

African Journal of Agricultural Research

Full Length Research Paper

Multi environment and spatial analysis of early maturing sorghum [Sorghum bicolor (L.) Moench] genotypes in dry lowland areas of Ethiopia

Amare Seyoum¹, Amare Nega¹, Kedanemaryam Wagaw¹, Taye Tadesse², Diriba Tadesse², Alemu Tirfessa¹, Habte Nida³, Adane Gebreyohannes¹, Sewmehone Siraw¹, Tsegaye Gebremariam⁴, Chalachew Endalamaw¹, Hailemariam Solomon¹, Tamirat Bejiga¹, Tokuma Legesse¹, David Jordan⁵, Emma Mace⁵, Daniel Nadew¹, Ligaba Ayele¹ and Meron Bogale¹

¹Ethiopian Institute of Agricultural Research (EIAR), Melkassa Agriculture Research Center, P. O. Box 436, Adama, Ethiopia.

²Ethiopian Institute of Agricultural Research (EIAR), Head Quarter, P. O. Box 2003 Addis Ababa, Ethiopia.

³Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, United States.

⁴Tigray Agricultural Research Institute (TARI), P. O. Box 492, Mekelle, Ethiopia.

⁵Queensland Alliance for Agriculture and Food Innovation, Hermitage Research Facility 604 Yangan Rd Warwick QLD 4370, Australia.

Received 28 September, 2019; Accepted 31 January, 2020

In Ethiopia, drought usually occur due to delay in onset, dry spell after sowing, drought during critical crop stage (flowering and grain filling stage) and too early cessation of rainfall. These situations can be addressed by developing improved sorghum varieties which are resistance to drought. Developments of sorghum varieties resistant to drought and producing better grain yield while addressing the plant biomass requirement is one of the strategies in the sorghum breeding program in dry lowland environment. A total of 90 early maturing sorghum genotypes were evaluated along with two standard check varieties to estimate the grain yield, plant height, days to flowering, days to maturity and overall agronomic aspects and stability of performance across the test environments. The trial was conducted using Randomized Complete Block Design (RCBD) in row and column arrangement. Linear mixed model has been used to predict and identify stable and superior varieties across the test environment. Correlations of the trials range from positive +1 to -1 where positive correlation is an indication of similarity among the testing environments while negative correlation is an indication of non-similarity among testing environments. Moreover, using the biplot it was observed that the stability and correlation among testing site where the angle between the two lines measure the strength of correlation. Improvement in heritability has been obtained due to spatial variation using advanced statistical analysis methods without any additional cost. Three genotypes exhibited better yield advantage, higher plant biomass and overall plant aspect including drought tolerance. In addition, these genotypes were preferred by farmers in their overall agronomic desirability (drought tolerance, earliness, head exertion and compactness, grain size and shape and threshability. Also, the national variety releasing committed has evaluated the variety verification trial both on station and farmers' field condition in 2018/2019 and they decided the release of the candidate variety 14MWLSDT7114 (2005MI5060/E-36-1) for commercial production in dry lowland environment.

Key words: Genotype, heritability, mixed model, Spatial analysis, GEI, correlated environment.

INTRODUCTION

Sorghum is the second most widely cultivated cereal in sub-Saharan Africa following maize (FAO, 2012). Over 23 million hectares of land in the continent is allocated for sorghum production annually with the total annual grain volume of about 26 million tones. It is believed to have originated in Ethiopia as evidenced by the early history of domestication of the sorghum crop there. Ethiopia is the third largest producer of sorghum in Africa after Nigeria and Sudan. Sorghum is the most important cereal crop worldwide used for food, feed, production of alcoholic beverages, and biofuel. Sorghum is primarily grown as a food grain crop in Ethiopia and preferred next to Teff for its injera (leaven bread) making quality. However, the biomass produced from sorghum is equally important for sorghum growing farmers in Ethiopia in order to address the feed demand (Amare et al., 2019).

It is the third most important cereal crop area coverage. which share 18% of the area covered by cereals and 14.6% of the area covered by grain crops. The total production of sorghum is 5.1 million tons produced from 1.9 million ha of land and with the national average productivity of 2.71 tons per hectare (CSA, 2018). The overall production and productivity of sorghum have showed an increasing trend over the past decade. A small improvement in productivity of sorghum has the potential to transform rural livelihoods and also boost the national economy. Most of the sorghum acreages in Africa including Ethiopia are located in areas that are prone to high temperature and frequent drought stress. Drought stress caused by low and erratic rainfall and exasperated by high temperature common in most sorghum growing regions of the world, is the most important abiotic factor limiting sorghum productivity.

In Ethiopia, drought is usually occurring due to delay in onset, dry spell after sowing, drought during critical crop stage (flowering and grain filling stage) and too early cessation of rain. These situations can be overcome by developing improved sorghum varieties which are tolerant to drought. Since the inception of sorghum research in Ethiopia concerted, efforts have been made to realize a strong research program that could be able to develop varieties with high drought tolerance, widely adapted, high yielding, early maturing and striga resistance with multiple resistance traits to address major biotic and abiotic factors.

However, until recently the breeding program relied on exotic germplasm which had a high harvest index compared to local landraces that led to a low adoption rate because of a number of factors such as poor grain market, farmers' interest in multi-purpose and high biomass cultivars. Hence, the notion of client-oriented breeding to increase adoption of improved technologies and enhancing genetic gain through breeding is timely agenda for sorghum breeders. Taking these into account modification of the breeding program is undergoing to increase efficiency and bring sustainable impact on the research and development endeavors.

