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Phosphate solubilization by microorganisms is an important process for increasing the bioavailability 
of phosphorus (P) to plants. This study aimed to: (a) in solid medium, isolate CaHPO4-solubilizing and 
non-P-solubilizing microorganisms from the rhizosphere of guanandi (Calophyllum brasiliensis) 
collected from a nursery and the field; (b) in liquid media, quantify the ability of CaHPO4-solubilizing 
isolates from the rhizosphere of guanandi to solubilize FePO4; and (c) quantify indoleacetic acid (IAA) 
production by FePO4-solubilizing rhizosphere microorganisms. Two guanandi plants, one cultivated in 
nursery and another from the field, were used for the isolation of FePO4 and CaHPO4-solubilizing 
bacteria and fungi. The largest population of P-solubilizing and non-P-solubilizing microorganisms was 
found in the rhizosphere of guanandi cuttings cultivated in the field. The abilities to solubilize FePO4 

and produce IAA are variable among guanandi rhizosphere isolates, where bacterial isolates produce 
higher levels of IAA than fungal isolates. 
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INTRODUCTION 
 
The rhizosphere, where the soil is in direct contact with 
plant roots, is the region where the majority of the 
interactions between plants and the microbial community 
occur (Luster et al., 2009). A wide variety of 
microorganisms can live near or are associated with the 
roots, due to stimulation by various root exudates, and 
they are able to promote greater nutrient absorption and 
transfer    the    nutrients    to    plants    through    diverse 

mechanisms. Such microorganisms are called plant 
growth-promoting rhizobacteria (PGPR). This effect is 
attributed to mechanisms such as biological nitrogen 
fixation (BNF); the production of growth-regulating 
substances, antibiotics and siderophores; and the 
solubilization of nutrients such as phosphorus (P) (Hayat 
et al., 2010). Plant growth promoting bacteria and fungi 
may have  potential  use   as   inoculants   because   they  
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maximize plant development (Sahin et al., 2004; Souchie 
et al., 2010).  

In recent years, the colonization by diazotroph has 
been discovered in many plants. For instance, maize  
plants are associated with Bulkhoderia unamae 
(Caballero-Mellado et al., 2004), rice with Serratia 
marcescens (Gyaneshwar et al., 2001), wheat with 
Achromobacter insolitus and Zoogloea ramigera (Sala et 
al., 2008) sorghum and sugarcane with 
Gluconacetobacter diazotrophicus (Medeiros et al., 2006; 
Luna et al., 2010). According to Govindarajan et al. 
(2007), grasses roots, such as maize, have a large 
community of rhizobacteria belonging to the family 
Enterobacteriaceae, including the genus Serratia. 
Prieschmann et al. (2008) isolated strains of that genus 
from maize roots found that these bacteria, in addition to 
exhibit growth-promoting characteristics, also act as 
antagonists against phytopathogenic fungi. Both free-
living and endophytic PGPR can benefit plants by 
promoting plant growth through more than one 
mechanism (Ahmad et al., 2008). 

After nitrogen (N), P is the second-most limiting 
element for plant growth. There are large reserves of P in 
insoluble forms in the soil, and its high reactivity with 
elements such as aluminum (Al), iron (Fe) and calcium 
(Ca) makes it unavailable to plants. Among the 
rhizosphere bacteria, some are capable of secreting 
organic acids and phosphatases that facilitate the 
conversion of P from insoluble to soluble forms, making 
the nutrient available for plants (Chen et al., 2006; 
Venieraki et al., 2011). Considering that soils from 
Cerrado domain are extremely weathered with high 
chemical adsorption, low availability of P and 
predominance of Fe and Al oxides (Reatto et al., 1998; 
Resende et al., 2010) the use of P-solubilizing 
microorganisms play a strategic role in plant nutrition.  
Solubilizing microorganism populations are quite large in 
rhizospheric soil and include bacteria of the genera 
Rhizobium, Enterobacter, Serratia, Citrobacter, Klebsiella, 
Pseudomonas, Burkholderia and Achromobacter, among 
others (Rodríguez et al., 2006). The use of these 
microorganisms as inoculants for crops of interest is a 
viable alternative (Mamta et al., 2010; Souchie et al., 
2010; Qureshi et al., 2012). 

