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In this study, the physical and chemical characteristics of Bambusa vulgaris ex J.C. Wendl. var.vulgaris 
(Bambusa vulgaris) aged 1, 2 and 3 years were evaluated. The objective was to train, validate and 
evaluate the efficiency of artificial neural networks (ANNs) as predictive tools to estimate bamboo stem 
energy density grown commercially in northeastern Brazil. For that, samples were collected in a 
commercial plantation and managed for energy production, determining the energy properties. Among 
all the characteristics analyzed, basic apparent density was the one with major correlation with bamboo 
stem energy density. This factor has a great advantage because it is easy to estimate, determined both 
by dry mass at 0% moisture, and at saturated mass. Also, the precision of ANNs was verified when 
associated with basic density, as a predictor of bamboo stem energy density, showing low standard 
error (Syx%, 1.52) and high coefficient of determination (R² = 0.98). ANN-estimated values had no 
statistical difference (tcal 0.58 ≤ ttab 2.08) with energy density estimated in the laboratory. Therefore, this 
tool was efficient, being recommended to predict the energetic density of the species under study, with 
basic density as the only predictive variable. 
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INTRODUCTION 
 
Biomass converted into biofuels fits into the concept of 
sustainable development. Thus, bamboo, as a source of 
biomass, is an alternative to being, among other factors, 
a perennial grass, with good productivity without the need 
for being replanted (Guarnetti, 2013). 

There are about 1439  species  of  bamboo  worldwide, 

being distributed into 116 genera (Bamboo Phylogeny 
Group, 2012). Over 4000 uses are registered for this 
species (Kuehl and Yiping, 2012). Brazil owns the 
greatest diversity of species among the Latin American 
countries (Grombone-Buaratini et al., 2011). Over time, 
bamboo use has  benefited  man  in  several  generations  
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both as a source of work and income (Almeida, 2010). In 
East Asia, this plant is employed in the manufacturing of 
houses, agricultural tools, handicrafts and furniture (Negi 
and Saxena, 2011). Currently, other uses have been 
researched, such as activated charcoal (Liu et al., 2010) 
and other energy sources. 

Wood energy potential should be evaluated by means 
of energy density, which is the product between calorific 
value and apparent density, whose IS unit is kj.m

-3
. It is 

an important property because, in addition to 
encompassing density and calorific value, it 
encompasses wood chemical and physical 
characteristics for energy production through heat form. 
Moreira (2012) stated the energy density as an excellent 
indicator of energy potential for Bambusa vulgaris.  

Nevertheless, these variables must be carefully 
defined, whereas both wood density and calorific value 
can be obtained under different conditions, generating 
different values for energy density. In general, this 
variable must be determined under conditions where 
calorific value and density are estimated with the same 
moisture content. But, the exception to this rule would be 
by the existence of basic density. In this case, the higher 
calorific value is used in calculations of the energy 
density.  

For companies that use biomass as fuel, the energy 
density is fundamental as an indicator of its energy 
potential. In this sense, it becomes imperative to use 
techniques or tools that enable estimations of such 
energy potential. Among them are the artificial 
intelligence (AI) tools. The use of AI tools for estimations 
of growth and production in the forest science field is a 
new subject, which is rarely explored. In contrast, efforts 
have been made towards this approach, showing 
promising results for eucalyptus and pines species 
(Castro et al., 2013; Diamantopoulou, 2005; Gorgens et 
al., 2009; Miguel et al., 2015); yet, there are no studies 
on assessment for bamboos, mainly for energy density 
prediction.  

Among the available AI techniques, artificial neural 
networks (ANNs) have gained prominence (Binoti et al., 
2013; Miguel et al., 2015). The use of ANNs in modeling 
allows greater accuracy in production estimates and 
improved decision-making (Angel et al., 2007). 

ANNs are mathematical models making use of artificial 
intelligence to solve certain complex problems. These 
nets are formed by simple processing elements- artificial 
neurons, which are activated by a function, known as the 
activation function. The neurons are bound to each other 
by connections, mostly coefficients or weights, which are 
adjusted by training algorithms. An artificial neuron is a 
simplified and related model of a real neuron, whose 
basic properties are information adequacy and 
reproduction based on connections, being thus an 
information-processing unit within a neural network 
(Wang et al., 2010). 

