Calcium alleviation of sodium toxicity in salt-treated \textit{Cyclocarya paliurus} seedlings

Ruiling YAO1,2,3*, Yin WANG1,3 and Shengzuo FANG2

1Guangxi Forestry Research Institute, Nanning 530002, Guangxi Province, China.
2College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China.
3Key Laboratory of Central South Fast-growing Timber Cultivation of Forestry Ministry of China, Nanning 530002, China.

Accepted 8 November, 2011

\textit{Cyclocarya paliurus} seedlings were cultured in a greenhouse under saline conditions in 50 L black plastic boxes containing Hoagland-Arnon nutrient solution. Plants were treated with a nutrient solution plus 85 mM NaCl and 0, 6, 12 or 18 mM Ca(NO$_3$)$_2$. Vegetative growth, leaf and root Na$^+$ and Ca$^{2+}$ concentrations were measured. Na$^+$ toxicity symptoms were observed in plants non-treated with Ca$^{2+}$. Shoot length was higher in Ca$^{2+}$ treated plants, although shoot growth was reduced at 18 mM Ca(NO$_3$)$_2$, probably due to the high total ion concentration reached in the external solution. Ca$^{2+}$ supply linearly increased leaf and root Ca$^{2+}$ concentration and decreased leaf Na$^+$ concentration. However, there were no differences in root Na$^+$ concentration. Results indicate that Ca$^{2+}$ may take part in the Na$^+$ exclusion mechanism, mainly preventing Na$^+$ transport to the shoot that may be an important ability for survival under saline conditions.

Key words: \textit{Cyclocarya paliurus}, NaCl, sodium exclusion, calcium.

INTRODUCTION

\textit{Cyclocarya paliurus} (Batal) Iljinskaja, a native to China, is the sole species in its genus. It is a well-known multiple function plant in China. Particularly, a huge production of tender leaves from \textit{C. paliurus} is required for the raw material of teas and medicinal use, thus increasing demands for new \textit{C. paliurus} plantations are anticipated (Fang and Fu, 2007; Yao and Fang, 2009a). It was reported that there is a total of about 27\times106 ha of saline soil in China, of which coastal land accounts for 8% (Yao and Fang, 2009b). It is much sensitive to salt condition compared to most of halophytes (Yao et al., 2009). To our knowledge, it grew well in medium with 17 mM NaCl, while there was a significant increase in seedlings mortality under 85 mM NaCl treatment (Yao and Fang, 2009a). The salinity for most of coastal lands is approximate 85 mM or so, thus it is necessary to improve the salt-tolerant ability of \textit{C. paliurus} in order to effectively promote its planting in coastal or saline areas.

Ca$^{2+}$ supply to the saline soil solution regulates Na$^+$ uptake by plants and can prevent the accumulation of toxic levels of Na$^+$ (Maas, 1993; Tattini and Traversi, 2009; Ding et al., 2010). However, effectiveness in alleviating the toxic effect of Na$^+$ depends on the Ca$^{2+}$ and Na$^+$ concentration and on the species (Grattan and Grieve, 1999). Usually, plant salt tolerance is mainly associated to ion exclusion mechanisms located in the root (Benlloch et al., 1991; Tattini et al., 1995; Ben et al., 2009) and consisting in holding Na$^+$ and Cl$^-$ at the root level and limiting the accumulation of these ions in the shoot. Cl$^-$ uptake and transport to the shoot in \textit{C. paliurus} is lower than for Na$^+$ (Li et al., 2007), without causing negative effects if concentrations are less or equal to 85 mM Cl$^-$ in saline solution (Yao and Fang, 2009a). Although the mitigating effect of Ca$^{2+}$ on the adverse NaCl effects has been reported in many plant species (La Haye and Epstein, 1969), the role of Ca$^{2+}$ has not been sufficiently studied in \textit{C. paliurus}. To enhance an understanding on the effect of Ca$^{2+}$ alleviation on Na$^+$ toxicity in \textit{C. paliurus} planted in saline conditions, the objective of the present study was to determine the effect of supplementary Ca$^{2+}$ on Na$^+$ uptake and transportation.
in salt-treated *C. paliurus* seedlings.

