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Dynamical systems of forage biomass accumulation under continuous harvesting with and without 
nutrient cycling are formulated and studied. For one dimensional dynamical system with β  being a 

measure of forage intake relative to forage growth, there is bifurcation at 0 70β = .  whereas at 

0 70 0 72β. < < .  the system exhibits discontinuous stability, and at 0 72β > .  the system collapses. For 

a two dimensional dynamical system, there is bifurcation at 0 26β = . , stable equilibrium at 

0 26 0 37β. < < .  and unstable equilibrium at 0 37β > . . For the three dimensional dynamical system 

where α  is a measure of soil nutrient replenishment, at 1 38 1 43α. < < .  the system exhibits two 
different stable states (a fixed point and a limit cycle) and one unstable state (limit cycle), and at 

1 43α > .  there is only one stable state (limit cycle), and there is hysteresis. For 1y =  and 

1 38 1 43α. < < . , there is local stability but no global stability. It is shown that the long-term stability of 
the livestock-forage system primarily depends on the stocking levels and initial forage biomass. 
Through bifurcation analysis, this study has identified critical points of the system for timely 
intervention by the farmer. Finally, by using dimensional analysis, it is possible to more readily 
compare relative effects of biological processes. 
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INTRODUCTION 
 
In work done by Tibayungwa et al. (2009) on livestock-
forage system the focus was on quantitative analysis. But 
to answer the question of what type of long-term system 
dynamics, stability of the system under perturbation, and 
how the system changes as parameters are varied, the 
focus should be on bifurcation and stability analysis of the 
system equilibria (Woodward, 1998). This study focuses 
on modelling livestock-forage systems for cases where 
forage biomass is almost always limiting, and therefore 
necessary to qualitatively analyse the system for 
dynamical    stability    over    time.    Understanding    the  
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dynamical behaviour of the the system over time can be 
crucial to proper planning for the livestock-forage 
production system. 
 
 
METHODS 
 
The models describe forage accumulation under constant 
harvesting, and livestock-forage interaction with nutrient cycling. 
The dynamical systems equations were nondimensionalised, using 
the procedures outlined in Segel (1972), to reduce the number of 
parameters to dimensionless groupings that determine the 
dynamics of the system (Murray, 2002), as this reduction always 
simplifies the analysis Strogatz1994. Moreover, an additional 
advantage to nondimensionalising the model is increased efficiency 
over conventional means of sensitivity analysis (Louie et al., 1998). 
Stability analysis of steady states was done according to Jordan 
and Smith (2007).  All  simulations  and  bifurcation  diagrams  were  
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Table 1. Variables and parameters introduced in the one dimensional model, their description, units and dimension. 
 

Parameter Description Units Dimension 

Y  Forage yield kg/ha 2ML−  

r  Dry matter intake per animal kgDM/(animal.day) 1MT −  
n  Stocking density animals/ha 2L−  

K  Maximum forage yield kg/ha 2ML−  
a  Relative forage growth kg/(kg.day) 1T −  
c  Yield at which intake is half-maximum kg/ha 2ML−  

 
 
 

Table 2. Variables and parameters introduced in the liveweight-forage model, their description, units and dimension. 
  

Parameter Description  Units Dimension 

Y  Forage yield  kg/ha 2ML−  

L  Animal biomass (liveweight) per hectare  kg/ha 2ML−  

K  Maximum forage yield  kg/ha 2ML−  
a  Relative forage growth  kg/(kg.day) 1T −  

f  Potential intake per kilogram liveweight  kg/(kg.day) 1T −  

c  Yield at which intake is half-maximum  kg/ha 2ML−  
v  Feed conversion efficiency  kg/kg −  

m  Feed maintenance requirement  kg/(kg.day) 1T −  
 
 
 
done using XPPAUT (Ermentrout, 2002). 
 
 
Forage growth, intake and stocking density 
 
Forage biomass as a logistic function, with a fixed carrying capacity 
is given by: 
 

= 1
dY Y

aY
dt K

� �−� �
� �

 (1) 

 
Where Y  (kg ha 1− ) is the forage biomass at any point in time, a  

is the relative forage growth rate, K  is the ceiling yield. 
 