Development and deployment of high yielding, early maturing, drought tolerant and striga resistant varieties with improved nutrition has been the major strategies for the national sorghum breeding program in Ethiopia. The recent breeding pipelines will produce varieties that are more acceptable for farmers due to higher grain yield, good grain quality and acceptable biomass production while providing much greater stability of performance than currently cultivated landraces and improved varieties. Ethiopian sorghum is a great source of novel genes and valuable traits for improving the sorghum crop worldwide.

Exploitation of genetic diversity is the most important strategies for plant breeding, and this must be inferred by field performance expression of the phenotype. The consequences of the phenotypic variation depend largely on the environment. This variation is further complicated by the fact that not all genotypes react similar ways to the change in environment. Genotype by environment interactions (GEI) happens when two or more genotypes perform differently in more than two environments. The different response of genotypes across the testing environment is considered as a hindrance in identifying, selecting and recommending of crops (Taye et al., 2016). Use of appropriate design and analysis model could be very vital either to identify high performing genotypes for target environments or stable genotypes across a given set of environments. The stage of plant development in which drought stress is most severe determines the associated yield reduction in the crop. Yield reduction is the most severe among the stress damages when the plant sink capacity is being set, and pollination is disrupted and embryos are aborted (Westgate and Boyer, 1985). Breeding for drought tolerance requires careful selection of the target environment; the choice of selection environment is important to achieve high genetic gain from selection (Cooper et al., 2006).

Different statistical methods for the analysis of multienvironment trial (MET) data have been used for crop improvement programs. The aim of crop improvement is most often to select either high performing genotypes for target environments or stable genotypes across a given set of environments. MET is usually analyzed using a two-stage approach, in which variety means are first estimated separately for each trial and then combined to

^{*}Corresponding author. E-mail: seyoumamare99@gmail.com.

Author(s) agree that this article remain permanently open access under the terms of the <u>Creative Commons Attribution</u> <u>License 4.0 International License</u>

form the data for an overall analysis. The latter methods include mixed effect models (Talbot, 1984) and the fixed effects additive main effects and multiplicative interactions (AMMI) model (Welham et al., 2010). The two-stage approach is an approximation of the combined analysis of the raw plot data from all trials. If there is error variance heterogeneity between trials and spatial variation or unequal replication within trials, the approximation may be poor in estimation by classical ANOVA. Smith et al. (2001a) presented a weighted mixed model for the second-stage analysis that aimed at accommodating these sources of error variation, thereby reducing efficiency losses. The superior approach, however, is the spatial MET analysis of Kelly et al. (2007), in which individual plot data are analyzed and a separate spatial covariance structure and error variance allowed for each trial. Therefore, the objective of this study was to know and quantify the magnitude of genotype by environment interaction (GEI), heritability and identify high yielding, early maturing, with high biomass and stable sorghum variety for commercial release.

MATERIALS AND METHODS

A total of 90 sorghum genotypes including two standard checks Melkam and Dekeba which developed by pedigree breeding method were used in this study to evaluate their performance. The experiment was conducted at six locations which represented the dry lowland sorghum growing agro-ecology, namely: Miesso, Kobo, Shiraro, Humera, Erer and Mehoni Agricultural Research Centers in 2014, 2015 and 2016 main cropping seasons (Table 1).

Description of genotypes evaluated in this variety trial

The genotypes were developed via pedigree breeding method at Melkassa Agricultural Research Center. The genotypes involved in this variety trial were developed through crossing and have pedigree selection have been done up to F5 and F6 generations based on grain yield component traits and plant height. Multi environment evaluation has been conducted from 2014 to 2016 targeting the dry lowland environments of Ethiopia. Based on grain yield performance, plant height and flowering time, three candidate varieties were proposed to be verified and released for growers (Table 2).

Experimental design and field managements

Randomized Complete Block Design (RCBD) was used to laid out these variety trial with two replications in a row column arrangement to minimize the special variability (trends) in estimating the genetic value. Each plot contained two rows of 5 m length separated by 0.75 m. At all locations sowing was done in between last week of June to first week of July when enough rain was received. Plantation was done manually by drilling along the farrow, and population was adjusted by thinning considering 0.20 m as spacing between plants. DAP fertilizer was applied at planting time with the rate of 100 kg ha⁻¹ and urea was side dressed when the plant reached at knee height at 50 kg ha⁻¹ basis. Days to 50% flowering, plant height (cm), grain yield per plot (GY), days to 90% physiological maturity (DTM), plant aspect (PAS) data were collected and analyzed to identify stable and superior varieties compared with the standard check variety.

Statistical analysis

Mixed effect models have been well developed over the past three decades, first with applications to animal breeding (Henderson, 1984) and then to other disciplines. Data analyses based on mixed models are readily done with the use of modern statistical software. Mixed-effects model contains experimental factors of both fixed and random-effect types, with appropriately different interpretations and analysis for the two types. So, the data was subjected to Linear Mixed Model (LMM) analysis to estimate the prediction (BLUPs) and Heritability based on different methods (RCBD, Spatial and Spatial + MET).