MATERIALS AND METHODS

Seeds of *C. paliurus* were collected from good mother trees in Jiangxi Province of China and sowed in containers with mixed medium (perlite: vermiculite: peat soil=1:2:2) after dormancy were broken. When the height of seedlings reached about 7 cm, they were cultured in plastic boxes with one-half-strength Hoagland-Arnon nutrient solution. After 7 days of culture, uniform seedlings were selected and cultured with normal Hoagland-Arnon nutrient solution (Hoagland and Arnon, 1950). The solution was aerated throughout the experiment, and the volume was maintained by adding distilled water to compensate for water loss by evaporation and transpiration. The nutrient solution was renewed every 3 days. The seedlings were grown in a controlled environment: 350-400 μmol·m⁻²·s⁻¹ daily photon flux density; 16 h, 25°C (day)/8 h, 20°C (night) regime; 60-70% relative humidity. Two-month-old *C. paliurus* seedlings cultured in normal Hoagland-Arnon nutrient solution were divided into four groups and exposed to 85 mM NaCl plus 0, 6, 12 or 18 mM Ca(NO₃)₂ solutions, respectively. There were 50 trees for each treatment. After 28 days treatment, shoot and root length was measured, leaves formed during the experiment were sampled, and shoots and roots separated in all of plants. Roots were simultaneously digested with a mixture of HClO₄ and HNO₃. The concentration of Na⁺ and Ca²⁺ in the digested samples of roots and leaves were measured by an atomic absorption spectrophotometer (Thermo Element MKII-MB). The third group of roots was used for root X-ray microanalysis, which was measured in a JSM-6300 scanning electron microscope equipped with an energy-dispersive X-ray detector (Sigma) (Tomos et al., 1994). Counts per second of [Ca⁷⁴] and [Na⁺] were measured in roots from different treatments. Four transverse sections of each treatment were observed and three location spots of the same tissue of each section were analysed.

Means and standard errors were obtained for leaf Na⁺ and Ca²⁺ concentration data. Data were subjected to analysis of variance to compare the effect of the treatments using SPSS 13.0 statistical software.

RESULTS

Shoot length significantly increased with Ca(NO₃)₂ concentration, showing a quadratic response that indicated a reduction in shoot growth at the highest Ca(NO₃)₂ concentrations (Table 1). Little growth was obtained when Ca(NO₃)₂ was not supplied to the medium. Non-significant differences were found either in root length or root dry weights among treatments.

<table>
<thead>
<tr>
<th>Ca(NO₃)₂ concentration (mM)</th>
<th>Root length (cm)</th>
<th>Shoot length (cm)</th>
<th>Root DW (g)</th>
<th>Shoot DW (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10.21</td>
<td>7.74cC</td>
<td>0.09</td>
<td>0.47b</td>
</tr>
<tr>
<td>6</td>
<td>10.62</td>
<td>11.36bB</td>
<td>0.15</td>
<td>0.53b</td>
</tr>
<tr>
<td>12</td>
<td>12.33</td>
<td>19.25aA</td>
<td>0.28</td>
<td>0.91a</td>
</tr>
<tr>
<td>18</td>
<td>11.20</td>
<td>14.36bB</td>
<td>0.17</td>
<td>0.68ab</td>
</tr>
</tbody>
</table>

Data were analyzed by Duncan’s multiple range test and means of at least ten replicates followed by identical letters were not statistically different, where small letters showed the differences in four Ca(NO₃)₂ concentration treatments at α=0.05 level and capital letters showed the differences at α=0.01 level.

DISCUSSION

Plants untreated with Ca(NO₃)₂ grew less than plants treated with Ca(NO₃)₂, showing leaf symptoms associated with this growth response. Growth reduction following salt treatment in plants is generally attributed to excessive salt accumulation in growing tissues (Lewitt, 1980), although both Ca²⁺ deficiency and Na⁺ toxicity could be involved in the appearance of leaf symptoms. Benlloch et al. (1991) reported that no leaf toxicity symptoms, just growth reduction, were observed at high Na⁺ leaf concentrations in Ca²⁺ non-deficient plants. Our results showed that *C. paliurus* seedlings non-treated
Figure 1. Effect of Ca(NO$_3$)$_2$ concentration on leaf Na$^+$ (●) and leaf Ca$^{2+}$ (○) concentration in Cyclocarya paliurus seedlings treated with 85 mM NaCl. Leaves were sampled and analysed 28 days after the beginning of the treatments. Means of four replicates±standard error. Differences in treatments were analyzed by Duncan’s multiple range test (α=0.05).