Incorporating a Michaelis-Menten saturation function representing 
the consumption of the animal gives the following equation: 
 

= 1
dY Y rY

aY n
dt K c Y

� �− −� � +� �

 (2) 

 
Where parameters are defined in Table 1. 
 
By introducing the following dimensionless variables, 
 

= , =
Y

at y
K

τ  (3) 

 
substituting and computing  the  dimensional  equation  in  terms  of 

rescaled time, = atτ , using the chain rule gives: 
 

= ( ) = ( ) = ( ) =
dY d d d d dy

yK yK yK a aK
dt dt d dt d d

τ
τ τ τ

 (4) 

 
By substituting these expressions into the dimensional equation, 

and introducing dimensionless parameters = /c Kδ  and 

= /rn aKβ  we get the following nondimensional equation: 
 

= (1 )
dy y

y y
d y

β
τ δ

− −
+

 (5) 

 

The number of parameters has reduced from five to two, β  and 

δ . 
 
 
Forage growth, intake and liveweight gain 
 

In Equation 2 intake is in kg of DM d 1− , but can also be expressed 
as kg of DM per liveweight of the animal:  

 

=
fY

I L
c Y+

 (6) 

 
Where I  is feed intake and / ( )fY c Y+  is a Michelis-Menten 
response curve to forage availability; other  parameters  are  in  Table 2.  
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Table 3. Parameters and parameter combinations used to produce dimensionless variables in the liveweight-forage model. 
  

Variable Dimension Parameters used to non-dimensionalise Dimension Dimensionless variable 

Y  2ML−  K  2ML−  = /y Y K  

L  2ML−  /K v  2ML−  = /l Lv K  

t T  a  1T −  = atτ  

 
 
 

Table 4. Nondimensional parameters and values of the parameters used in the simulations of the liveweight-forage system. 
  

Parameter Dimension parameters Parameter values used in the simulations 

α  /m av  0.2  

β  /f av  0 2−  

δ  /c K  0 2−  
 
 
 
Substituting the right hand side of Equation 6 into the intake term of 
Equation 2 yields: 
 

= (1 )
dY Y fY

aY L
dt K c Y

− −
+

 (7) 

 
For a growing animal, the forage consumed is used for 
maintenance and growth and is modelled as: 

 

=
dL

I v mL
dt

+  (8) 

 
Re-arranging and substituting I  from equation 6, gives:  

 
1

=
dL fY m

L L
dt v c Y v

−
+

 (9) 

 
Equations 7 and 9 represent a coupled two-dimensional dynamical 
system for the rates of change of forage yield, Y , and animal 
liveweight, L . Model parameters are described in Table 2: 
  

= (1 )
dY Y fY

aY L
dt K c Y

− −
+                                             

(10a) (10a) 

 
1

=
dL fY m

L L
dt v c Y v

−
+                                                         

(10b) (10b) 

  
A similar system of equations was proposed by Woodward (1998). 
However, to ease the difficulty in parameter estimation and 
analysis, we nondimensionalise the system to reduce the number of 
parameters and to determine the parameter combinations that 
control the behaviour of the system (Louie et al., 1998). 

From Table 3 we see the following dimensionless variables 
 

= , = / , = /at y Y K l Lv Kτ  (11) 

We now solve = /y Y K  and = /l Lv K  for Y  and L  to 

give =Y yK  and = /L lK v  that we now substitute into the 
right-hand of the dimensional equations. 