The guanandi (Calophyllum brasiliense Camb. 
(Clusilaceae) is a species notable because it presents 
some important properties that are useful for reforestation 
programs, primarily the ability to grow in flooded 
environments (Oliveira and Joly, 2010). The species is 
widely distributed throughout Central and South America. 
In Brazil, the wide distribution of guanandi ensures its 
presence in watersheds of several phytoecological 
regions. Due to its various uses and importance, 
guanandi is currently being exploited unsustainably and it 
is susceptible to local extinction (Mendonça et al., 2014). 
The interaction of beneficial microorganisms such as 
plant growth promoters and P-solubilizers may  favor  the  

 
 
 
 
propagation and survival of plant species of economic 
interest (Singh et al., 2011), and this can be applied to 
guanandi plants. 

This study aimed to: a) in solid medium, isolate 
CaHPO4-solubilizing and non-P-solubilizing 

microorganisms from the rhizosphere of guanandi 
collected in a nursery and from the field; b) in liquid 
medium, quantify the ability of CaHPO4-solubilizing 

isolates from the rhizosphere of guanandi to solubilize 
FePO4; c) quantify IAA production by FePO4-solubilizing 

rhizosphere microorganisms.  
 
 
MATERIALS AND METHODS 
 

Sources of guanandi roots 
 

Guanandi cutting was removed from the forest reserve of the “São 
Tomaz Olho D´agua” farm at Rio Verde city, Goiás State, Brazil, 
located at “Sul Goiana” Highway Km 01, Rural Zone, at the 
coordinates 17°48'1.692" S latitude and 50°53'57.0696"W 
longitude.  One young guanandi plant, with three years old, was 
collected with its roots preserved. The plant was fully removed from 
the soil and carefully handled to prevent damage to the roots and to 
conserve a large amount of the rhizospheric soil. Then, the plant 
was placed in a styrofoam cooler and transported to the 
“Laboratório de Microbiologia Agrícola” at “IF Goiano – Câmpus Rio 
Verde”, where the material was processed within 24 h. 

On the same day, another guanandi cutting, grown for 120 days 
was harvested from the nursery (tubes) for collection of its roots, 
which were also taken to the laboratory for the isolation of 
rhizosphere microorganisms. 

 
 
Isolation of rhizosphere microorganisms 
 

Rhizosphere microorganisms were isolated in GELP (glucose, 
yeast extract and peptone) with medium supplemented of CaHPO4 

(10%), as described by Sylvester-Bradley et al. (1982). In detail, 
root fragments were carefully collected to ensure the adhering soil 
was not removed, and 10 g of sample was transferred into 90 ml of 
sterile saline solution (0.9% NaCl) and stirred for 40 min. The 
sample was then serially diluted up to 10-5 concentration. 
Subsequently, 10-4 and 10-5 dilutions were plated in triplicate. 

Plates were incubated for 7 days at 28°C in an oven. Plates were 
inspected daily, bacterial and fungal isolates that exhibited a clear 
halo around the colony against the opaque medium were counted 
(indicating the ability to solubilize CaHPO4). These isolates were 
transferred to Petri dishes containing the same isolation medium 
and incubated for 4 days at 28°C. As next step, these bacterial and 
fungal isolates were transferred to penicillin vials containing nutrient 
agar and potato dextrose agar (PDA) growth media, respectively, 
and stored in refrigerator. 
 
