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Respiration is very sensitive to waterlogged conditions. Under these conditions, plant roots suffer from 
lack of available oxygen. In fact, waterlogging reduces the exchange of gases between the plant and the 
atmosphere. When plants cannot receive sufficient oxygen level for respiration, they form aerenchyma 
in their roots which function as reservoirs of oxygen in the submerged plant. Aerenchyma is formed in 
maize (Zea mays) roots in response to different types of stress such as waterlogging, mechanical 
impedance, drought and nutrient deficiencies. Ethylene plays a crucial role in aerenchyma formation. 
Under waterlogged conditions, it can be cumulated in the submerged tissue and induces genes 
implicated in aerenchyma formation. These genes are related to calcium signaling, cell wall degradation 
and reactive oxygen species (ROS). In this review, the authors focused on the recent findings on 
aerenchyma in maize roots and explained the mechanisms of its formation under waterlogged 
conditions. 
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INTRODUCTION 
 
Respiration is one of the plant physiological processes, 
which is defined as the exchange of gases between air 
and cells within tissues. Oxygen and carbon dioxide are 
considered as the most important gases for respiration 
which are diffused in an opposite direction into and out 
the plant. Under natural conditions, oxygen and carbon 
dioxide are transported into or out of the plant’s root via 
soil pores filled with air. Respiration is very sensitive to 
waterlogged conditions because the excess of water 
reduces the exchange of gases between the plant and 
the atmosphere. When the soil pores are filled with air, 
oxygen can easily diffuse into the plant’s root but this 
diffusion is decreased when the soil pores  are  filled  with 

water. Indeed, the diffusion of gases through air is 10
4
 

fold faster than in water (Colmer and Voesenek, 2009). 
Additionally to the scarcity of oxygen in submerged 
conditions, the available oxygen will be also consumed 
by the microorganisms’ resident in the soil. As a result, 
oxygen level decreases in underwater tissues. However, 
the carbon dioxide level increases due to the microbial 
and root respirations (Colmer and Voesenek, 2009). This 
deficiency of oxygen alters nutrient and water uptake in 
water-stressed plants causing the diminution of the total 
root volume (Bailey-Serres and Voesenek, 2008). Most of 
the higher plants are very sensitive to waterlogged 
conditions  and  their growth and yields can be negatively  
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Figure 1. Zea mays roots grown under two different conditions; aerobic and waterlogged 
conditions. The cross-sections show the inducible lysigenous aerenchyma in maize roots 
under waterlogged conditions. Scale bar: 0.1 mm (Rajhi et al., 2011). 

 
 
 
impacted. Plants cannot survive for long periods under 
these conditions because oxygen quantity is depleted in 
flooded soil within 48 h (Purvis and Williamson 1972; 
Fausey and McDonald, 1985). Plant tolerance to low 
oxygen availability differs between the species. In fact, 
only few plants can grow in waterlogged soils, such as 
rice which is known to be highly tolerant to flooding 
(Mustroph and Albercht, 2003). To escape the oxygen 
shortage problem, several transformations at the 
anatomical, morphological and metabolic levels take 
place in immersed tissues. The formation of aerenchyma 
is considered as the main important adaptation to the 
waterlogged conditions. It can be formed in shoots and 
roots of a large number of plant species such as maize 
(He et al., 1996a). Many reviews are emphasized on the 
morphological, anatomical, pharmacological and 
molecular studies of aerenchyma formation. In this 
review, the recent discoveries related to aerenchyma 
formation in maize roots under waterlogged stress is 
summarized.  
 
