found 
in the literature (Coppola et al., 2005; Lallahema et al., 
2005). Groundwater levels have been forecasted in an 
individual well by monitoring continuously over a period of 
time using ANN (Daliakopoulos et al., 2005). In another 
study a developed ANN model used to forecast 
groundwater levels in an urban  coastal  aquifer  (Krishna  
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et al., 2008). Groundwater levels have also been 
forecasted by taking into account the nearby wells and 
climatic parameters by developing a single model 
pertaining to each individual well by developing well at 
various lead periods using artificial neural networks 
(Nayak et al., 2006). In another study an ANN model 
used to forecast groundwater changes in an aquifer 
(Tsanis et al., 2008). In this study, a new method was 
proposed to improve the forecasting of monthly 
groundwater level by using genetic algorithm to optimize 
the structure of multi-layer feed-forward network (FFN) 
and recurrent neural networks (RNN). Genetic algorithm 
(GA) is used to search for optimal structure of ANNs for 
forecasting groundwater level. In other words, a novel, 
ANNs model based on genetic algorithm was developed 
to build relationship between time series information 
nearby wells, climatic parameters data and groundwater 
level fluctuations in individual well. 
 
 
MATERIALS AND METHODS 

 
Artificial neural networks 

 
Artificial neural networks estimation approach has received 
tremendous attentions in the last few decades. An interesting 
property of ANNs is that they often work well even when the training 

data sets contain noises and measurement errors (Hammerstrom, 
1993). Moreover, they have the capability of representing complex 
behaviors of nonlinear systems (Maier and Dandy, 2000). The 
advantage of the ANN is that with no prior knowledge of the actual 
physical process and, hence, the exact relationship between sets of 
input and output data, if acknowledged to exist, the network can be 
trained to learn such a relationship. The ability to train and learn the 
output from a given input makes ANN capable of describing large 
scale arbitrarily complex non-linear problems. A neural network is 

characterized by its architecture that represents the pattern of 
connection between nodes, its method of determining the connec-
tion weights, and the activation function (Fausett, 1994). A typical 
ANN consists of a number of nodes that are organized according to 
a particular arrangement. 
 
 

Feed forward neural network models 

 
One way of characterizing ANNs is based on the direction of 
information flowing and processing, as feed-forward (where the 
information flows through the nodes from the input to the output 
side) and recurrent (where the information flows through the nodes 
in both directions). Among these combinations, the multi-layer feed-
forward networks, also known as multi-layer perceptron (MLPs), 
trained with a back-propagation learning algorithm have been found 
to provide the best performance with regard to input-output function 

approximation, such as forecasting applications. A typical MLP with 
one hidden layer is shown in Figure 1; (a). The first Layer connects 
with the input variables and is called the input layer. The last layer 
connects to the output variables and is called the output layer. The 
layer between the input and output layers, is called the hidden layer 
(there may be more than one hidden layer in an MLP).The 
processing elements in each layer are called nodes or units. Each 
node is connected to the nodes of neighboring layers. The 

parameters associated with each of these connections are called 
weights. The architecture of a typical node (in the hidden or output 
layer) is also shown in Figure  1; (b) Each node j receives  incoming  

 
 
 
 
signals from every node i in the previous layer. Associated with 
each incoming signal xi is a weight wji. The effective incoming signal 
sj to node j is the weighted sum of all the incoming signals, is 
passed through the effective incoming signal, sj non-linear 
activation function (sometimes called a Transfer function or 
threshold function) to produce the outgoing signal yj of the node. 
 

 
jsjsf

exp1

1
)(

 (1) 
 
The most commonly used function in an MLP trained with back-
propagation algorithm is the sigmoid function. The sigmoid function 
most often used for ANNs is the logistic function (Sivakumar et al., 
2002):  
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Recurrent neural network models 

 
The recurrent neural network (RNN) is another multi-layer 
architecture that has been used for a variety of applications 
including control systems and forecasting of dynamic processes. In 
this section RNN structure is briefly discussed.  