Next, we compute the dimensional equations in terms of rescaled 
time, = atτ , using the chain rule: 
 

( ) ( ) ( )= = = =
dY d d d d dy

yK yK yK a aK
dt dt d dt d d

τ
τ τ τ    

(12) 

 

= = = =
dL d lK d lK d d lK aK dl

a
dt dt v d v dt d v v d

τ
τ τ τ

� � � � � � � �
� � � � � � � �
� � � � � � � �

 (13) 
 
By substituting these expressions, and the following dimensionless 
groups into dimensional equations: 
 

= , = , =
c f m
K av av

δ β α  (14) 

 
We arrive at the following nondimensionalised equations: 
  

= (1 )
dy ly

y y
d y

β
τ δ

− −
+

                                     

(15a) 

 

=
dl ly

l
d y

β α
τ δ

−
+

                                                         

(15b) 

 
By nondimensionalising the system, the number of parameters has 
reduced from six ( , , , , ,a K f c m v ) to three ( , ,α β δ ). The 
three nondimensional parameters in terms of the original 
parameters are listed in Table 4. 
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Table 5. Variables and parameters used in the livestock-forage-nutrient system. 
  

Variable/ Parameter Description Units Dimension 

S  Amount of nutrient available in soil for forage uptake kg/ha 2ML−  

V  Total forage biomass kg/ha 2ML−  

N  Animal biomass kg/ha 2ML−  
t  Time days T  
g  Relative rate of nutrient uptake per unit biomass of forage kg/(kg.day) 1T −  

F  Supply rate of nutrient input to the system kg/(ha.day) 2 1ML T− −  
a  Rate of loss of nutrient from soil nutrient pool kg/(kg.day) 1T −  
c  Rate of loss of forage biomass due to senescence kg/(kg.day) T − 1 

k  
Fraction of forage biomass that returns to the nutrient pool due to 
decomposition ( 0 < < 1k ) 

No Units −  

b  Rate of loss of animal biomass due to excretion kg/(kg.day) 1T −  

f  Relative intake per unit biomass of herbivore kg/(kg.day) 1T −  

1K  Forage biomass at which animal intake is half -maximum kg/ha 2ML−  

q  
Fraction of animal biomass that returns to the nutrient pool due to manure 
excretion ( 0 < < 1q ) No Units −  

sK  Soil nutrient level at which half-maximum intake by forage occurs kg/ha 2ML−  
 
 
 
Table 6. Parameters and parameter combinations used to produce dimensionless variables in the livestock-forage-nutrient system. 
  

Variable Dimension Parameters used to non-dimensionalise Dimension Dimensionless variable 

S  2ML−  1K  2ML−  1= /x S K  

V  2ML−  1K  2ML−  1= /y V K  

N  2ML−  1K  2ML−  1= /z N K  

t  T  a  1T −  = atτ  
 
 
 
Forage-animal-nutrient system 
 
The model by Ghosh and Sarkar (1998) on interacting species with 
nutrient cycling is modified by adding a Michaelis-Menten function 
that is more appropriate for describing forage yield-soil fertility 
relationships (Wickham et al., 1997). 
  

=
s

dS gSV
F aS kcV

dt K S
− − +

+                                 

(16a) (16a) 

 

1

=
s

dV gSV fNV
cV

dt K S K V
− −

+ +                                 

(16b) (16b) 

 

1

=
dN fNV

bN
dt K V

−
+

                                           

(16c) (16c) 

Where variables and parameters are defined in Table 5. 
 
Introducing dimensionless variables (Table 6) and dimensionless 
parameters (Table 7) gives the following nondimensional system 
  

=
dx xy

x ky qz
d x

βα γ η
τ ρ

− − + +
+

                   

(17a) 

 

=
1

dy xy yz
y

d x y
β δγ

τ ρ
− −

+ +
                                  

(17b) 

 

=
1

dz yz
z

d y
δ η

τ
−

+                                                           

(17c) 
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Table 7. Nondimensional parameters and values of the parameters used in the simulations for the livestock-forage-nutrient system. 
 

Parameter Dimension parameters Parameter values used in the simulations 

α  1/F aK  0 2−  

β  /g a  1.9  

δ  /f a  0.2  

γ  /c a  0.1  
η  /b a  0.1  

ρ  
1/sK K  0.5  

q  −  0 1−  

k  −  0.5  
 
 
 

 
 

Figure 1. Bifurcation diagrams for Equation 5.  a: Bifurcation with δ  as the control parameter, = 0.2β . Notice lack of 

sensitivity to δ ;  b: Stable and nonstable states with = 0.7δ . Solid lines show stable steady states, dashed lines show 
unstable steady states. SN is the sadle node, BP is the bifurcation point (see text for explanation). 