 
TYPES OF AERENCHYMA  
 
Aerenchyma is  a  tissue  composing  of  longitudinal  gas 

spaces separated by the strands of living cells, found in 
the root cortex of waterlogged plants as shown in Figure 
1. Aerenchyma is formed by one of the two well 
described mechanisms: schizogeny or lysigeny. 
Schizogenous aerenchyma is formed by creating gas 
spaces between cells as a result of highly-regulated cell 
separation and differential cell expansion, without the 
death of the cells (Laan et al., 1989). Lysigenous 
aerenchyma is formed by creating gas spaces as a result 
of programmed cell death (PCD) in the cortical region of 
the root (Gunawardena et al., 2001a). Lysigenous 
aerenchyma is observed in many crops such as flooding 
tolerant rice, moderately tolerant wheat and intolerant 
maize (Mustroph and Albercht, 2003). Aerenchyma can 
be formed by both mechanisms in some species such as 
Saggitaria lancifolia (Schussler and Longstreth, 1996). In 
maize roots, lysigenous aerenchyma is formed by the 
death of cells in the mid cortex in a zone behind the 
apical root. Lysegineous aerenchyma is developed by the 
digestion of the longitudinal and radial cells separated by 
live cells attaching the stele and epidermis (Gunawardena 
et al., 2001a). The walls and the contents of the digested 
cells completely disappeared (Gunawardena et al., 
2001a; Drew et al., 1980). Aerenchyma can be induced in 
response to stress  or  constitutively  formed.  Lysigenous 
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aerenchyma in many of the wetland plants is developped 
constitutively in their roots under normal growth conditions 
such as rice and Juncus effusus and its formation is 
intensified when the soil is saturated with water. In the 
dryland (non-wetland) plants, such as maize, lysigenous 
aerenchyma is induced by waterlogging conditions (Drew 
et al., 1979), mechanical impedance, hypoxia (He et al., 
1996b), drought (Zhu et al., 2010) and by nutrient 
deficiency (He et al., 1992; Vassilis et al., 2012; Postma 
and Lynch, 2011). 
 
 
INDUCTION OF AERENCHYMA BY EXTERNAL 
STIMULI 
 
Induction by waterlogging 
 
Gas spaces aerenchyma in the root cortex is formed in 
response to hypoxia. One of the important functions of 
aerenchyma is to enhance oxygen transport, where the 
shortage of oxygen may prevent submerged root 
respiration (Drew et al., 1979). 
 
 
Induction by drought  
 
In order to diminish root metabolic rate to provide greater 
plant growth and water aquisition, maize roots develop 
aerecnhyma in response to drought stress. Under 
drought conditions, the biomass production and yield of 
maize genotypes, which develop more aerenchyma, had 
respectively five and eight times greater than genotypes 
which develop less aerenchyma (Zhu et al., 2010).  
 
 
Induction by nutrient deficiencies 
 
Maize roots develop aerenchyma when the soil suffers 
from the deficiency of the nitrate, phosphate or sulphate 
(Konings and Verschuren 2003; Bouranis et al., 2003; 
Vassilis et al., 2012). The mechanisms involved in the 
formation of aerenchyma under these conditions are still 
unclear. Under nutrient deprivation (nitrate, phosphate 
and sulphate), signs of PCD were observed at 1 cm 
behind the root tip of six-day old maize seedlings. The 
PCD caused by the nutrient deficiency is called nPCD 
(Vassilis et al., 2012). It has been demonstrated that 
ROS production may also contribute to aerenchyma 
formation due to nutrient deficiency (Bouranis et al., 
2003). Vassilis et al. (2012) demonstrated that ROS and 
calcium are involved in the initiation of PCD. In addition, 
the objective of the development of aerenchyma in 
response to phosphorous deprivation is the reduction of 
the respiration and phosphorous content in the root tissue 
(Postma and Lynch, 2011). Deficiencies of nitrate, 
phosphate or sulphate increase the sensitivity of cortical 
cells to ethylene which promotes more  cells  lysis  (Drew  

 
 
 
 
et al., 1979; Bouranis et al., 2003). Ethylene can be 
considered as a general stress hormone arbitrated 
responses to hypoxia, drought and a number of nutrient 
deficiencies and it plays a crucial role in aerenchyma 
formation in maize roots under different stress conditions 
(He et al., 1992; Schachtman and Goodger, 2008; Borch 
et al., 1999; Brown et al., 2003; Postma and Lynch, 
2010).  
 