According to Kuvendziev et al.  (2014), these  networks  
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have as basic characteristics an adaptive learning, self-
organization ability, robust and parallel-distributed 
structure (layers), learning efficiency and generalization. 
They are also tolerant to divergent data, being able to 
model several variables and respective non-linear 
relationships. Besides that, the use of this tool enables 
modeling with quantitative and qualitative variables. 

Given the above, this study aimed to train, validate and 
evaluate the efficiency of artificial neural networks (ANN) 
as predictor tool of energy density estimators in bamboo 
stems (B. vulgaris), grown and exploited commercially in 
northeastern Brazil.  
 
 
MATERIALS AND METHODS 
 
Nine stems of Bambusa vulgaris, aged between 1 and 3 years, 
were collected from commercial areas in the city of Santo Amaro - 
Ba, Brazil. The selected stems were naturally dried inside a shed, 
with good air circulation, which belongs to the Laboratory Forestry 
Products (LPF), Brazilian Forest Service. If necessary, they were 
left in a forced-air circulation oven for drying at 105 ± 3°C until 
constant weight. Stems were chopped and ground in a Willey type 
mill, being later classified in a 0.250-mm sieve system for use in 
tests. The immediate analysis was performed based on the NBR 
8112 standard (ABNT, 1986), with some adaptations: triplicate 
tests, a material with a particle size below 0.250 mm, use of 
ceramic crucibles, and for ashes 2 g sample for volatiles. 

Samples were prepared for chemical analyses using the methods 
T 257 cm-85 (TAPPI, 2012) and T 264 om-88 (TAPPI, 1996). For 
evaluation of the extractive contents in ethanol (toluene), T 204 om-
88 (TAPPI, 2007) was used. For ashes without extractives at 
525°C, the method T 211 om-93 (TAPPI, 2002) was used. The 
laboratory analysis procedures LAP-003 and LAP-004, from the 
National Renewable Energy Laboratory - NREL (Templeton and 
Ehrman, 1995), were used to determine the contents of lignin. 
Equation 1 was used for holocellulose content (HC) determination. 
 

HC = 100% - TLign – AC525°C                  (1) 
 

Where HC = holocellulose content (%); TLign = total lignin (%); 
AC525°C = extractive free ash content at 525°C. 

Basic density (ρb) of B. vulgaris stems was estimated according 
to NBR 7190 standard (ABNT, 1997), by relating the dry mass at 
0% moisture and the sample saturated volume. Superior calorific 
value (SCV) was determined for 0.7000 g samples at 0% moisture 
and grain size under 0.250 mm. Trials were performed in triplicate 
with the aid of an isoperibolic calorimeter (Parr 1261, USA), 
following ABNT NBR 8633 protocol (ABNT, 1984). Equation 2 was 
used for energy density (ρE) determination. 
 

ρE = SCV. ρb.k                                            (2) 
 

Where ρE = energy density (MJ.m-3); SCV = superior calorific value 

(kJ.kg-1); ρb = basic density (kg.m-3); k =  
(conversion factor from kJ to MJ). 
 
 

ANN adjustments 
 

The networks were developed and trained through Pearson 
correlation between bamboo stem physical and chemical properties 
against its energy density. Hereafter, delay and burden for 
estimation of such variables was analyzed. According to Draper 
and Smith (1998), this type of modeling is justified when, instead  of 
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using difficult-to-obtain variables, estimates can be attained by 
easily accessible variables and under the pre-established 
requisites. 

By adjusting ANNs, the numerical variables were linearly 
normalized within a range of 0 to 1 (Heaton, 2011). Input layer 
consisted of a single neuron (1), which stands for the basic density 
of the species as a function of the output variable. As an output, 
bamboo energy density was used. 

Besides, the networks had one hidden layer. In fact, most of the 
time networks require at least one hidden layer to solve non-linearly 
separable problems (Oliveira-Esquerre et al., 2002). The number of 
neurons in this layer was optimized by the Intelligent Problem 
Solver (IPS) tool of Statistica 7.0 software (StaSoft Inc., 2005), 
using a sigmoidal activation function. 