 

In vitro determination of phosphate solubilization ability 
 

CaHPO4-solubilizing isolates were cultured in a liquid medium 
supplemented with FePO4 (1 g/L) according to Gadagi and Sa 
(2002). For this assay, 200 µL aliquots of pre-inoculum (108 colony-
forming units (CFU)/ml) were transferred in triplicate to test tubes 
containing the appropriate liquid medium and incubated for 7 days 
at 28°C. After incubation, 1.5 ml aliquot was removed from the 
cultures for centrifugation at 8000 rpm for 10 min at 4ºC. Then, 1.0 
ml of the supernatant was transferred to  test  tubes,  and  1.0 ml  of  
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Table 1. Rhizosphere population of P-solubilizing bacteria (PSB), P-solubilizing fungi 
(PSF) and non-P-solubilizing isolates of guanandi collected in the field and at nursery in 
Rio Verde, Goiás State, Brazil. 
 

Source of cuttings 
Non-P-solubilizing 1.12 × 10

7
 P-solubilizing 1.04 × 10

6
 

Number of isolates 

Field 435 108 (85 PSB and 23 PSF) 

Nursery 186 nd* 
 

*nd=not detected. 
 
 
 

the working reagent [0.4 g of ascorbic acid; 100 ml of solution 725 
(1.0 g of bismuth subcarbonate dissolved in 68 ml of sulfuric acid 
and added to 300 ml of distilled water, combined with 20 g of 
ammonium molybdate dissolved in 68 ml of sulfuric acid and added 
to 300 ml of distilled water) and 900 ml of distilled water] was 
added. After 20 min of reaction, the phosphate solubilization was 
determined using a spectrophotometer (725 nm) according to 
Braga and DeFelipo (1974) modified by Reis et al. (2008). 

To quantify the solubilization ability, a calibration curve was 
created with increasing phosphoric acid concentrations, using a 
stock solution (20 mg ml-1). From this stock solution 0, 100, 200, 
300, 500, 700 and 900 µL was added to distilled water for a final 
volume of 1.0 ml. Subsequently, 1.0 ml of the working reagent was 
added to all tubes of the standard curve. 
 
 
Assessment of IAA production by guanandi rhizosphere 
microorganisms  
 
A modification of the in vitro assay protocol described by Asghar et 
al. (2002) was established to evaluate the ability to produce IAA by 
the isolates. Aliquots of 500 µL of pre-inoculum (108 CFU/ml) were 
inoculated into flasks containing 10 ml of liquid DYGS medium 
(composition g L-1: 2.0 glucose; 2.0 malic acid; 2.0 yeast extract; 
1.5 peptone; 0.5 K2HPO4 3H2O; 0.5 MgSO4 7H2O; 1.5 glutamic 
acid; pH 6.0) supplemented with 100 µg/ml of L-tryptophan (Sigma-
Aldrich®). Samples were incubated in the dark for 48 h at 30°C 
under agitation at 80 rpm. The control consisted of non-inoculated 
sterile medium supplemented with L-tryptophan. After the 
incubation period, cultures were homogenized, 1.5 ml of each were 
transferred to Eppendorf tubes and centrifuged at 12,000 g for 5 
min at 4°C. One milliliter of supernatant was placed in glass tubes 
in triplicate for each isolate, and 1 ml of Salkowski reagent was 
added (1 ml of 0.5 M FeCl3.6H2O in 50 ml of 35% HClO4) (Gordon 
and Werber, 1951). The tubes were agitated, and the solutions 
incubated for 30 min in the dark to allow the reaction to occur. The 
presence of IAA in the solution was observed by changing color, 
which became more intensely pink as increasing IAA amounts. The 
assessments had their absorbance measured in a UV-visible 
spectrophotometer (530 nm). The IAA concentration was estimated 
using a standard curve prepared with synthetic IAA (0.25, 50, 100 
and 150 µg/ml, Sigma-Aldrich®) diluted from a standard solution of 
300 µg/ml in sterile and non-inoculated DYGS medium.  

Data were subjected to an analysis of variance, and the results of 
the phosphate solubilization and IAA synthesis assays were 
compared by Scott-Knott test (p≤0.05), using SISVAR statistical 
software (Ferreira, 2011). 
 