 
AERENCHYMA FUNCTION 
 
When plants cannot receive sufficient oxygen quantity for 
respiration, they develop aerenchyma in their roots. 
Aerenchyma is very important for the survival of the 
plants under waterlogged conditions. It minimizes the 
consumption of total oxygen per unit surface of the root 
by the formation of air cavities in place of living cells. It is 
the principal oxygen reservoir and the best ventilation 
system in the immersed tissue. Aerenchyma allows the 
passage of gases in and out of tissues in plant roots, 
petioles and stems. Oxygen is provided to the roots by 
aerenchyma, while other gases (carbon dioxide, ethylene 
and methane) are transported from the soil and the root 
to the shoot and the atmosphere (Armstrong, 1979). The 
oxygen can be transported by simple diffusion or a 
consequence of pressure flow. It can be offered from 
photosynthesis or from the atmosphere. Aerenchyma 
plays an important role in protecting the root tip from the 
harmful effect of anoxic soils (such as phytotoxins and 
organic compounds, Fe

2+
 and Mn

2+
) by increasing the 

oxygen concentration of the rhizosphere (Mergemann 
and Sauter, 2000). 
 
 
MECHANISMS OF AERENCHYMA FORMATION 
 
Implication of ethylene in aerenchyma formation  
 
Ethylene, the plant gaseous hormone, which is a simple 
hydrocarbon that can diffuse into and out of plant tissues 
from both endogenous and exogenous sources, plays a 
central role in hypoxic stress signaling (Watkins, 2006). 
Ethylene is produced from methionine that is first 
converted to S-adenosylmethionine (AdoMet) by S-
adenosylmethionine synthase. AdoMet is then converted 
to 1-aminocyclopropane-1-carboxylate (ACC) by ACC 
synthase (ACS). ACC oxidase (ACO) generates ethylene 
by oxidizing ACC in a reaction that also produces carbon 
dioxide (CO2) and hydrogen cyanide (HCN). The plant 
hormone ethylene is implicated in regulating cell death 
processes (Jackson et al., 1985). Actually, many of the 
adaptive growth responses take place in response to 
ethylene which is cumulated in underwater tissues (Drew 
et al., 1981). This accumulation is due to the reduced 
diffusion from the plant to the surrounding water and the 
induction of the  biosynthesis  of  this hormone  by  stress 



 
 
 
 
conditions (Drew et al., 1981). This hormone plays a 
central role in aerenchyma formation in maize roots. 
Under hypoxic conditions, maize roots act in response by 
inducing the expression of the ethylene biosynthetic 
machinery leading to the increase in ethylene production 
(Geisler-Lee et al., 2010). The process of PCD, which 
appears to occur in the roots of maize during the 
formation of lysigenous aerenchyma, appears to be 
regulated by ethylene (Rajhi et al., 2011; Yamauchi et al., 
2011; Takahashi et al., 2015). The hypoxic treatment 
increased ethylene production in maize roots several fold 
within 3 h when compared with aerobic conditions. A 5.8 
fold was observed at six hours after treatment and the 
maximum of ethylene evolution (10 fold) was detected at 
12 h after the treatment (Geisler-Lee et al., 2010). 
Treatment of maize roots with inhibitors of ethylene 
action (e.g., silver ions) or ethylene biosynthesis [e.g., 
aminoethoxyvinylglycine (AVG), aminooxyacetic acid 
(AOA) and cobalt chloride] effectively blocks aerenchyma 
formation under hypoxic conditions (Drew et al., 1981; 
Konings, 1982). The use of 1-methylcyclopropene (1-
MCP), an inhibitor of ethylene perception, totally blocks 
aerenchyma formation in maize roots under hypoxic 
conditions (Rajhi et al., 2011). Moreover, aerenchyma 
can be induced by treatment with ethylene even under 
aerobic conditions (Jackson et al., 1985; Takahashi et al., 
2015). In wheat, Lysigenous aerenchyma formation was 
induced by ACC treatment (Yamauchi et al., 2014). 
These observations indicate that ethylene works as a 
trigger for inducible lysegenious aerenchyma in maize 
roots. 
 