This sigmoid activation function is the most usual in ANN training, 
being differentiable if compared to the others. In a well-drawn 
network layout, any continuous function could be approximated with 
precision (Ismailov, 2014). It is mathematically expressed as: 
 

u
v




exp1

1
)(



                                                                       (3) 

 
Where  = sigmoid activation function; β = estimate of the 

parameter for the sigmoidal function inclination; u = function 
activation potential. 
 
The ANN key element is an artificial neuron. It is responsible for 
information processing after receiving values of operating 
parameters as input (basic density), returning the desired results as 
output (energy density). According to Wang et al. (2010), this 
neuron is a simplification of a biological neuron, and its basic 
properties consist of connection-based information matching and 
reproduction. Such connections may be composed of "n" inputs x1, 
x2, ..., xn (dendrites) and an output y (axon). The inputs receive 
weights w1, w2, ..., wn, which represent the synapses that might be 
negative or positive. Mathematically, this artificial neuron is 
represented by: 
 

)( kk VY 
                                                                                (4)

 

 
Where Yk = artificial neuron output;  = activation function; Vk= 

linear combiner output, in other words: 
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Where Vk= linear combiner. 
 
Nevertheless, when working with ANN modeling, there is a potential 
problem of overfitting, which consists of an exaggerated learning of 
information from the database provided to the network. This way, 
the ANN becomes extremely trained on this information set and it 
starts to capture noise (errors) instead of the underlying 
relationships. Shortly, this overfitted network will not be able to be 
used in the entire sample data, since its generalization capacity 
was affected. 

Another consideration to be taken is regarding the selection of 
the training algorithm. This factor interferes particularly with the 
move out of local minimum. A good algorithm should have a high 
capability for local search and global search (scanning). A training 
algorithm is defined as a set of well-defined rules for solving a 
learning problem. In the present study, the training algorithm was 
resilient propagation, as proposed by Riedmiller and  Braun  (1993),  

 
 
 
 
being one of the most efficient and recommended for Multilayer 
Perceptron ANNs (MLP-ANNs). 

In this type of algorithm, weights are based on information 
contained in the current data. For this, an individual updating value 
is entered for each weight. Initially, weights of all networks were 
randomly generated (Heaton, 2011). Then, this individual updating 
value evolves during the learning process, based on the error 
function. Therefore, training persists until the error rate is shortened 
to an acceptable rate or until the maximum number of times or 
cycles are reached (Shiblee et al., 2010).   

Network learning was of the supervised type since two sets of 
values were given to the network: a set of input values (basic 
density) and another of output values (energy density). The training 
consisted of an optimization of a problem related to the network 
parameters (synaptic weights), which aimed to respond to the 
inputs as expected, as well as extrapolating the same behavior to 
other unpredicted inputs until the error between the output patterns 
reaches the desired minimum values (Haykin, 2001). 
 
 

ANN training 
 
One hundred multilayer perceptron ANNs (MLPs) were trained. In 
this type of ANN, there are at least two different layers (Serpen and 
Gao, 2014). There are several procedures to determine the 
stopping point of a training process. Parallel to this, certain cares 
must be taken, once an excessive number of cycles can lead to 
network loss of generalization power (overfitting). Also, with a small 
number of cycles, the network may not reach its best performance 
(underfitting). These problems were eliminated by adopting an 
average quadratic error below 1% as training stopping criterion or, 
when the root mean square error (RMSE) increased again as 
suggested by Chen et al. (2014). Therefore, the training was 
finalized when one of the criteria was reached, and the best 
network to estimating bamboo energy density was then selected. 
The ANN adjustments were made using the Statistica 7.0 software 
(StaSoft Inc, 2005). 
 
 

ANN validation 
 
Eighty-one samples were tested to validate the neural network 
efficacy in predicting bamboo energy density as a function of basic 
density. These samples were collected in different stem positions 
(base, middle and top) of several plants, and for plants of different 
ages. From them, 60 samples (85%) were randomly selected to 
make part of adjustments; however, only 21 of them (25%) were 
used for validations. It is noteworthy that the same drawing of lots 
selected plants for both data adjustment and validation for the 
various stems, positions and ages. The 21 sample units described 
above were not part of the adjustment database, as suggested by 
Zucchini (2000). This author commented that validation samples 
must be independent. Moreover, Gujarati and Porter (2011) 
recommended that these samples should meet the modeling 
precepts, wherein nearly 10 to 30% of the samples composing the 
database should be directed to validation of the adjusted equations. 