The RNN architecture, a variation of general feed-forward back-
propagation (FFBP) architecture, is used to capture dynamic and 
highly nonlinear systems by including a feedback mechanism in the 
architecture. The general RNN architecture uses specialized hidden 
nodes to introduce feedback to the network. In such a network, the 
output of these specialized nodes is provided as input to others. 
Once such feedback connections are allowed, the network topology 
becomes more connected since any node can be connected to any 
other node, including to itself. These self-connected or self-
recurrent feedback nodes form the "context" layer of a network and 
are tagged on to the network structure along with the usual non-
feedback nodes. The "context" layer is used to retain information 

between training iterations and serve as memory of the system by 
retaining the state of the network before the next set of data is 
processed. Each time a pattern is presented, each context node 
computes its activation just as in a feed forward network. However, 
its output is now able to reflect the state of the network before the 
pattern is seen. When subsequent patterns are presented, the 
hidden and output units’ states will be a function of everything the 
network has seen so far. Thus, at each time period, activation 

propagates only forward through one layer of connections. Once 
some level of activation is present in the network, it will continue to 
flow through all the remaining hidden layers, even in the absence of 
any new input whatsoever. However, this added feedback 
mechanism (memory function) requires additional network 
connections, a large amount of storage and computation, and a 
larger training set in order for the RNN to work well. This invariably 
leads to difficult network training and slow convergence (Atya and 
Parlos, 2000). 

 
 
Training methodology in RNN 
 

The method of RNN training is similar to that of feed forward 
network models. The training algorithm is explained with the help of 
a simple example. A small network which has two input neurons, 
one hidden layer having three neurons and one output neuron is 

shown in Figure 2. In addition, a neuron taking input from the output 
layer and connected to the hidden layer is added as shown. This 
neuron is the additional neuron in RNN. 
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 Figure.1.(a) Multi-layer feed forward ANN, (b) a simple neuron. 

a) 

b) 
 

 

Figure 1. (a) Multi layer forward ANN (b) a simple neuron. 

 
 
 

 
 

 
 

Figure 2. Typical recurrent neural network. 
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Figure 3. The flow chart of ANN-GA model. 
 

 
 
Genetic algorithm 

 
GA optimizes using a search process that emulates natural 
evolution. On the other hand GA is a global heuristic, stochastic, 
optimization technique based on evolution theory and genetic 
principles developed by (Holland, 1975). Goldberg and Michalewicz 
(1992) discussed the mechanism and robustness of GA in solving 
nonlinear optimization problems (Goldberg, 1989; Michalewicz, 
1992). The algorithm begins with a randomly generated population 

which is consisting of chromosomes, and applies three kinds of 
genetic operators: The selection, crossover and mutation operators 
to find the optimal solutions. The selection operator chooses 
chromosomes from the current population based on fitness value of 
the individuals. The crossover operator combines the features of 
two parent chromosomes to form two similar offspring by swapping 
corresponding segments of the parents (Goldberg, 1989). The 
mutation operator creates new chromosomes by randomly 
changing the genes of existing chromosomes. GA can explore the 
entire design space by the genetic manipulations; it does not easily 
fall into a certain local minima or maxima.  

As this occurs, the GA converges to increasingly better solutions. 
Improvements in fitness, however, diminish as the population 
diversity decreases and the population converges toward a good 
solution. Stopping criteria such as “100 generations without 
improvement” and minimum population diversity are often used to 
terminate the algorithm when improvements are sufficiently small 
and infrequent. These concepts are well described in (Davis, 1991; 

Goldberg, 1989). Therefore, GA is an aggressive search technique 
that quickly converges to find the optimal solution in a large solution 
domain.  
 
 
ANN-GA model scheme 

 
In this research, a multi-layered feed-forward neural network (FFN) 

and recurrent neural network (RNN) with a back propagation 
algorithm are adopted. Although the back propagation algorithm is 
successful,  it  has  some   disadvantages.   The   algorithm   is   not 

guaranteed to find global minimum of error space and the 

convergence tends to be extremely slow. In addition, the selection 
of the learning factor and inertial factor affects the convergence of 
the BP neural network which is usually determined by experience. 
In present research, the number of neurons in the hidden layer is 
determined using the genetic algorithm. The number of hidden 
layers and the number of nodes in each layer depends on the 
complexity of the patterns and the nature of the problem to be 
solved. The use of a single hidden layer is sufficient to approximate 

to any continuous function as closely as requested (Funahashi, 
1989; Hornik et al., 1990) and studies also showed that having 
more than two layers may not result in significant performance 
improvements (Patuwo et al., 1993) Thus, in our study, a two-layer 
ANN is utilized (Figure 1). The number of neurons in the input and 
output layers are given by the number of input and output variables 
of network. The number of neurons in hidden layer is obtained by 
GA. In this study, an ANN with one hidden layer is employed. The 
number of neurons in this layer is determined by GA. The 
optimization process flow chart of the ANN-GA model is shown in 
Figure 3. The sigmoid function was used in each node of the hidden 
layer and output layer as the transfer function.  