 
 
 
RESULTS AND DISCUSSION 
 
Forage growth, intake and stocking density 
 
Figure 1b shows the bifurcation diagram of system 5 for 
parameter β  (there was lack of sensitivity to parameter 

δ ). A bifurcation diagram is a graph from a series of 
points generated by a control parameter that is set at a 
given value and allowing the system to evolve to an 
equilibrium state, then recording the equilibrium values 
for the variables; by repeating this process at successive 
parameter levels, and finally plotting the recorded values 
the bifurcation diagram is generated. For low values of 
β , with initial value of > 0y  and up to about 0.7, the 
system moves towards the high steady state. This  is  the 

bifurcation point (BP), where the sudden change in 
behaviour occurs as a parameter passes through a 
critical value (Jordan and Smith, 2007, beyond which the 
system exhibits discontinuous stability up to about 0.72. 
Beyond this limit point, known as saddle node (SN), the 
system moves towards zero-forage biomass steady state. 
Farmers practicing zero-grazing tend to maximally utilize 
their forages, which happens to be the region between 
BP and SN. The danger of operating in this critical zone 
(discontinuous stability) is that a small perturbation to the 
system, for example drought or increased stocking 
density, can lead to collapse of the system. In addition, if 
the forage estimates are made without putting into 
consideration the need to match forage with the growth of 
the animals, this too leads to collapse of the system 
unless   alternative   sources  of  feed  are  sought  or  the  
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Figure 2. Time plot and phase portrait diagrams for livestock-forage model.  a: Time plot showing the oscillatory 
behaviour of the system when the steady state is a stable limit cycle;  b: Stable spiral with a trajectory moving to a 
stable fixed point, = 0.35, = 0.3, = 0.2β δ α ; c: Unstable spiral with trajectories moving away from unstable 

fixed point to a limit cycle, = 0.40, = 0.3, = 0.2β δ α ;  d: Stable limit cycle with trajectories on either side 

moving towards the limit cycle for = 0.2, = 0.3, = 0.4α δ β . 
 
 
 
animal numbers are reduced.  
 
 
Forage growth, intake and liveweight gain 
 
Figure 2 shows the dynamics of Liveweight-forage 
system (15). The nullclines represent the system state 
where neither liveweight nor forage biomass is changing. 
The horizontal nullcline indicates that the forage available 
is just enough for feeding the animal at maintenance 
level, and the intersection point for the two nullclines is 
the equilibrium point for the system. Stability of the 
equilibrium point is determined by the direction in which 
the nearby trajectories evolve; stable equilibrium attracts 
nearby trajectories whereas unstable equilibrium repels 
nearby trajectories. Thus, the equilibrium in Fig 2b is 
stable and that in Fig 2c is unstable. However, the 
stability of the equilibrium or steady state depends on  the 

parameter values, for example, β  at 0.35 and 0.40 gives 
results shown in Figure 2b and 2c respectively. 

Tracking the behaviour of the system as the 
parameters change is done by a two-parameter 
bifurcation analysis as shown in Figure 3b, where 
parameter coordinates for β  and δ  above the curve 
lead to a fixed point whereas coordinates below the curve 
lead to a limit cycle. 

In Figure 3a at << 1β  (intake <<  forage growth), y  
stays at 1.0 up to BP where it drops dramatically to HB. 
At HB, the equilibrium solutions lose stability and the 
system evolves to a stable limit cycle surrounding the 
unstable equilibrium. Explanation for the bifurcation 
diagrams with reference to δ  is as follows: for Figure 3d 
increasing δ  from 1 (likely when carrying capacity has 
declined or stocking density has increased)  means  there  
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Figure 3. Bifurcation diagrams for the livestock-forage model. Solid lines show stable steady states, dashed lines show 
unstable steady states, filled circles show stable limit cycle oscillations, open circles show unstable limit cycle 
oscillations. a: Steady state dimensionless forage biomass with β  as the control parameter, for = 0.2, = 0.3α δ ; 

b: Stability diagram showing the two parameter ( β  and δ ), = 0.2α ; c: Steady state dimensionless liveweight with 

δ  as the bifurcation parameter, for = 0.2, = 0.5α β ; d: Steady state dimensionless forage biomass with δ  as the 

bifurcation parameter, for = 0.2, = 0.5α β . 
 