For ANN selection, traditional criteria were adopted to verify the 
goodness of fit, such as coefficient of determination (R2), estimate 
standard error (Syx%), and graphical analysis of residues. For 
validation, criteria consisted of t-test for pairwise data, estimate 
standard error (Syx%), aggregate difference (Da%), and absolute 
mean error (Ei). 
 
 

RESULTS AND DISCUSSION 
 

Table 1 shows the correlation values between physical 
and  chemical  properties  of  bamboo,  as  well  as   their  
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Table 1. Correlation between physical and chemical variables of bamboo. 
 

Parameter  
ρe 

(MJ.m
-3

) 

ρb 

(kg.m
-3

) 
MV (%) 

Cz 

(%) 

CF 

(%) 

PCS 

(kj.kg
-1

 ) 
Ext (%) 

Ho 

(%) 
LT 

ρe (MJ.m
-3

) 1.00         

ρb (kg. m
-3

) 0.97** 1.00        

MV (%) 0.04 -0.09 1.00       

Cz (%) 0.36** 0.57** -0.56** 1.00      

CF (%) -0.46** -0.57** -0.29** -0.62** 1.00     

PCS (kj.kg
-1

) -0.29* -0.52** 0.47** -0.93** 0.64** 1.00    

Ext. (%) -0.26 -0.33** 0.29** -0.52** 0.33** 0.39** 1.00   

Ho (%) 0.16 0.04 0.47 -0.43** 0.06 0.37** -0.14 1.00  

LT (%) -0.58** -0.68** 0.03 -0.56** 0.62** 0.64** 0.17 -0.18 1.00 
 

De: Energy density; Db: basic density; MV: volatile material; FC: fixed carbon; Ext: extractives; Ho: holocellulose; TL: total lignin; **: significant at 1%; 
*: significant at 5%. 

 
 
 

 
 

Figure 1. Architecture of the ANN selected for prediction of the bamboo energy density. 

 
 
 
significance. Although, the variables such as ash content, 
fixed carbon, superior calorific value, and total lignin 
show significant correlations to energy density, only basic 
density was used as a predictive variable. This fact is 
justified by its high correlation with the energy density 
(Table 1), besides being more easily estimated as 
compared to the other variables. 

After training 100 ANNs, the one with the best 
performance was selected, which showed a 1-3-1 
architecture, that is, a network with three layers and five 
neurons (Figure 1). It was also noticed that good fits were 
achieved for ANNs predicting the bamboo energy density 
with  low  standard  errors  (absolute  Syx  =  159.68  and 

Syx% = 1.52) and high coefficients of determination (R² = 
0.98). 

Even though all adjustment estimators were good for 
selecting models, the graphical analysis of residues was 
fundamental for choosing an equation applied in the 
forest sciences. This is because trend errors are to occur 
within a certain amplitude of a variable of interest, without 
being detected by statistics measuring accuracy. Figure 2 
displays the behavior of the ANN in predicting values of 
bamboo energy density as a function of basic density as 
compared to actual energy density and residual 
distribution.  

Figure 2 highlights that  the  ANN  was  able  to  predict 
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Figure 2. Behavior of the ANN in estimating bamboo energy density as compared to actual values, and 
residual distribution graph. 

 
 
 

Table 2. Real and ANN-estimated values (average, minimum and maximum) for the variable bamboo energy 
density. 
 

Variable 
Statistics 

 
Student t-test 

Average Minimum Maximum Syx (%) Da(%) Ei 
 

tcal ttab (95%, DF: 20) 

Energy density 
        

2.08 Real 10805 8689 14055 - - - 
 

0.58 

ANN-estimated 10790 8681 14108 1.10 0.14 15.00 
   

Syx(%): Estimate standard error; Da (%): aggregate difference; Ei: mean absolute error; tcal: t-statistics calculated 
values; ttab: t-statistics tabulated values; 95%: probability; DF: degree of freedom. 

 
 
 
reliably the energy density with residual errors below 5%. 
Along with accuracy statistics (Syx: 1.45% and R²: 0.98), 
we may infer that using basic density as the predictor 
variable and ANNs as modeling tools, an effective 
estimate of bamboo energy density was obtained. 