Figure 2. Effect of Ca(NO$_3$)$_2$ concentration on Root Na$^+$ (●) and leaf Ca$^{2+}$ (○) concentration in Cyclocarya paliurus seedlings treated with 85 mM NaCl. Leaves were sampled and analyzed 28 days after the beginning of the treatments. Means of four replicates±standard error. Differences in treatments were analyzed by Duncan’s multiple range test (α=0.05).
with Ca\(^{2+}\) were Ca\(^{2+}\) deficient and suggest that leaf symptoms might not be exclusively associated to Ca\(^{2+}\) deficiency because no damage was observed in apical meristems or young leaves. Probably, Na\(^{+}\) toxicity is mainly shown when leaves are Ca\(^{2+}\) deficient what could explain the toxicity symptoms observed in the leaves.

Ca\(^{2+}\) supply to the saline solution and, consequently, the increase in the Ca\(^{2+}\)/Na\(^{+}\) ratio enhanced plant growth. It is supposed that the growth reduction shown by C. paliurus seedlings treated with 18 mM Ca(NO\(_3\))\(_2\) was probably due to the water stress caused by the high total ion concentration in the external solution. Researchers also observed that although some halophytes are quite tolerant to salinity, they can be negatively affected by the total saline concentration, and growth reductions of them have been correlated with the accumulation of toxic ions in the shoot (Tattini et al., 1992; Chelli et al., 2010). Regulation of leaf Na\(^{+}\) concentration could be influenced by the toxic ion exclusion capacity that plants show. This exclusion capacity could be higher in tolerant genotypes than in sensitive ones (Gucci and Tattini, 1997), which could partially explain the fact that the C. paliurus provenance from Anhui Province closed to coastal area of China is a much more salt-tolerant cultivar compared...
with Jiangxi and Yunnan provenances (Yao and Fang, 2009a). Tolerant cultivars have the capacity for Na⁺ retention in roots, whereas sensitive ones do not (Tattini, 1994; Kinraide et al., 2004). In this study, we found that there was no remarkable difference between leaf and root Na⁺ concentration when Ca(NO₃)₂ was not supplied to the medium, while the root Na⁺ concentration was significantly higher than the leaf Na⁺ concentration using the supply of Ca(NO₃)₂. This thus could supported in that Ca²⁺ could contribute to the improvement of salt-tolerant ability of C. paliurus seedlings under saline condition keeping the Na⁺ retention in roots as many as possible.

We also found that leaf Ca²⁺ concentration was increased when Ca²⁺ rose in the saline solution, and this increase seemed to be related with a notable decrease in leaf Na⁺ concentration that, consequently, may also be regulated by leaf Ca²⁺ concentration. The cytosolic Na⁺ concentration could be kept at a low level minimizing the Na⁺ influx into the cytosol (Blumwald et al., 2000), restricting Na⁺ entry into plant cells by selective ion uptake. Selective cation channels (Maathuis and Sanders, 1995), and non-selective cation channels, NSCCs (Amtmann and Sanders, 1999; Demidchik et al., 2002), seem to be involved in mediating the toxic influx of Na⁺, but recent findings suggest that the later ones are the dominant pathways for Na⁺ influx into root cells (Roberts and Tester, 1997; Demidchik et al., 2002). The functions of NSCCs are inhibited by Ca²⁺ at 0.5 mM or higher concentrations (Amtmann and Sanders, 1999). However, in our experiment, Na⁺ accumulation in roots, regardless of Ca²⁺ treatments and root Ca²⁺ concentrations, did not seem to be influenced by Ca²⁺ supply to the saline solution. According to Demiral (2005), an effective salt-exclusion mechanism is operating in the roots, and the control mechanism probably prevents salt translocation rather than salt absorption. In our experiment, therefore, root and leaf Na⁺ and Ca²⁺ concentrations showed that Ca²⁺ may act mainly by inhibiting Na⁺ transport from root to shoot. Thus, Ca²⁺ is supposed to be directly involved in Na⁺ exclusion and retention mechanisms, regulating Na⁺ transport, which may be an important ability for survival under saline conditions.

ACKNOWLEDGEMENTS

This research was supported by the National Natural Science Foundation of China (Project No: 30371156) and the Natural Science Foundation of Guangxi Province (Project No: 2010GXNSFB013031).

REFERENCES