The estimation of variance components in mixed model assume Gaussian random terms by restricting maximum likelihood (REML); where REML procedure maximizes the joint likelihood of all error contrasts rather than of all contrasts as in ordinary maximum likelihood. In the original description of REML, Patterson and Thompson (1971) suggest that the score equation for the variance components may be solved iteratively using the Fisher scoring (FS) algorithm. For many applications, this strategy presents computational difficulties due to the large size of the matrices to be inverted and multiplied. Thompson (1977) presented an overview of the methodology with particular reference to animal breeding applications and showed how some of the computational burdens of the FS algorithm may be overcome.

Spatial mixed model for MET trials

The experiment laid was down in a rectangular array of jth trials j= 1. . . p, consists of N_j, plots with r_j, rows and c_j columns (N_j = r_j x c_j) (Smith et al., 2001b). The vector of data $y_j^{(NjX1)}$ is ordered correspondingly as rows with in column. The model for the combined vector of data across environment (trials) $y^{(nx1)} = \{y_j\}$, n = $\sum_{i=1}^{p} N_i$ is given by:

$$y = X\tau + Zu + e \tag{1}$$

where $\tau^{(tx1)}$ and $u^{(bx1)}$ are vector of fixed and random effect respectively. $X^{(nxt)}$ and $U^{(bx1)}$ are the associated design matrices with the former assumed to be of full column ranks. The vector of residuals is given by e. Therefore, the distribution of the vector of data y is Gaussian with mean $X\tau$ and variance matrix H=ZGZ'+R.

Error e term also consists of a vector of sub error $\{e_i\}$, where $e_i^{(Njx1)}$ is vector of plot errors for jth trial and decomposed into a spatially dependent process ξ_i and an independent white noise process η_i . The error variance matrix for trial j is given by R_i = $\sigma_j^2 \sum_j (\alpha j) + \sigma_{\eta j}^2 I_{Nj}$, where Σ_j is a spatial correlation matric that is a function of α_i with associated variance σ_i^2 . The parameter $\sigma_{\eta i}^2$ is variance of the white noise process. The assumption is that spatial process for ξ_i is second order stationary so that the correlation between plots depends only on the distance between them. It also further assumed that the two dimensional process is separable so one can write $\Sigma_j = \Sigma_{cj} \otimes \Sigma_{rj}$, where Σ_{cj} and Σ_{rj} are the correlation matrices for column and rows respectively. However, many researches (Gilmour et al., 1997) show that separable autoregressive process of order one which is denoted by AR1xAR1 most of often provide an adequate variance structure for local spatial trend. In addition, errors from different trials are assumed to be independent.

The random effect u consists of sub vectors $\{u_i\}$, where $u_i^{(bix1)}$ is the vector of effect for the ith random term, i=1...q. the matrix Z is

Table 1. Description of testing locations.

Site	Longitude	Latitude	Altitude in m.a.s.l	Soil type	Rain fall in mm	Minimum T°C	Maximum T°C
Miesso	39°21'E	8°30'N	1470	Vertisol	571	16	31
Shiraro	39°9'E	14°6'N	1179	Vertisol	615	20.4	34
Kobo	39°38'E	12°09'N	1513	Vertisol	678	14.8	32
Mehoni (Fachagama)	39°70'E	12°70'N	1578	Clay	539	12.81	23.24
Humera	40 ⁰ 9'E	9 ⁰ 16'N	750	Vertisol and fluvic soil	590	26.7	40.8
Erer	42 ⁰ 15'E	9 ⁰ 10'N	1297	Vertisol	778	17	37

Source: National Metrology data of 2016/17 cropping season, m.a.s.l=meters above sea level, T°=Temperature.

Table 2. List of genotypes evaluated in this variety trial.

Genotype	Pedigree	Background
14MWLSDT7026	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7029	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7031	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7033	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7034	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7035	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7036	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7040	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7042	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7060	Macia/76T1#23	Crossed lines at Melkassa
14MWLSDT7073	SDSL2690-2/76T1#23	Crossed lines at Melkassa
14MWLSDT7074	SDSL2690-2/76T1#23	Crossed lines at Melkassa
14MWLSDT7098	MR812/76T1#23	Crossed lines at Melkassa
14MWLSDT7100	MR812/76T1#23	Crossed lines at Melkassa
14MWLSDT7114	2005MI5060/E-36-1	Crossed lines at Melkassa
14MWLSDT7115	ICSR24010/B_35	Crossed lines at Melkassa
14MWLSDT7129	ICSR24010/E-36-1	Crossed lines at Melkassa
14MWLSDT7138	WSV387/E-36-1	Crossed lines at Melkassa
14MWLSDT7145	WSV387/E-36-1	Crossed lines at Melkassa
14MWLSDT7157	WSV387/E-36-1	Crossed lines at Melkassa
14MWLSDT7176	WSV387/E-36-1	Crossed lines at Melkassa
14MWLSDT7177	WSV387/E-36-1	Crossed lines at Melkassa
14MWLSDT7191	WSV387/E-36-1	Crossed lines at Melkassa
14MWLSDT7193	WSV387/E-36-1	Crossed lines at Melkassa
14MWLSDT7196	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7201	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7207	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7209	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7234	Macia/E-36-1	Crossed lines at Melkassa
14MWLSDT7238	Macia/E-36-1	Crossed lines at Melkassa
14MWLSDT7241	Macia/E-36-1	Crossed lines at Melkassa