 
 
is decreasing forage for the animals up to point (BP) 
when the forage can no longer support any animals. At 
this point the animals are either sold or alternative 
sources of feed sought. But farmers do not wait up to this 
point, they start looking for alternative feed as early 
enough usually outsourcing from crop residues or 
roadside forages. Below δ =1 and up to HB (Hopf 
bifurcation, a point where the equilibrium solutions lose 
stability) liveweight and forage are in non-zero steady 
states. At HB the system loses equilibrium stability and 
evolves to a stable limit cycle surrounding the unstable 
equilibrium. For values of δ  below HB the system 
oscillates   with  increasing  amplititudes,  as  indicated  in 

Figure 3c. This means that at <<δ  HB there is plenty of 
forage and the farmer can add more animals to the 
system or conserve forage; if animals are added to the 
system this reduces the available forage and the system 
evolves to decreasing oscillations up to HB (Figure 3c) 
beyond which the system attains equilibrium.  
 
 
Forage-animal-nutrient system 
 
For the livestock-forage-nutrient the study focused on the 
behaviour and stability of the system with or without 
application of commercial nutrient or excreted nutrient. 
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Figure 4. Time plot and and excreted manure at different levels for the livestock-forage-nutrient 
system. 4a: Time plot, = 1, = 1.9, = 0.5, = 0.1, = 0.1kα β γ η , = 0.5ρ , 

= 0.2, = 0.5qδ ;  4b: Nutrient at three levels of q , other parameters = 0α , = 1.9β , 

= 0.5, = 0.1, = 0.1, = 0.5, = 0.2k γ η ρ δ . 
 
 
 

 
 
Figure 5. Livestock-forage-nutrient dynamics.  a: Funnel spiral behaviour;  b: 
Cylindrical spiral dynamics;  c: Spiral dynamics, 

= 1, = 1.9, = 0.5, = 0.1, = 0.1, = 0.5, = 0.2, = 0.2k qα β γ η ρ δ ; d: 
Limit cycle dynamics, 

= 1, = 1.9, = 0.5, = 0.1, = 0.1, = 0.5, = 0.2, = 0.5k qα β γ η ρ δ . 
 
 
 

Therefore, the control parameters considered are α  
and q . It is assumed that the nutrient referred to here, is 
essential to the growth of forage and without it no forage 
growth can occur.  Figure 4b at = 0q  (no excreted 
nutrient added), the system collapses after 10 time-steps 
( =10τ ), whereas at q  = 50% the system takes 30 time-
steps (3 times longer to collapse). This clearly indicates 
the importance of adding excreted nutrient  to  the  forage 

production.  Curve = 1q  is an ideal situation where all 
the excreted nutrient is applied to the production of 
forage (improbable, but just for comparison purposes).  
Figures 5a and b show the different behaviour of the 
livestock-forage-nutrient system depending on initial 
conditions and parameter values. 

However, at the parameters indicated for Figures 5c 
and b the system evolves to a stable fixed point and a 
stable limit cycle respectively.  Here  the  interest  was  to  
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Figure  6. Bifurcation diagrams for the livestock-forage-nutrient system. Solid lines show stable steady states, 
dashed lines show unstable steady states, filled circles show stable limit cycle oscillations, open circles show 
unstable limit cycle oscillations.  a: Dimensionless forage at 

<< 1α , = 1.9, = 0.5, = 0.1, = 0.1, = 0.5, = 0.2, = 0k qβ γ η ρ δ ;  b: Dimensionless forage with α  as 

the control parameter, = 1.9, = 0.5, = 0.1, = 0.1, = 0.5, = 0.2, = 0k qβ γ η ρ δ . 
 
 
 
study the effect of the external nutrient input to the 
system, and the results are summarised in the bifurcation 
diagrams (Figures 6a and b). 