Number of neurons in hidden layer is the only information that is 
coded in a chromosome in GA. After that, the GA is run and in its 
fitness assignment past, an ANN which the number of its hidden 
layer neuron is determined by coded chromosome is trained via 
ANN. Then the MSE of this trained ANN is set as the fitness values. 
The GA will generate many of individual values which they will be 

set to MSE. This process is depicted in Figure 3. 
 
 
Simulation setup 

 
Study area and data set 
 
The area which studied in this research is the Kerman plain aquifer 

which is a part of Kerman province located in the south-eastern of  
Iran as shown in Figure 4. In this plain, no permanent river exists; 
therefore,  the  supply  of  water  demands  in  agriculture,  industry,  
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Figure 4. The location of wells in Kerman plain. 

 
 

 

 

Figure.6. Time series plot for the temperature versus month 

 

 
 
Figure 5. Time series plot for the rainfall versus month. 

 
 

 

domestic and municipal sectors in 3200 km
2
 area around this plain 

highly depends on groundwater. In the past two decades, frequent 
hydrologic droughts besides the increasing number of pumping 
wells have caused a decline rate of 1 to 3 m annually. As a 
consequent the groundwater quality has decreased as well. The 

long-term annual precipitation for the area has noticeably 
decreased from 150 to 100 (mm/year) during the 20 past years 
(1988 to 2009). 

The data acquired from the area consists of rainfall depth, 
temperature and depth of the wells time series measured at 
Kerman airport station (latitude  30

o
, 16' N, longitude: 56

o
, 54’ E). 

The data set was provided by Iranian Ministry of Energy (IMOE). 
The time series used in this research are summarized for a 22 

year period (1988 to 2009). Figure 5 presents, the monthly 
precipitation at meteorological Kerman airport station. In this region 
most of annual rainfall occurred during the winter  season. Because  
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Figure.6. Time series plot for the temperature versus month 

 

 
 

Figure 6. Time series plot for the temperature versus month. 
 
 
 

Table 1. The monthly statistical parameters of data. 

 

Data set Unit Xmean Sx Csx Xmax Xmin 

HNO.26 m -33.36 1.74 0.63 -28.82 -35.93 

HNO.16 m -37.71 4.3 -0.39 -30.35 -45.49 

HNO.41 m -34.57 3.72 0.43 -26.11 -40.53 

R mm 11.26 17.39 2.3 109.1 0 

T c
o
 15.82 7.68 0.03 29.25 1.05 

 
 
 

of relatively high temperature of this province, temperature plays an 
important role in the water budget. Figure 6 shows the monthly 
temperature for the period mentioned. 

The data sample consisted of 22 years (1988 to 2009) of monthly 
records of air temperature (T), rainfall (R) and water levels in target 
well (H NO.26) and neighboring wells (H NO.16 and  H NO.41). The first 
19 years (1988 to 2006) data were used to train the models and the 
remaining data for testing. The monthly statistics of each time 
series are given in Table 1. In the table the Xmean, Sx, Csx, Xmax and 
Xmin respectively denote the mean, standard deviation, skewness 
coefficient, maximum and minimum of observations. 

 
 
Parameter setup 

 
Population size and generation numbers are set to 100. The 
tournament selection is used as selection method in GA, two point 
crossover and an uniform mutation are consider for reproduction 
Crossover rate and mutation probability are set to 0.7 and 0.01 
respectively. Learning rate in BP algorithm is set to 0.02 and 50 
epochs are considered for training the ANN. 

 
 
RESULTS AND DISCUSSION 
 

Input names are temperature (T), rainfall (R), water 
fluctuation in the nearest lateral piezometers (HNo.16, 
HNo.41), and the target well (HNo26). These inputs are 
selected according to previous successful researches in 
this field (Atya and Parlos, 2000; Davis, 1991).  