Tabl	е	2.	Contd

14MWLSDT7251	Macia/E-36-1	Crossed lines at Melkassa
14MWLSDT7253	Macia/E-36-1	Crossed lines at Melkassa
14MWLSDT7278	Macia/E-36-1	Crossed lines at Melkassa
14MWLSDT7279	Macia/E-36-1	Crossed lines at Melkassa
14MWLSDT7308	Teshale/B-35	Crossed lines at Melkassa
14MWLSDT7310	Teshale/B-35	Crossed lines at Melkassa
14MWLSDT7311	Teshale/B-35	Crossed lines at Melkassa
14MWLSDT7322	SDSL2690-2/76T1#23	Crossed lines at Melkassa
14MWLSDT7324	SDSL2690-2/76T1#23	Crossed lines at Melkassa
14MWLSDT7325	SDSL2690-2/76T1#23	Crossed lines at Melkassa
14MWLSDT7329	SDSL2690-2/76T1#23	Crossed lines at Melkassa
14MWLSDT7332	SDSL2690-2/76T1#23	Crossed lines at Melkassa
14MWLSDT7354	MR812/76T1#23	Crossed lines at Melkassa
14MWLSDT7356	MR812/76T1#23	Crossed lines at Melkassa
14MWLSDT7362	2005MI5060/B-35	Crossed lines at Melkassa
14MWLSDT7364	2005MI5060/B-35	Crossed lines at Melkassa
14MWLSDT7388	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7395	MR812/76T1#23	Crossed lines at Melkassa
14MWLSDT7400	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7401	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7402	WSV387/76T1#23	Crossed lines at Melkassa
14MWLSDT7405	Macia/76T1#23	Crossed lines at Melkassa
14MWLSDT7410	ICSR24010/B-35	Crossed lines at Melkassa
14MWLSDT7413	WSV387/E-36-1	Crossed lines at Melkassa
14MWLSDT7425	MR812/B-35	Crossed lines at Melkassa
Dekeba	ICSR24004	Standard Check
Melkam	WSV387	Standard Check

partitioned conformably as [Z1Zq]. It assumed that the sub vector of u is mutually independent. Variance matrix G_i for the ith random term has many possible forms including the standard variance component structure $G_i = \sigma_i^2 I_{bi}$. Let u_g be the mpx1 vector of genetic effect for m varieties for each p environments ordered as varieties with in environments. It represents two-dimensional (varieties by environment) array of effect, namely $U_a^{(mxp)}$, where $u_a = vec(U_a)$. It is assumed that the associated variance structure has a separable form with $var(u_g) = G_e \otimes G_v$, where G_e and G_v are the symmetric $p \times p$ and $m \times m$ component matrices for environment and varieties, respectively. When $G_v = I_m$, just for simplicity, therefore $var(u_g) = G_e \otimes I_m$, and the matrix $G_e =$ $\{\sigma_{ii'}\}$ is the so called genetic variance matrix. The diagonal elements are genetic variance for individual environments and the off -diagonal elements are genetic covariance between pairs of environments. The spatial mixed model for the above model 1 of MET data can then be written as:

$$y = X_{\tau} + Z_{u} + e = X_{\tau} + Z_{0}u_{0} + Z_{a}u_{a} + e,$$
(2)

the fixed effect τ includes environmental main effects and trial specific effects for extraneous field variation (Gilmour et al., 1997), u_g is variety effects at each environment with associated design matrix $Z_g^{(nxmp)}$ and u_0 comprise and additional random effect with design matrix Z_0 , and variance matrix G_0 .

In breeding program, there are many possible forms of genetic variance matrix structures. In mixed model of MET data, the standard structure is given by $G_e = \sigma_v^2 J_p + \sigma_{ve}^2 I_p$, where σ_v^2 and σ_{ve}^2 are the variance components for variety main effects and $V \times E$ interactions respectively, where as J_p is a $p \times p$ matric of one. This implies that all environments have the same genetic variance and all pair of environments have the same genetic covariance. Due to inefficient estimation or unstable even for moderately large values of p. Smith et al. (2001b) proposes an alternative variance structure model which is called factor analysis that is analogous of AMMI of Gauch (1988, 1992). This model captures the nature of heterogeneous variances and covariance that occur in most MET data. The factor analytic (FA) model is a regression-type model (*y=ax+b*), which can be fitted to an increasing number of dimensions k.

Trials	Row	Column	genotype	Mean grain yield (t ha ⁻¹)	Genetic variance	Error variance
KB14PYTLSL	14	40	433	3.17	2.87	0.34
MS14PYTLSL	14	40	433	2	0.32	0.181
HM15SG2N02	30	6	90	1.27	1.69	0.346
MS15SG2N02	30	6	90	1.48	0.44	0.131
SH15SG2N02	30	6	90	2.46	1.09	0.361
MH16SG2N02	30	6	90	2.46	0.98	1.133
MS16SG2N02	30	6	90	2.56	0.28	0.232
SH16SG2N02	30	6	90	2.19	0.61	0.628
ER15SG2N02	30	6	90	1.13	0.15	0.029

Table 3. Summary of early maturing variety trials.

Therefore, the model with variety main effects and k-factor analytic model for genotypes by environment interaction (GEI) is special case of (k+1) factor analytic model for variety effects at each environment. The concurrence of genotypes and populations between testing site was used to allow the trial series to be analyzed as a single MET as of each trial consisting similar hybrids, which is the current best practice method to analyze field trials for plant breeding programs.