ANN reliability was tested by comparing the values of 
energy density estimated by them with real values 
obtained in the laboratory. Of the total sample units (81), 
25% (21) were randomly separated for this validation. 
Validation criteria for ANN adherence to the dataset were 
t-test for pairwise data, estimate standard error (Syx%), 
aggregate difference (Da) and absolute mean error (Ei), 
as seen in Table 2. 

When set against the tabulated values, t-statistics 
showed no significance at 95% probability (Table 2), 
leading to the acceptance of the null hypothesis, 
therefore, using the ANN to estimate bamboo energy 
density, with basic density as a predictor variable, was 
valid and reliable. For a thorough analysis, other 
statistical parameters, related to the behavior of ANN 
against the validation sample, were gathered in Table 2. 

It is noteworthy mention that the ANN previously 
selected during the fitting to predict bamboo energy 
density values presented the same behavior for estimate 
standard error (Syx%). Thus, this result  corroborates  the 

statements of Serpen and Gao (2014) who mentioned the 
efficiency of ANNs in learning and generalizing data and 
forms. These authors claimed that ANNs could extract 
standards from a given database and reapply then in 
others with great precision. 

The aggregate difference (Da) is a statistic value used 
as a model fit index and corresponds to the difference 
between the sum of observed values and the sum of 
estimated ones. This index acts as an indicating criterion 
for sub or overestimations, and here expressed in 
percentage for a better visualization. The ANN developed 
to predict energy density showed values of 0.13%, 
characterizing thus an underestimation of this variable. 
However, it is evidenced, the adaptability of the ANN in 
predicting such property of bamboo, since the value of 
the aggregate difference was very low. 

The mean errors (Ei) generated by the ANN were also 
analyzed. Values close to zero are desirable, whenever 
possible, as they show the ability of the network in 
estimating the variables of interest with accuracy. The 
mean error (Ei) generated by the ANN was 62.70 MJ.m-³, 
in percentage, and it corresponds to 0.14%. Again, we 
may state that low mean errors evidence the potential of 
an ANN in the learning and predictability of a variable. 

Seeking   greater   accuracy   and   precision,   a   most 
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Figure 3. Validation of behavior between actual and estimated data, residual analysis of bamboo energy prediction by 
means of the neural network interface. 

 
 
 
detailed graphical analysis of the residues was then used 
throughout the amplitude of the variable of interest for 
validation data, as shown in Figure 3. We could ascertain 
a satisfactory behavior of the ANN behavior since residue 
distribution was compact (± 5%) and homogeneous, 
without critical trend points. Therefore, this ANN can be 
considered as accurate and valid to estimate bamboo 
energy density using only basic density as a predictor 
variable. This fact had already been proven by the t-test. 

Artificial intelligence has great potential for several 
applications, with emphasis on engineering and 
agriculture. However, for its most promising application, 
Thakare and Singhal (2009) asserted the need for direct 
relationships between input parameters and the target 
response, which is defined as the output variable. In 
these cases, ANNs are developed to achieve a 
performance typical of a biological system, based on 
connections of these elements, similar to biological 
neurons. Also, Egrioglu et al. (2014) mentioned that 
ANNs have advantages over the conventional 
techniques, such as generalization, parallelism and the 
chance of learning, as well as exemption of certain 
statistical assumptions like data normality or linearity. 

Nevertheless, it is worth emphasizing that the results 
presented here only have validity for the studied species. 
This is due to variations of structures and 
physical/chemical compositions in each species. 
Therefore, further studies must be carried out testing 
different neural network settings to achieve a greater 
correlation between predictive data and responses. In 
this way, it will be possible to enhance accuracy in 
estimates of variables of interest. Inserting a "species" 
factor, as a categorical variable, into the input layer 
becomes an interesting alternative, which may result in a 
single ANN able of accurately predicting the energetic 
density of several species within the Bambusa genus. 

Conclusions 
 
In multilayer perception, artificial neural networks 
(MLPANNs) with sigmoidal function for layer activation, 
the training algorithm 'resilient propagation' associated 
with basic density, as predictor variable, was accurate 
and efficient in estimating energy density in stems of B. 
vulgaris. The results showed no statistical difference from 
energy density obtained in the laboratory. Therefore, its 
use is recommended in the prediction of this variable. 
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