 

Aerenchyma formation via cell death  
 
Cell death signs 
 
The first signs of cell death during aerenchyma formation 
were detected in maize cells. The nuclear DNA 
fragmentation is considered to be a distinctive 
characteristic of animal cells apoptosis. Analyze of in situ 
terminal deoxynucleotidyl transferase-mediated dUTP 
nick-end labelling (TUNEL) applied to maize roots treated 
by ethylene or hypoxia suggested internucleosomal 
cleavage of DNA (Gunawardena et al., 2001a). 
Cytoplasmic changes including plasma membrane 
invagination and the formation of vesicles was detected 
before chromatin condensation (Gunawardena et al., 
2001a), which is considered to be the first event in animal 
apoptosis. The major distinctive event in animal cells 
apoptosis is the formation of apoptotic bodies. This event 
was also confirmed by Gunawardena et al. in (2001a). In 
fact, a cellular condensation, condensation of chromatin 
and the presence of intact organelles surrounded by 
membrane similar to apoptotic bodies were detected in 
maize roots treated by ethylene or hypoxia. Aerenchyma 
formation in maize roots induced by ethylene or hypoxia 
shows characteristics in  part,  similar  to  both  apoptosis   
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and cytoplasmic cell death in animal cells. Aerenchyma 
formation in maize roots appears to be a form of 
programmed cell death (Campbell and Drew, 1983).  
 
 

Cell wall degradation 
 

In the final stage of the formation of the lysigenous 
aerenchyma, the cell wall is enzymatically degraded. In 
the begining, the localizations of esterified pectin and de-
esterified pectin in cell wall of the maize cortex tissue are 
modified during cell death, then the cell wall is degraded 
by the combined actions of pectolytic, xylanolytic and 
cellulosolytic enzymes (Gunawardena et al., 2001a). 
Indeed, the activities which are involved in loosening or 
degrading the cell wall including cellulase, xylanase and 
pectinase, are increased in maize roots under 
waterlogged conditions. Several genes related to cell wall 
loosening and degradation such genes encoding 
xyloglucan endotransglucosylase, polygalacturonase and 
cellulase were up-regulated specifically in the cortical root 
cells under waterlogged conditions and their expression 
is repressed by the treatment of 1-MCP, an inhibitor of 
ethylene perception, under the same conditions (Rajhi et 
al., 2011). Both, the treatment of maize roots under 
hypoxic conditions or with a high ethylene concentrations, 
can induce remarkable augmentation in cellulase activity 
within 3 days (He et al., 1994) as well as increases in 
pectinase and xylanase activities (Bragina et al., 2003). 
Besides, it has been established that a xyloglucan 
endotransglycolase homolog in maize, which is induced 
by both ethylene and flooding, is related to aerenchyma 
formation (Sachs et al., 1996). In fact, treatment with an 
ethylene biosynthesis inhibitor, aminooxyacetic acid 
(AOA), under flooded conditions avoided the spread of 
aerenchyma in maize roots and totally restrained the 
accumulation of XET mRNA.  
 
 

Involvement of reactive oxygen species in 
aerenchyma formation 
 

Recently many reports show that reactive oxygen species 
(ROS) play an important role in plant cell death, defense 
and growth (Steffens and Sauter, 2009; Yoshioka et al., 
2009; Steffens and Sauter 2011). ROS include molecules 
(hydrogen peroxide and ozone), ions (hypochlorites) and 
radicals (hydroxyl and superoxide). The major source of 
ROS in plants is the NADPH oxidase (NOX) that catalyze 
conversion of dioxygen (O2) to the superoxide radical (O2

-
) 

which ultimately leads to the production of hydrogen 
peroxide (H2O2). In plants, the NOX homologs have been 
named respiratory burst oxidase homologs (Rboh) and 
they are also involved in ROS production in response to 
pathogens, plant defense, development, hormone 
biosynthesis and cellular signal transduction (Sagi and 
Fluhr, 2001; Torres et al., 2002; Foreman et al., 2003). It 
has been demonstrated that the hydrogen peroxide 
operates  as  a signal for ethylene-induced epidermal cell 
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death (Steffens and Sauter, 2009, 2005). Additionnaly, 
the hydrogen peroxide stimulates aerenchyma in the rice 
stem (Steffens and Sauter, 2010). In rice, the NADPH 
oxidase controls the H2O2 which regulates epidermal cell 
death before the emergence of adventitious roots 
(Steffens and Sauter, 2009, 2005). The inhibitor of 
NADPH activity diphenylene iodonium (DPI) decreased 
the rates of cell death in rice epidermal cells (Steffens 
and Sauter, 2009). In fact, the use of an ethylene-
releasing compound, ethephon, enhances ROS 
generation and increases aerenchyma in rice. Under 
carbon starvation, the DPI inhibited the O2