RESULTS AND DISCUSSION

Based on the linear mixed model analysis stable and superior varieties across the test environment has been predicted and identified (Tables 3 to 6 and Figures 1 to 4). Three genotypes exhibited better yield advantage, higher plant biomass and overall plant aspects including drought tolerance. Hence, the variety 14MWLSDT7114 (2005MI5060/E-36-1) had 21.2%. varietv the 14MWLSDT7196 (WSV387/76T1#23) had 17.7% and 14MWLSDT7329 (SDSL2690-2/76T1#23) had 27.2% superiority in plant height. Mean grain yield performance of genotype 14MWLSDT7114 displayed 12.2%, genotype genotype 14MWLSDT7196 and 14MWLSDT7329 varieties had also 13.7 and 20.2% grain yield advantage compared to the standard check variety Dekeba and Melkam (Table 4). In addition to the grain yield advantage in comparison with the recently nationally released standard check variety, these three genotypes also showed stable grain yield performance across years and environments (Figure 3).

In this study three genotypes showed stable grain yield performance across years and across environments. In addition, these genotypes were preferred by farmers by their overall agronomic desirability (drought tolerance, earliness, head exertion and compactness, grain size and shape, threshability). The national variety releasing committed has been evaluated the variety verification trial (VVT) both on stations and farmers' field conditions in 2018/2019 and finallv verified the release of 14MWLSDT7114 (2005MI5060/E-36-1) varietv for

production. The results of the summary statistics (Table 3) indicate that Kobo is the most yielder for overall genotypes in terms of grain yield and other yield parameters. In another way, Erer is less yielder when compared with all other environments in terms of yield trait.

Figure 1 indicates how early maturing sorghum lines are correlated over the environments. Correlation among the trials ranged from positive +1 to -1 where positive correlation is an indication of similarity among the testing environments while negative correlation indicates dissimilarity among testing environments. This implicates the selection for promising materials. When the correlations among environments are positive, the selection for the best material based on a given environment is similar to the selection for the best materials in the other environments, for example, KB14PYTLSL, MS15SG2N02, MS16SG2N02 and SH16SG2N02. On the other hand, when environments are negatively correlated, there is a rank change among the genotypes so that the best material selected based on a given environment shows less performance in other environments like SH16SG2N02, HM15SG2N02 and BB15SG2N02.

One can briefly observe the stability and correlation among testing sites in Figure 2 where the angle between the two lines measures the strength of correlation. Less angle between the two lines indicates existence of correlation most often if less than 90' but if the angle is just around 90' it indicates the independency among the environments. Furthermore, when the angle between the two lines is more than 90', this indicates the negative correlation between the two environments. The distance of the line from the center measures the stability of the line. Less distance from the center indicate stability while far distance from the center indicates instability of the environment. Similarly, the length of the arrows indicates that the discrimination of the trials. So, MS16SG2N02 is the most discriminating trials fallowed by KB14PYTSL and SH16SG2N02.