Various combinations of inputs, which are input values 
in different times, are experimented  for  feeding  into  the 

ANN. Inputs are values of aforementioned variables in 
times t, t-1, t-2 and the goal is to forecast the water level 
value in time (t+1). Input combinations, which are rational 
according to previous researches, are shown in Table 2. 

These combinations are titled cases (1 to 4) concisely. 
As it can be seen from Table 1 the results of water level 
prediction is highly dependent on input combination. 
Considering the training and testing results it can be 
inferred that the water level variable is not very 
dependent to climatic variables such as temperature and 
precipitation (Cases 1 and 2 in Table 1). Also the time 
series of observed water levels could not manage to 
improve the results (Case 4) while the model accuracy 
shows sensitivity to water levels of neighboring wells 
(Case 3). 

The best number of neurons in the hidden layer of both 
FFN and RNN models derived by GA algorithm are 
presented in Table 2. Ratio of the number of hidden layer 
neurons to those of input parameters in FNN models 
range from 1.6 to 6 and as for RNN models the ratio 
ranges from 1.8 to 5.7. Hence both model structures 
need similar optimum number of neurons. 

Besides, as the number of input variables increases the 
mentioned ratio decreases drastically while the number of 
hidden layer neurons does not show a significant change. 
In other words, based on the present study, it seems that 
the optimum number of hidden layer neurons is indepen-
dent of the number of input variables. 

In order for the performance evaluation of  the  models, 
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Table 2. Details of ANN-GA model architecture. 
 

Case Input combination 
Number of 

inputs 
No. of hidden neurons 

for  FFN-GA model 
No. of hidden neurons 

for RNN-GA model 

1 
HNO.26(t), HNO.26(t-1), HNO.16(t), HNO.16(t-1), 

HNO.41(t),HNO.41(t-1), R(t), R(t-1), T(t), T(t-1) 
10 16 18 

     

2 HNO.26(t), HNO.26(t-1), R(t), R(t-1), T(t), T(t-1) 6 15 13 
     

3 
HNO.26(t), HNO.26(t-1), HNO.16(t), HNO.16(t-1), HNO.41(t), 

HNO.41(t-1) 
6 19 18 

     

4 HNO.26(t), HNO.26(t-1), HNO.26(t-2) 3 18 17 
 
 
 

Table 3. Error analysis of level forecasting in test and train period. 
 

SET  Training  Testing 

MODEL Case RMSE MAPE R
2
  RMSE MAPE R

2
 

FFN-GA 1 0.067 0.143 0.998  0.116 0.256 0.65 

FFN-GA 2 0.135 0.320 0.995  0.104 0.248 0.73 

FFN-GA 3 0.109 0.208 0.995  0.05 0.106 0.95 

FFN-GA 4 0.045 0.103 0.999  0.113 0.244 0.75 

         

RNN-GA 1 0.186 0.459 0.996  0.125 0.272 0.63 

RNN-GA 2 0.108 0.215 0.995  0.114 0.232 0.69 

RNN-GA 3 0.115 0.215 0.995  0.073 0.159 0.89 

RNN-GA 4 0.036 0.103 0.999  0.099 0.208 0.80 
 
 
 

three different types of standard statistical fitness criteria 
were considered, namely correlation coefficients (R

2
), 

root mean square error (RMSE), and mean absolute 
percentage error (MAPE). The three performance evalua-
tion criteria are based on the following equations: 
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Where, Hi
O

 is the observed groundwater level at present 
time and Hi

P
 is the forecasted groundwater level. RMSE = 

0, MAPE = 0 and R
2 

= 1
 
shows a perfect fit. Table 3 

represents the resulted fitness statistics of testing and 
training steps for the considered models. Performance 
measures apparently show that the third row of Table 3 is 
the best case. 

The fitness criteria of FFN and RNN models are shown 
in Table 3. The fourth case of input combination of FFN-
GA models in the training phase portrays the best fitness. 
In this modeling structure, case 1 stands in the second 
rank of fitness. The Cases 4 and 1 are models with the 
most and least numbers of input variables respectively, 
which reveals an interesting finding: in the training phase, 
the model with the least number of input variables (3 
input variables) and so with the largest value of 
neurons/inputs ratio = 6 presents the best performance. 
However testing phase shows different results. In this 
phase the best FFN-GA model is Case 3 with RMSE, 
MAPE and R2 value equal to 0.05, 0.106 and 0.95 
respectively. 