 
RESULTS AND DISCUSSION 
 
A total of 108 isolates of P-solubilizing microorganisms 
(PSM)   were  detected  in  the  rhizosphere  of  the  plant 

collected from the field; among them, 85 were P-
solubilizing bacteria (PSB) and 23 were P-solubilizing 
fungi (PSF). The reported population densities of P-
solubilizing microorganisms are usually very variable. In 
this work, 85% of the P-solubilizers isolates were PSB 
(Table 1). It is expected the number of bacteria isolates to 
be higher than fungal. Generally, P-solubilizing bacteria 
constitute 1 to 50% of the total microbial population while 
PSF represent only 0.1 to 0.5% (Zaidi et al., 2009; 
Sharma et al., 2013). Greater number of non-P-
solubilizing microorganisms was detected in the 
rhizosphere of the plant collected in the field compared 
with the isolates from the nursery-grown plant (Table 1). 
PSM were not detected in the rhizosphere of roots 
collected from the nursery (Table 1). Several biotic and 
abiotic factors influence the structure and functional 
diversity of microbial communities from the rhizosphere 
(Berg and Smalla, 2009), what probably explains the 
differences in population of P-solubilizing and non-P-
solubilizing microorganisms from nursery and field plants. 
Fungi and bacteria can improve plant growth and crop 
protection what make them of great interest for use as 
inoculants to maximize the production of tree cuttings. 
Such microorganisms are capable of solubilizing 
phosphates, which, although present in the soil are 
unavailable to the plant, as well as producing metabolites 
as phytohormones, antimicrobials and antibiotics 
(Souchie et al., 2007; Avis et al., 2008; Babana et al., 
2013). 

In this study, all the PSB and PSF isolates solubilized P 

in liquid broth supplemented with FePO4. The highest P 
content detected was 3.35 and 3.78 mg P ml

-1
 for 

bacteria and fungi isolates, respectively (Tables 2 and 3). 

Studies on phosphate solubilization typically evaluate the 
ability of both edaphic and endophytic microbiota to 
solubilize the Ca-P complex, and the results reflect only 
the environment of alkaline soils (Gadagi and Sa, 2002). 
Some microorganisms have the capacity to solubilize Fe-
P, representing more relevant analysis in the context of 
tropical soils (Chagas Jr et al., 2010).  

According to Marschner et al. (2011), in the 
rhizosphere, the mutual demand for Fe and P results in 
competition between plants and microorganisms with the 
latter being more competitive due to their ability to 
decompose plant-derived chelators and their proximity to 
the root  surface;  however  microbial  competitiveness  is  
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Table 2. Phosphorus content (mg P ml-1) and indoleacetic acid concentration (µg IAA 
ml-1) in liquid medium supplemented with FePO4 and tryptophan, respectively, in the 
presence of P-solubilizing bacteria (PSB) isolated from the rhizosphere of guanandi, 
in Rio Verde, Goiás State, Brazil. 
 

PSB isolate mg P ml
-1

 µg IAA ml
-1

 