Genotype	ER15SG2N02	HR15SG2N02	KB14PYTLSL	MH16SG2N02	MS14PYTLSL	MS15SG2N02	MS16SG2N02	SH15SG2N02	SH16SG2N02	Mean
14MWLSDT7026	1.32	1.71	3.98	3.49	2.54	1.85	2.99	2.45	3.33	2.63
14MWLSDT7029	1.19	1.45	3.61	3.23	2.24	1.64	2.83	2.56	2.18	2.33
14MWLSDT7031	1.15	1.49	3.85	3.64	1.99	1.84	2.96	3.40	2.92	2.58
14MWLSDT7033	1.14	1.38	3.42	2.89	2.16	1.53	2.61	2.62	2.35	2.23
14MWLSDT7034	1.27	2.36	3.89	4.06	2.39	1.81	2.99	2.75	2.19	2.64
14MWLSDT7035	1.24	1.34	3.79	3.72	2.32	1.75	2.73	2.73	3.03	2.52
14MWLSDT7036	1.29	1.66	4.04	4.07	2.39	1.91	3.07	2.81	2.80	2.67
14MWLSDT7040	1.18	1.27	3.46	2.96	2.26	1.54	2.63	2.29	2.25	2.20
14MWLSDT7042	1.22	1.32	3.60	3.09	2.37	1.62	2.76	2.31	3.12	2.38
14MWLSDT7060	1.09	1.30	3.36	2.15	1.99	1.51	2.86	2.62	2.13	2.11
14MWLSDT7073	1.06	1.07	2.97	3.31	2.07	1.24	2.12	2.19	1.49	1.95
14MWLSDT7074	1.18	1.46	3.47	2.31	2.26	1.54	2.72	2.48	2.48	2.21
14MWLSDT7098	1.30	1.39	3.50	1.81	2.71	1.50	2.45	1.87	2.54	2.12
14MWLSDT7100	1.20	1.64	3.77	2.67	2.19	1.76	2.82	2.93	2.83	2.42
14MWLSDT7114	0.93	1.22	3.28	2.11	1.46	1.53	2.73	3.19	3.31	2.20
14MWLSDT7115	1.19	1.24	3.32	1.66	2.37	1.43	2.57	2.15	2.44	2.04
14MWLSDT7129	1.09	0.83	2.64	1.63	2.33	0.98	1.85	1.49	1.16	1.56
14MWLSDT7138	1.20	1.40	3.60	2.48	2.30	1.63	2.92	2.74	1.94	2.24
14MWLSDT7145	1.32	1.27	3.42	1.99	2.81	1.44	2.43	1.67	1.93	2.03
14MWLSDT7157	1.17	1.31	3.27	1.23	2.35	1.40	2.58	2.25	1.71	1.92
14MWLSDT7176	1.32	1.40	3.82	3.70	2.63	1.73	2.58	2.42	2.68	2.48
14MWLSDT7177	1.15	1.39	3.43	2.53	2.18	1.53	2.66	2.42	1.76	2.12
14MWLSDT7191	0.95	0.76	2.54	2.67	1.88	0.98	1.85	2.06	1.88	1.73
14MWLSDT7193	1.05	1.23	3.35	2.84	1.86	1.52	2.59	2.99	2.42	2.21
14MWLSDT7196	1.31	1.80	4.02	2.69	2.47	1.88	3.09	2.64	3.45	2.59
14MWLSDT7201	1.16	1.49	3.68	2.72	2.09	1.71	3.18	2.91	2.19	2.35
14MWLSDT7207	1.25	1.55	3.99	4.16	2.27	1.89	2.99	3.07	3.10	2.70
14MWLSDT7209	1.14	1.17	3.12	1.91	2.29	1.31	2.38	2.06	1.30	1.85
14MWLSDT7234	1.30	1.41	3.95	3.48	2.47	1.84	3.15	2.71	2.75	2.56
14MWLSDT7238	1.16	1.35	3.34	2.45	2.27	1.46	2.56	2.30	1.83	2.08
14MWLSDT7241	0.93	0.77	2.70	1.73	1.72	1.10	2.36	2.41	1.02	1.64
14MWLSDT7251	1.19	1.17	3.28	1.86	2.39	1.40	2.37	2.20	1.94	1.98
14MWLSDT7253	1.20	0.95	2.85	1.57	2.63	1.08	2.04	1.37	1.61	1.70
14MWLSDT7278	1.18	1.40	3.50	2.19	2.26	1.57	2.59	2.61	2.26	2.17
14MWLSDT7279	1.23	1.58	3.58	3.51	2.42	1.59	2.70	2.17	2.43	2.36
14MWLSDT7308	1.00	1.06	3.23	3.59	1.73	1.45	2.72	2.87	2.46	2.24
14MWLSDT7310	1.24	1.20	3.43	1.76	2.53	1.48	2.57	1.90	2.64	2.08
14MWLSDT7311	1.07	1.06	3.19	2.39	2.02	1.39	2.32	2.70	2.70	2.09
14MWLSDT7322	1.01	1.10	3.18	1.71	1.80	1.41	2.75	2.89	1.64	1.95
14MWLSDT7324	1.28	1.51	3.79	2.74	2.49	1.73	2.85	2.45	2.26	2.35

Table 4. Predictions of genotypes using linear mixed model for grain yield (t ha⁻¹).

Table 4. Contd.

14MWLSDT7325	1.12	1.14	3.23	1.77	2.16	1.40	2.55	2.35	1.92	1.96
14MWLSDT7329	1.46	1.89	4.40	5.17	2.85	2.09	3.32	2.65	3.64	3.05
14MWLSDT7332	1.26	1.63	3.99	4.96	2.33	1.88	3.01	3.01	2.87	2.77
14MWLSDT7354	1.15	1.42	3.53	2.95	2.14	1.60	2.71	2.69	2.67	2.32
14MWLSDT7356	1.31	1.54	3.79	4.00	2.58	1.71	2.78	2.21	3.09	2.56
14MWLSDT7362	1.29	1.25	3.44	1.50	2.68	1.47	2.69	1.94	1.94	2.02
14MWLSDT7364	1.25	1.51	3.81	2.22	2.37	1.76	2.93	2.71	3.41	2.44
14MWLSDT7388	1.22	1.40	3.64	3.74	2.32	1.65	2.77	2.58	1.65	2.33
14MWLSDT7395	1.20	1.46	3.72	2.05	2.24	1.71	2.80	2.90	3.07	2.35
14MWLSDT7400	1.24	1.42	3.64	3.76	2.42	1.64	2.74	2.27	2.57	2.41
14MWLSDT7401	1.28	1.67	3.92	4.42	2.43	1.83	2.80	2.73	2.31	2.60
14MWLSDT7402	0.92	0.69	2.53	1.53	1.78	0.98	1.92	2.24	1.50	1.57
14MWLSDT7405	1.10	1.29	3.38	2.16	2.02	1.51	2.74	2.77	2.09	2.12
14MWLSDT7410	1.20	1.41	3.57	2.38	2.28	1.61	2.91	2.54	2.46	2.26
14MWLSDT7413	1.36	1.51	4.04	2.63	2.67	1.87	3.08	2.48	2.91	2.51
14MWLSDT7425	1.14	1.21	3.28	1.81	2.20	1.42	2.51	2.26	2.29	2.01
Dekeba	1.29	1.33	3.51	3.16	2.66	1.52	2.53	1.90	2.16	2.23
Melkam	1.34	1.59	3.59	2.51	2.80	1.55	2.55	1.95	1.94	2.20
Mean	1.19	1.36	3.50	2.75	2.29	1.56	2.68	2.46	2.36	2.24

ER15SG2N02= Erer 2015 NVT, HR15SG2N02=Humera 2015 NVT, KB14PYTLSL=Kobo 2014 PYT, MH16SG2N02=Mehoni 2016 NVT, MS14PYTLSL=Miesso 2014 PYT, MS15SG2N02=Miesso 2015 NVT, MS16SG2N02=Miesso 2016 NVT, MS16SG2N02=Miesso 2016 NVT, SH15SG2N02=Shiraro 2015 NVT, SH16SG2N02=Shiraro 2016 NVT.