-
 production 

from NADPH oxidase (Rboh) and cell death in carrot 
(Daucus carota) cells (Chae and Lee, 2001). In wheat, 
the treatment of the roots with ACC and DPI partly 
suppressed the aerenchyma ACC-induced responses 
(Yamauchi et al., 2014). In addition, the pre-treatment of 
wheat seedlings with ACC increased the expression of 
three genes encoding respiratory burst oxidase 
homologue. Among three TaRboh genes the expression 
level of the TaRboh gene was highest in the first seminal 
roots immediately after pre-treatment with ACC. 
However, TaRboh expression was highest at 72 h after 
initiation of growth under stagnant conditions (Yamauchi 
et al., 2014). In maize seedlings, treatment with 1-MCP 
repressed the expression of Rboh gene in the root 
cortical cells under waterlogged conditions. The 
expression of Rboh gene under hypoxic conditions is 
highest in cortical cells than in stellar or outer layer cells. 
Treatment of maize seedlings with DPI under 
waterlogged conditions reduced aerenchyma formation. 
This indicates that Rboh in maize is involved in 
aerenchyma formation specifically in the cortex of the 
root (Rajhi et al., 2011). 

On the other hand, the expression of the gene encoding 
metallothionein, which works as a ROS scavenger (Wong 
et al., 2004), was repressed under waterlogged conditions 
in the cortex of maize roots and that the repression 
seemed to be ethylene dependent. The cortical cell-
specific down-regulation of the maize metallothionein 
gene may contribute to higher accumulation of the 

RBOH-produced H2O2, which induces cell death in the 
cortical cells for lysigenous aerenchyma formation (Rajhi 
et al., 2011). Interestingly, the rice Metallothionein2b 
(MT2b) gene is down-regulated in response to ethylene 
and H2O2 in epidermal cells, thereby amplifying the 
accumulation of H2O2 produced by NADPH oxidase, to 
induce cell death (Steffens and Sauter, 2009, 2010). 
These observations raise the possibility that, 
waterlogging-induced up-regulation of Rboh is involved in 
H2O2 production and the H2O2 induces aerenchyma cell 
death in root cortical cells, which is cotrolled by ethylene.  
 
 
Implication of calcium signaling  
 

Calcium-dependent signaling pathways are involved in 
the process of lysigenous aerenchyma formation in maize 

 
 
 
 
roots (He et al., 1996b). Many studies have suggested 
that the cytosolic calcium ion (Ca

2+
) functions as a 

second messenger for signaling pathways in response to 
oxygen deprivation (Subbaiah et al., 1994; Tsuji et al., 
2000; Baxter-Burrell et al., 2002). Ca

2+
 signaling may also 

be involved in aerenchyma formation in maize roots (He 
et al., 1996b). Several genes implicated in calcium 
signaling, whose expressions were significantly induced 
specifically in the maize root cortex under the 
waterlogged conditions were identified such as genes 
encoding EF hand family protein (Calcineurin B like), 
calmodulin like protein, C2 domain containing protein and 
EH domain containing protein. The calcium-dependent 
protein kinase activates Rboh by phosphorylation of its N-
terminal region (Kobayashi et al., 2007). It has been 
reported that an interaction between the Ca

2+
 signaling 

and the RBOH-mediated H2O2 production might be 
important for the programmed cell death in the root 
cortical cells (Rajhi et al., 2011). 
 
 

CONCLUSION 
 

In conclusion, this study aimed to (i) clarify the meaning 
of aerenhyma formation and its role under different 
stresses especially under waterlogging conditions and (ii) 
try to understand the mechanism of formation of air 
spaces in the root cortical cells.  
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