An interesting point to be mentioned is that except for 
R

2
, other fitness criteria improved over testing phase 

compared to the training ones. It must be noted that the 
number of neurons/inputs ratio in this case is 3.2 which 
offers a logical number of model parameters (including 
weights and biases) in neural network modeling 
practices. 

Based on results presented in Table 3, Case 3 
apparently shows the best performance among other 
input combinations, that is, using more input variables 
could not necessarily guarantee higher model performance. 
The situation is similar in RNN-GA models. In these 
models,  as  well,  case  4 shows the best performance in 
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Figure.7.Assessing the ability of FFN-GA model compare to the RNN-GA model 

 

 
 
Figure 7. Assessing the ability of FFN-GA model compared to the RNN-GA model. 

 
 
 

the training phase while it is ranked second in testing 
phase. Case 3 maintaining RMSE, MAPE and R2 values 
equal to 0.073, 0.159 and 0.89 respectively shows the 
best performance in the testing phase. Furthermore, as in 
FFN-GA models, performance criteria of Case 3 
improved over testing phase except for R

2
 coefficient 

(36.5%  improvement  for  RMSE  and  26%  for   MAPE). 

Comparison of two FFN-GA and RNN-GA hybrid models 
in case 3 reveals the privilege of FFN-GA model in both 
training and testing phases, however, the determination 
coefficient of R2 is larger than 0.89 in both models. 

Assessing the ability of FFN-GA model compared to 
the RNN-GA model is shown in Figure 7 (a-h) in form of 
scatter plot Figure 7, (c), which  depicts  observed  values  
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Figure 8. Comparison of FFN-GA, RNN-GA and observed monthly groundwater level at well No.26. 

 
 
 

versus the estimated values for Case 3, shows that it is 
the best fitted model in terms of obtaining a tradeoff 
between accuracy and the structure of FFN-GA model. It 
can visually be verified that observed values and estima-
ted values have a better correspondence according to 
Figure 7, (c) rather than Cases 1, 2, and 4. Therefore 
case 3 is more appropriate from numerical and graphical 
points of view. 

Also the groundwater level predictions of each model in 
the test period for the best input combination are 
represented in Figure 8 (a-b) in the form of hydrographs. 
It is obviously seen from the hydrographs and scatter 
plots that the FFN-GA (Figure 8 (a)) predicts are closer to 
the corresponding observed values than the RNN-GA 
model. Performance measures given in Table 3 confirm 
the results shown in Figure 8.  

Based on Figure 8, both models show less accuracy in 
capturing the peak and nadir points of water level 
although as it is expected the FFN-GA hybrid model 
shows closer performance to the observed data. In 
contrast, the models predict the average water levels with 
high accuracy while they encounter difficulties in 
predicting in case of water level fluctuations. 

Conclusion  
 
Neural networks have proven to be an extremely useful 
method for empirical modeling of hydrological variables. 
The present study utilized artificial neural networks in 
corporation with genetic algorithm aiming at forecasting 
groundwater level. Number of neurons in the hidden layer 
is derived using the genetic algorithm for four input 
combinations separately. The study showed that the best 
input combination for groundwater level forecasting is 
water level time series data in neighboring wells (input 
combination Number 3). 

Two ANN-GA hybrid models (FFN-GA and RNN-GA) 
were tested and results indicated an excellent agreement 
between the forecasted and observed data. However the 
FFN-GA hybrid model was found to perform better than 
RNN-GA in forecasting monthly groundwater levels; 
although the performance of FFN-GA model is cate-
gorized as nearly perfect in predicting the middle range of 
water level, and it experienced little problems in water 
fluctuation and extreme cases. 

Considering the vast range of neurons/inputs ratio, 
exploiting such hybrid models may lead to optimum and  
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fast results concerning the number of hidden layer 
neurons. Also it was showed that higher numbers of input 
variables in neural network modeling could not 
necessarily guarantee better performance, although this 
task will decrease the number of neurons/inputs ratio 
significantly. The most logical ratio in the present study 
was estimated at 3, which is recommended in similar 
researches. Another finding of this study is the probable 
independence of the optimized number of neurons from 
the number of input variables, which is not in agreement 
with some recommendations stated in previous 
researches. 
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