Table 5. Genetic correlation among trials using early maturing sorghum varieties.

Trials	KB14PYTLSL	MS14PYTLSL	HM15SG2N02	MS15SG2N02	SH15SG2N02	MH16SG2N02	MS16SG2N02	SH16SG2N02	ER15SG2N02
KB14PYTLSL	1	0.544	0.639	0.991	0.442	0.622	0.817	0.729	0.818
MS14PYTLSL	0.544	1	0.365	0.428	-0.387	0.284	0.231	0.32	0.928
HM15SG2N02	0.639	0.365	1	0.63	0.266	0.396	0.516	0.464	0.535
MS15SG2N02	0.991	0.428	0.63	1	0.537	0.625	0.843	0.735	0.734
SH15SG2N02	0.442	-0.387	0.266	0.537	1	0.323	0.55	0.39	-0.068
MH16SG2N02	0.622	0.284	0.396	0.625	0.323	1	0.524	0.459	0.472
MS16SG2N02	0.817	0.231	0.516	0.843	0.55	0.524	1	0.619	0.522
SH16SG2N02	0.729	0.32	0.464	0.735	0.39	0.459	0.619	1	0.544
BB15SG2N02	0.818	0.928	0.535	0.734	-0.068	0.472	0.522	0.544	1

ER15SG2N02= Erer 2015 NVT, HR15SG2N02=Humera 2015 NVT, KB14PYTLSL=Kobo 2014 PYT, MH16SG2N02=Mehoni 2016 NVT, MS14PYTLSL=Miesso 2014 PYT, MS15SG2N02=Miesso 2015 NVT, MS16SG2N02=Miesso 2016 NVT, MS16SG2N02=Miesso 2016 NVT, SH15SG2N02=Shiraro 2015 NVT, SH16SG2N02=Shiraro 2016 NVT.

Figure 1. Genetic correlations amongst in early maturing sorghum testing environments.

Figure 2. Correlation among testing environments using the angle between two lines.

Figure 3. Comparison of grain yield performance among genotypes.

The comparison biplot was used to identify three superior and stable genotypes across the testing environments. Heritability is one objective in plant breeding; where high heritability indicates possible selection for targeted traits in breeding Hence, using advanced statistical models, we can increase the genetic gain. Figure 4 indicates improvements in heritability by the advanced statistical methods (Table 4).

Conclusion

Three genotypes exhibited better yield advantage, higher plant biomass and overall plant traits including drought genotypes: tolerance. The 14MWLSDT7114 (2005MI5060/E-36-1) had 21.2%, 14MWLSDT7196 (WSV387/76T1#23) had 17.7% and 14MWLSDT7329 (SDSL2690-2/76T1#23) had 27.2% superiority in plant height. Mean grain yield performance of genotype 14MWLSDT7114 displayed 12.2%, genotype 14MWLSDT7196 and genotype 14MWLSDT7329 had also showed 13.7 and 20.2% grain yield advantage compared to the standard check variety Dekeba and Melkam. Correlation of the trial's ranges from positive + 0.928 to - 0.387 where positive correlation indicates the strength of their correlation (similarity) among the testing environments while negative correlation indicates dissimilarity among testing environments. One can briefly observe the stability and correlation among testing sites as shown in Figure 2 where the angle between the two line measures the strength of correlation and the length of the arrow showed us discriminability of the testing environments. Figure 3 indicates improvements in heritability by using advanced statistical methods (RCBD, Spatial, Spatial + MET).

From this study three genotypes were showed stable grain yield performance across years and across environments. In addition, these genotypes were preferred by farmers in their overall agronomic desirability (drought tolerance, earliness, head exertion and compactness, grain size, shape and threshability). The national variety releasing committed has been evaluated

Figure 4. Improvements in heritability through applications of different statistical models.

S/N	Genotype	KB14	MS14	MS15	MS16	SH15	SH16	Mean
1	14MWLSDT7026	195	195	161	169	213	222	192
2	14MWLSDT7029	224	182	170	189	224	218	201
3	14MWLSDT7031	190	187	167	182	242	217	198
4	14MWLSDT7033	175	191	167	184	218	222	193
5	14MWLSDT7034	187	192	159	184	239	215	196
6	14MWLSDT7035	182	184	174	186	260	228	202
7	14MWLSDT7036	191	187	166	193	229	235	200
8	14MWLSDT7040	194	189	164	191	236	212	198
9	14MWLSDT7042	191	199	171	195	241	227	204
10	14MWLSDT7060	178	179	151	153	203	188	175
11	14MWLSDT7073	198	176	160	166	234	217	192
12	14MWLSDT7074	179	173	149	165	224	206	183

 Table 6. Predictions of top genotypes using linear mixed model for plant height (cm).

Table 6. Contd.