At very low levels of α  ( << 1α ) and no application of 
excreted nutrient, y  is at the zero-steady state. As α , 
which is a measure of nutrient supply to the soil in a 
relation to nutrient loss from the soil (Tables 5 and 7), 
increases to the left-most BP, the system moves off the 
zero-steady state up to BP at = 1.0y  (Figure 6a) where 
it stays for all the values of α  up to HB shown in Figure 
6b). 

The bifurcation diagram in Figure 6b is a continuation 
of Figure 6a and is explained as follows. For values of α  
in the range < <SN HBα  the system exhibits two 
different stable states (solid line and the outer limit cycle 
with filled circles). The system, within this same range of 
α  values exhibits unstable limit cycle (open circles). This 
means that with α  in the range < <SN HBα , and y  
inside the upper and lower bounds of amplitudes of the 
unstable limit cycle, the system will evolve towards the 
stable state indicated by the solid line. But with y  
outside the bounds of the unstable limit cycle, the system 
evolves to the outer stable limit cycle. Therefore, starting 
at HB and increasing α  switches the system to the outer 
limit cycle. However, starting from > HBα  and 
decreasing α  to HB, does not bring back the system to 
the steady state of the solid line. Instead the system 
continues along the amplitudes of the outer limit cycle up 
to SN. This lack of reversibility as a bifurcation parameter 
is varied is called hysteresis (Strogatz, 1994) and has 
great   implications   for  livestock-forage-nutrient  system 

and is explained as follows. For < <SN HBα  and 
= 1y  the system is stable to small perturbations, for 

example, if dimensionless forage biomass is changed 
(but not beyond the unstable limit cycle) due to change in 
dimensionless animal biomass, the system will evolve 
back to the fixed point = 1y . But if the change is past 
the unstable limit cycle the system jumps to the outer 
stable limit cycle. But on this limit cycle the lower 
dimensionless forage biomass tends to zero-state; and 
from a management point of view the stable state at 

= 1y  may be more desirable. However, even at = 1y  
steady state, if α  increases beyond HB , the only stable 
state is the outer stable limit cycle. From the definition of 
α  (Table 7), this can happen when there is increased 
efficiency in retaining external nutrient supply to the 
system within the forage root domain of nutrient uptake. 
This increased efficiency can be due to better method of 
nutrient application, for example, subsurface nutrient 
application is known to be more efficient than surface 
application (Kabi and Bareeba, 2007) for the case of 
Nitrogen. The implication of having the system on the 
outer limit cycle with > HBα  is that the dimensionless 
animal biomass must change with available 
dimensionless forage biomass; but this may not be 
desirable or biologically feasible. For example, it may 
mean reducing the animal stocking level, outsourcing 
extra feeds, or allowing the animals to lose weight. If 
these operations are not the intent of the farmer, then the 
fixed stable state of < <SN HBα  may be an attractive 
management strategy. However, once the system is in a 
state  where  > HBα ,  taking  it  back  to  = 1y   in  the  



 
 
 
 
region < <SN HBα  means the system first goes back 
to where = SNα  (along the stable outer limit cycle) 
before it can settle on the = 1y  steady state. Since α  is 
a measure of efficiency for retaining external nutrient 
supply to the system, the desirable level of α  is not SN  
but HB . In other words, if the aim of the farmer is to 
maintain the system with < <SN HBα  and = 1y , 

then = HBα  is the upper limit of efficiency. 
This study has shown the importance of evaluating 

farmers' forage resources before acquisition of animals 
since initial conditions (forage biomass and stocking 
level) influence the stability and sustainability of the 
system. The study has also shown that there are critical 
points in the system where management intervention is 
highly effective depending on the goals of the farmer. 
Furthermore, it is shown that not all parameters show 
sensitivity to the system, and the parameters that show 
sensitivity have specific parameter space over which they 
exhibit different sensitivities; this is important in designing 
experiments and making management decisions. Finally, 
by organising parameters into dimensionless groups, it is 
possible to more readily compare relative effects of 
biological processes. 
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