PSB1 2.25
u
 2.22

m
 

PSB2 2.30
t
 4.78

a
 

PSB3 2.61
q
 nd* 

PSB4 2.58
r
 2.26

m
 

PSB5 2.21
v
 3.10

f
 

PSB6 2.24
u
 3.45

d
 

PSB7 2.57
r
 2.08

n
 

PSB8 2.81
n
 3.37

d
 

PSB9 2.94
j
 3.94

b
 

PSB10 2.64
p
 1.75

o
 

PSB11 3.09
h
 2.25

m
 

PSB12 3.09
h
 2.42

k
 

PSB13 3.01
i
 2.61

i
 

PSB14 3.23
e
 3.09

f
 

PSB15 3.27
d
 2.18

m
 

PSB16 3.28
d
 3.02

g
 

PSB17 2.90
l
 3.00

g
 

PSB18 2.15
x
 2.89

h
 

PSB19 2.11
w
 3.12

f
 

PSB20 2.01
y
 1.20

p
 

PSB21 2.75
o
 3.95

b
 

PSB22 2.93
k
 2.87

h
 

PSB23 2.52
s
 3.09

f
 

PSB24 2.81
n
 2.55

j
 

PSB25 2.95
j
 3.07

f
 

PSB26 3.35
a
 3.67

c
 

PSB27 3.16
f
 2.56

j
 

PSB28 2.87
m
 3.08

f
 

PSB29 2.87
m
 2.88

h
 

PSB30 2.90
l
 2.81

h
 

PSB31 3.03
i
 3.40

d
 

PSB32 3.11
g
 2.56

j
 

PSB33 3.08
h
 3.29

e
 

PSB34 3.29
c
 3.82

c
 

PSB35 3.32
b
 2.35

l
 

Control 1.08
z
 1.27

p
 

 

*nd: Not detected. Means followed by different letter in the column are significantly different 
from each other (Scott-Knott p≤0.05). 

 
 
 

strongly affected by carbon availability. On the other 
hand, plants are able to avoid direct competition with 
microorganisms due to the spatial and temporal variability 
in the amount and composition of exudates they release 
into the rhizosphere. Vitorino et al. (2012) suggested, 
from a biotechnological perspective, screening isolates 
for their solubilization ability of high levels of FePO4 and 
abundant IAA production. 

Almost all the isolates tested were also able to  produce 

IAA in liquid broth supplement with L-tryptophan (Tables 
2 and 3). The results show that the isolates may be 
selected for inoculation tests aiming to improve guanandi 
plants growth, especially in nursery. Tsavkelova et al. 
(2012) reported that IAA and other phytohormones 
production depend on the stage of colonization, host 
plant and fungus infection strategy. Altuhaish et al. 
(2014), reported the existence of plant hormones 
produced  by  rhizobacteria  that   improves   growth   and  
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Table 3. Phosphorus content (mg P ml-1) and indoleacetic acid concentration (µg IAA ml-1) in liquid medium 
supplemented with FePO4 and tryptophan, respectively, in the presence of P-solubilizing fungi (PSF) 
isolated from the rhizosphere of guanandi, in Rio Verde, Goiás State, Brazil. 
 

PSF isolate mg P ml
-1

 µg IAA ml
-1

 

PSF1 1.66
f
 1.64

d
 

PSF2 3.31
b
 1.96

b
 

PSF3 1.50
g
 1.20

g
 

PSF4 3.78
a
 1.16

g
 

PSF5 2.44
d
 2.01

b
 

PSF6 3.78
a
 2.26

a
 

PSF7 1.96
e
 1.89

c
 

PSF8 1.18
h
 1.36

e
 

PSF9 3.19
c
 1.65

d
 

PSF10 2.47
d
 1.40

e
 

Control 1.08
i
 1.27

f
 

 

Means followed by different letter in the column are significantly different from each other (Scott-Knott p≤0.05). 

 
 
 
development of root cells, to become more extensive 
absorption, which in turn to increase plant nutrient 
uptake. Future studies are required to test the ability of 
microorganisms evaluated in this study in order to 
improve the growth promotion of guanandi seedlings. 
 
 
Conclusions 
 
i. The largest population of P-solubilizing and non-P-
solubilizing microorganisms was found in the rhizosphere 
of guanandi cuttings cultivated in the field, and PSM were 
not detected in the nursery cuttings. 
ii. There was no CaHPO4 and FePO4-solubilizing bacterial 
population in the guanandi cutting grown in the nursery. 
iii. The abilities to solubilize FePO4 and produce IAA are 
variable among isolates of the guanandi rhizosphere. 
iv. Two bacterial isolates (PSB3 and PSB20) and two 
fungal isolates (PSF3 and PSF4) were not able to 
produce IAA. On average, bacterial isolates produced 
higher levels of IAA than fungal isolates. 
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