13	14MWLSDT7098	218	216	161	183	238	208	204
14	14MWLSDT7100	247	203	174	186	251	234	216
15	14MWLSDT7114	187	193	149	166	224	209	188
16	14MWLSDT7115	189	192	152	175	252	220	197
17	14MWLSDT7129	183	206	168	189	239	211	199
18	14MWLSDT7138	198	194	172	177	239	216	199
19	14MWLSDT7145	194	194	165	190	239	243	204
20	14MWLSDT7157	221	198	161	174	235	234	204
21	14MWLSDT7176	181	160	214	162	246	212	196
22	14MWLSDT7177	195	168	200	164	198	198	187
23	14MWLSDT7191	171	183	159	168	223	198	184
24	14MWLSDT7193	186	182	147	155	210	196	179
25	14MWLSDT7196	184	172	158	155	226	194	181
26	14MWLSDT7201	192	181	154	188	246	213	196
27	14MWLSDT7207	197	178	166	175	240	228	197
28	14MWLSDT7209	188	182	164	179	224	220	193
29	14MWLSDT7234	190	183	169	173	233	180	188
30	14MWLSDT7238	51	183	166	180	228	228	173
31	14MWLSDT7241	198	176	156	182	238	215	194
32	14MWLSDT7251	204	182	178	181	255	237	206
33	14MWLSDT7253	174	195	166	182	237	226	197
34	14MWLSDT7278	197	181	155	161	214	204	185
35	14MWLSDT7279	201	195	169	177	277	210	205
36	14MWLSDT7308	275	199	179	205	278	272	235
37	14MWLSDT7310	221	220	191	200	256	235	220
38	14MWLSDT7311	219	198	166	214	279	253	222
39	14MWLSDT7322	231	184	175	196	292	245	221
40	14MWLSDT7324	234	223	192	215	277	259	233
41	14MWLSDT7325	215	192	182	195	279	246	218
42	14MWLSDT7329	197	183	163	169	257	209	196
43	14MWLSDT7332	179	167	147	158	212	196	176
44	14MWLSDT7354	173	154	153	163	190	192	171
45	14MWLSDT7356	173	180	155	159	212	199	180
46	14MWLSDT7362	192	175	157	173	218	214	188
47	14MWLSDT7364	196	191	167	174	250	230	202
48	14MWLSDT7388	196	182	163	167	223	214	191
49	14MWLSDT7395	176	164	157	161	216	206	180
50	14MWLSDT7400	200	179	164	170	221	208	190
51	14MWLSDT7401	184	182	161	170	228	220	191
52	14MWLSDT7402	256	219	175	181	290	276	233
53	14MWLSDT7405	194	182	165	189	236	204	195
54	14MWLSDT7410	203	205	170	181	236	217	202
55	14MWLSDT7413	190	184	164	154	232	203	188
56	14MWLSDT7425	188	182	156	190	244	225	198
57	Dekeba	135	149	136	141	186	177	154
58	Melkam	163	171	153	145	182	181	166
	Mean	193	186	165	177	236	218	196

KB14= Kobo 2014, MS14= Miesso 2014, MS15= Miesso 2015, MS16= Miesso 2016, SH15= Shiraro 2015, SH16= Shiraro 2016.

2018/2019 and finally verified the release of the variety

14MWLSDT7114 (2005MI5060/E-36-1) for commercial production.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

- Amare S, Gebreyohannes A, Nega A, Nida H, Tadesse T, Tirfessa A, Bejiga T (2019). Performance Evaluation of Sorghum (Sorghum bicolor (L.) Moench) Genotypes for Grain Yield and Yield Related Traits in Drought Prone Areas of Ethiopia. Advances in Crop Science and Technology 7:439.
- Cooper M, van Eeuwijk FS, Chapman SC, Oodlich DW, Loffler C (2006). Genotype by environment interactions under water-limited conditions. In: Drought adaptation in cereals (j. M. Ribaut ed.). The Waworth Press Inc, Binghampton N.Y. pp. 51-59.
- CSA (2018). The Federal Democratic Republic of Ethiopia Central Statistical Agency (CSA) Agricultural Sample Survey. Volume I. Report on Area and Production of Major Crops. Statistical Bulletin 586p.
- Gauch HG (1988). Model selection and validation for yield trials with interaction. Biornetrics 44:705-715.
- Gauch HG (1992). Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs. Amsterdam: Elsevier. Amsterdam. Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier, Amsterdam.
- Gilmour AR, Cullis BR, Verbyla AP (1997). Accounting for natural and extraneous variation in the analysis of field experiments. Journal of Agricultural, Biological, and Environmental Statistics 2:269-273.
- Henderson CR (1984). Applications of linear models in animal breeding University of Guelph, Guelph, ON. https://lib.ugent.be/en/catalog/rug01:000162616
- Patterson HD, Thompson R (1971). Recovery of in- terblock information when block sizes are unequal. BioMetrika 31:100-109.
- Smith AB, Cullis BR, Gilmour A (2001a). The analysis of crop variety evaluation data in Australia. Australian and New Zealand Journal of Statistics 43:129-145.

- Smith AB, Cullis BR, Thompson R (2001b). Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics 57:1138-1147.
- Thompson R (1977). Estimation of quantitative genetic parameters. In: Kempthorne O, Pollock E, Bailey T, editors. Proc. Int. Conf. on Quantitative Genetics. Iowa State University Press; Ames, IA. pp. 639-657.
- Talbot M (1984). Yield variability of crop varieties in the U.K. Journal of Agricultural Science, Cambridge 102:315-321
- Westgate ME, Boyer JS (1985). Carbohydrate reserves and reproductive development at low leaf water potentials in maize. Crop Science 25:762-769